1 /* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * Copyright (C) 1995 Linus Torvalds 7 * Copyright (C) 1995 Waldorf Electronics 8 * Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 01, 02, 03 Ralf Baechle 9 * Copyright (C) 1996 Stoned Elipot 10 * Copyright (C) 1999 Silicon Graphics, Inc. 11 * Copyright (C) 2000, 2001, 2002, 2007 Maciej W. Rozycki 12 */ 13 #include <linux/init.h> 14 #include <linux/cpu.h> 15 #include <linux/delay.h> 16 #include <linux/ioport.h> 17 #include <linux/export.h> 18 #include <linux/memblock.h> 19 #include <linux/initrd.h> 20 #include <linux/root_dev.h> 21 #include <linux/highmem.h> 22 #include <linux/console.h> 23 #include <linux/pfn.h> 24 #include <linux/debugfs.h> 25 #include <linux/kexec.h> 26 #include <linux/sizes.h> 27 #include <linux/device.h> 28 #include <linux/dma-map-ops.h> 29 #include <linux/decompress/generic.h> 30 #include <linux/of_fdt.h> 31 #include <linux/dmi.h> 32 #include <linux/crash_dump.h> 33 34 #include <asm/addrspace.h> 35 #include <asm/bootinfo.h> 36 #include <asm/bugs.h> 37 #include <asm/cache.h> 38 #include <asm/cdmm.h> 39 #include <asm/cpu.h> 40 #include <asm/debug.h> 41 #include <asm/mmzone.h> 42 #include <asm/sections.h> 43 #include <asm/setup.h> 44 #include <asm/smp-ops.h> 45 #include <asm/prom.h> 46 #include <asm/fw/fw.h> 47 48 #ifdef CONFIG_MIPS_ELF_APPENDED_DTB 49 char __section(".appended_dtb") __appended_dtb[0x100000]; 50 #endif /* CONFIG_MIPS_ELF_APPENDED_DTB */ 51 52 struct cpuinfo_mips cpu_data[NR_CPUS] __read_mostly; 53 54 EXPORT_SYMBOL(cpu_data); 55 56 /* 57 * Setup information 58 * 59 * These are initialized so they are in the .data section 60 */ 61 unsigned long mips_machtype __read_mostly = MACH_UNKNOWN; 62 63 EXPORT_SYMBOL(mips_machtype); 64 65 static char __initdata command_line[COMMAND_LINE_SIZE]; 66 char __initdata arcs_cmdline[COMMAND_LINE_SIZE]; 67 68 #ifdef CONFIG_CMDLINE_BOOL 69 static const char builtin_cmdline[] __initconst = CONFIG_CMDLINE; 70 #else 71 static const char builtin_cmdline[] __initconst = ""; 72 #endif 73 74 /* 75 * mips_io_port_base is the begin of the address space to which x86 style 76 * I/O ports are mapped. 77 */ 78 unsigned long mips_io_port_base = -1; 79 EXPORT_SYMBOL(mips_io_port_base); 80 81 static struct resource code_resource = { .name = "Kernel code", }; 82 static struct resource data_resource = { .name = "Kernel data", }; 83 static struct resource bss_resource = { .name = "Kernel bss", }; 84 85 unsigned long __kaslr_offset __ro_after_init; 86 EXPORT_SYMBOL(__kaslr_offset); 87 88 static void *detect_magic __initdata = detect_memory_region; 89 90 #ifdef CONFIG_MIPS_AUTO_PFN_OFFSET 91 unsigned long ARCH_PFN_OFFSET; 92 EXPORT_SYMBOL(ARCH_PFN_OFFSET); 93 #endif 94 95 void __init detect_memory_region(phys_addr_t start, phys_addr_t sz_min, phys_addr_t sz_max) 96 { 97 void *dm = &detect_magic; 98 phys_addr_t size; 99 100 for (size = sz_min; size < sz_max; size <<= 1) { 101 if (!memcmp(dm, dm + size, sizeof(detect_magic))) 102 break; 103 } 104 105 pr_debug("Memory: %lluMB of RAM detected at 0x%llx (min: %lluMB, max: %lluMB)\n", 106 ((unsigned long long) size) / SZ_1M, 107 (unsigned long long) start, 108 ((unsigned long long) sz_min) / SZ_1M, 109 ((unsigned long long) sz_max) / SZ_1M); 110 111 memblock_add(start, size); 112 } 113 114 /* 115 * Manage initrd 116 */ 117 #ifdef CONFIG_BLK_DEV_INITRD 118 119 static int __init rd_start_early(char *p) 120 { 121 unsigned long start = memparse(p, &p); 122 123 #ifdef CONFIG_64BIT 124 /* Guess if the sign extension was forgotten by bootloader */ 125 if (start < XKPHYS) 126 start = (int)start; 127 #endif 128 initrd_start = start; 129 initrd_end += start; 130 return 0; 131 } 132 early_param("rd_start", rd_start_early); 133 134 static int __init rd_size_early(char *p) 135 { 136 initrd_end += memparse(p, &p); 137 return 0; 138 } 139 early_param("rd_size", rd_size_early); 140 141 /* it returns the next free pfn after initrd */ 142 static unsigned long __init init_initrd(void) 143 { 144 unsigned long end; 145 146 /* 147 * Board specific code or command line parser should have 148 * already set up initrd_start and initrd_end. In these cases 149 * perfom sanity checks and use them if all looks good. 150 */ 151 if (!initrd_start || initrd_end <= initrd_start) 152 goto disable; 153 154 if (initrd_start & ~PAGE_MASK) { 155 pr_err("initrd start must be page aligned\n"); 156 goto disable; 157 } 158 159 /* 160 * Sanitize initrd addresses. For example firmware 161 * can't guess if they need to pass them through 162 * 64-bits values if the kernel has been built in pure 163 * 32-bit. We need also to switch from KSEG0 to XKPHYS 164 * addresses now, so the code can now safely use __pa(). 165 */ 166 end = __pa(initrd_end); 167 initrd_end = (unsigned long)__va(end); 168 initrd_start = (unsigned long)__va(__pa(initrd_start)); 169 170 if (initrd_start < PAGE_OFFSET) { 171 pr_err("initrd start < PAGE_OFFSET\n"); 172 goto disable; 173 } 174 175 ROOT_DEV = Root_RAM0; 176 return PFN_UP(end); 177 disable: 178 initrd_start = 0; 179 initrd_end = 0; 180 return 0; 181 } 182 183 /* In some conditions (e.g. big endian bootloader with a little endian 184 kernel), the initrd might appear byte swapped. Try to detect this and 185 byte swap it if needed. */ 186 static void __init maybe_bswap_initrd(void) 187 { 188 #if defined(CONFIG_CPU_CAVIUM_OCTEON) 189 u64 buf; 190 191 /* Check for CPIO signature */ 192 if (!memcmp((void *)initrd_start, "070701", 6)) 193 return; 194 195 /* Check for compressed initrd */ 196 if (decompress_method((unsigned char *)initrd_start, 8, NULL)) 197 return; 198 199 /* Try again with a byte swapped header */ 200 buf = swab64p((u64 *)initrd_start); 201 if (!memcmp(&buf, "070701", 6) || 202 decompress_method((unsigned char *)(&buf), 8, NULL)) { 203 unsigned long i; 204 205 pr_info("Byteswapped initrd detected\n"); 206 for (i = initrd_start; i < ALIGN(initrd_end, 8); i += 8) 207 swab64s((u64 *)i); 208 } 209 #endif 210 } 211 212 static void __init finalize_initrd(void) 213 { 214 unsigned long size = initrd_end - initrd_start; 215 216 if (size == 0) { 217 printk(KERN_INFO "Initrd not found or empty"); 218 goto disable; 219 } 220 if (__pa(initrd_end) > PFN_PHYS(max_low_pfn)) { 221 printk(KERN_ERR "Initrd extends beyond end of memory"); 222 goto disable; 223 } 224 225 maybe_bswap_initrd(); 226 227 memblock_reserve(__pa(initrd_start), size); 228 initrd_below_start_ok = 1; 229 230 pr_info("Initial ramdisk at: 0x%lx (%lu bytes)\n", 231 initrd_start, size); 232 return; 233 disable: 234 printk(KERN_CONT " - disabling initrd\n"); 235 initrd_start = 0; 236 initrd_end = 0; 237 } 238 239 #else /* !CONFIG_BLK_DEV_INITRD */ 240 241 static unsigned long __init init_initrd(void) 242 { 243 return 0; 244 } 245 246 #define finalize_initrd() do {} while (0) 247 248 #endif 249 250 /* 251 * Initialize the bootmem allocator. It also setup initrd related data 252 * if needed. 253 */ 254 #if defined(CONFIG_SGI_IP27) || (defined(CONFIG_CPU_LOONGSON64) && defined(CONFIG_NUMA)) 255 256 static void __init bootmem_init(void) 257 { 258 init_initrd(); 259 finalize_initrd(); 260 } 261 262 #else /* !CONFIG_SGI_IP27 */ 263 264 static void __init bootmem_init(void) 265 { 266 phys_addr_t ramstart, ramend; 267 unsigned long start, end; 268 int i; 269 270 ramstart = memblock_start_of_DRAM(); 271 ramend = memblock_end_of_DRAM(); 272 273 /* 274 * Sanity check any INITRD first. We don't take it into account 275 * for bootmem setup initially, rely on the end-of-kernel-code 276 * as our memory range starting point. Once bootmem is inited we 277 * will reserve the area used for the initrd. 278 */ 279 init_initrd(); 280 281 /* Reserve memory occupied by kernel. */ 282 memblock_reserve(__pa_symbol(&_text), 283 __pa_symbol(&_end) - __pa_symbol(&_text)); 284 285 /* max_low_pfn is not a number of pages but the end pfn of low mem */ 286 287 #ifdef CONFIG_MIPS_AUTO_PFN_OFFSET 288 ARCH_PFN_OFFSET = PFN_UP(ramstart); 289 #else 290 /* 291 * Reserve any memory between the start of RAM and PHYS_OFFSET 292 */ 293 if (ramstart > PHYS_OFFSET) 294 memblock_reserve(PHYS_OFFSET, ramstart - PHYS_OFFSET); 295 296 if (PFN_UP(ramstart) > ARCH_PFN_OFFSET) { 297 pr_info("Wasting %lu bytes for tracking %lu unused pages\n", 298 (unsigned long)((PFN_UP(ramstart) - ARCH_PFN_OFFSET) * sizeof(struct page)), 299 (unsigned long)(PFN_UP(ramstart) - ARCH_PFN_OFFSET)); 300 } 301 #endif 302 303 min_low_pfn = ARCH_PFN_OFFSET; 304 max_pfn = PFN_DOWN(ramend); 305 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, NULL) { 306 /* 307 * Skip highmem here so we get an accurate max_low_pfn if low 308 * memory stops short of high memory. 309 * If the region overlaps HIGHMEM_START, end is clipped so 310 * max_pfn excludes the highmem portion. 311 */ 312 if (start >= PFN_DOWN(HIGHMEM_START)) 313 continue; 314 if (end > PFN_DOWN(HIGHMEM_START)) 315 end = PFN_DOWN(HIGHMEM_START); 316 if (end > max_low_pfn) 317 max_low_pfn = end; 318 } 319 320 if (min_low_pfn >= max_low_pfn) 321 panic("Incorrect memory mapping !!!"); 322 323 if (max_pfn > PFN_DOWN(HIGHMEM_START)) { 324 #ifdef CONFIG_HIGHMEM 325 highstart_pfn = PFN_DOWN(HIGHMEM_START); 326 highend_pfn = max_pfn; 327 #else 328 max_low_pfn = PFN_DOWN(HIGHMEM_START); 329 max_pfn = max_low_pfn; 330 #endif 331 } 332 333 /* 334 * Reserve initrd memory if needed. 335 */ 336 finalize_initrd(); 337 } 338 339 #endif /* CONFIG_SGI_IP27 */ 340 341 static int usermem __initdata; 342 343 static int __init early_parse_mem(char *p) 344 { 345 phys_addr_t start, size; 346 347 if (!p) { 348 pr_err("mem parameter is empty, do nothing\n"); 349 return -EINVAL; 350 } 351 352 /* 353 * If a user specifies memory size, we 354 * blow away any automatically generated 355 * size. 356 */ 357 if (usermem == 0) { 358 usermem = 1; 359 memblock_remove(memblock_start_of_DRAM(), 360 memblock_end_of_DRAM() - memblock_start_of_DRAM()); 361 } 362 start = 0; 363 size = memparse(p, &p); 364 if (*p == '@') 365 start = memparse(p + 1, &p); 366 367 if (IS_ENABLED(CONFIG_NUMA)) 368 memblock_add_node(start, size, pa_to_nid(start), MEMBLOCK_NONE); 369 else 370 memblock_add(start, size); 371 372 return 0; 373 } 374 early_param("mem", early_parse_mem); 375 376 static int __init early_parse_memmap(char *p) 377 { 378 char *oldp; 379 u64 start_at, mem_size; 380 381 if (!p) 382 return -EINVAL; 383 384 if (!strncmp(p, "exactmap", 8)) { 385 pr_err("\"memmap=exactmap\" invalid on MIPS\n"); 386 return 0; 387 } 388 389 oldp = p; 390 mem_size = memparse(p, &p); 391 if (p == oldp) 392 return -EINVAL; 393 394 if (*p == '@') { 395 start_at = memparse(p+1, &p); 396 memblock_add(start_at, mem_size); 397 } else if (*p == '#') { 398 pr_err("\"memmap=nn#ss\" (force ACPI data) invalid on MIPS\n"); 399 return -EINVAL; 400 } else if (*p == '$') { 401 start_at = memparse(p+1, &p); 402 memblock_add(start_at, mem_size); 403 memblock_reserve(start_at, mem_size); 404 } else { 405 pr_err("\"memmap\" invalid format!\n"); 406 return -EINVAL; 407 } 408 409 if (*p == '\0') { 410 usermem = 1; 411 return 0; 412 } else 413 return -EINVAL; 414 } 415 early_param("memmap", early_parse_memmap); 416 417 static void __init mips_reserve_vmcore(void) 418 { 419 #ifdef CONFIG_PROC_VMCORE 420 phys_addr_t start, end; 421 u64 i; 422 423 if (!elfcorehdr_size) { 424 for_each_mem_range(i, &start, &end) { 425 if (elfcorehdr_addr >= start && elfcorehdr_addr < end) { 426 /* 427 * Reserve from the elf core header to the end of 428 * the memory segment, that should all be kdump 429 * reserved memory. 430 */ 431 elfcorehdr_size = end - elfcorehdr_addr; 432 break; 433 } 434 } 435 } 436 437 pr_info("Reserving %ldKB of memory at %ldKB for kdump\n", 438 (unsigned long)elfcorehdr_size >> 10, (unsigned long)elfcorehdr_addr >> 10); 439 440 memblock_reserve(elfcorehdr_addr, elfcorehdr_size); 441 #endif 442 } 443 444 #ifdef CONFIG_KEXEC 445 446 /* 64M alignment for crash kernel regions */ 447 #define CRASH_ALIGN SZ_64M 448 #define CRASH_ADDR_MAX SZ_512M 449 450 static void __init mips_parse_crashkernel(void) 451 { 452 unsigned long long total_mem; 453 unsigned long long crash_size, crash_base; 454 int ret; 455 456 total_mem = memblock_phys_mem_size(); 457 ret = parse_crashkernel(boot_command_line, total_mem, 458 &crash_size, &crash_base); 459 if (ret != 0 || crash_size <= 0) 460 return; 461 462 if (crash_base <= 0) { 463 crash_base = memblock_phys_alloc_range(crash_size, CRASH_ALIGN, 464 CRASH_ALIGN, 465 CRASH_ADDR_MAX); 466 if (!crash_base) { 467 pr_warn("crashkernel reservation failed - No suitable area found.\n"); 468 return; 469 } 470 } else { 471 unsigned long long start; 472 473 start = memblock_phys_alloc_range(crash_size, 1, 474 crash_base, 475 crash_base + crash_size); 476 if (start != crash_base) { 477 pr_warn("Invalid memory region reserved for crash kernel\n"); 478 return; 479 } 480 } 481 482 crashk_res.start = crash_base; 483 crashk_res.end = crash_base + crash_size - 1; 484 } 485 486 static void __init request_crashkernel(struct resource *res) 487 { 488 int ret; 489 490 if (crashk_res.start == crashk_res.end) 491 return; 492 493 ret = request_resource(res, &crashk_res); 494 if (!ret) 495 pr_info("Reserving %ldMB of memory at %ldMB for crashkernel\n", 496 (unsigned long)(resource_size(&crashk_res) >> 20), 497 (unsigned long)(crashk_res.start >> 20)); 498 } 499 #else /* !defined(CONFIG_KEXEC) */ 500 static void __init mips_parse_crashkernel(void) 501 { 502 } 503 504 static void __init request_crashkernel(struct resource *res) 505 { 506 } 507 #endif /* !defined(CONFIG_KEXEC) */ 508 509 static void __init check_kernel_sections_mem(void) 510 { 511 phys_addr_t start = __pa_symbol(&_text); 512 phys_addr_t size = __pa_symbol(&_end) - start; 513 514 if (!memblock_is_region_memory(start, size)) { 515 pr_info("Kernel sections are not in the memory maps\n"); 516 memblock_add(start, size); 517 } 518 } 519 520 static void __init bootcmdline_append(const char *s, size_t max) 521 { 522 if (!s[0] || !max) 523 return; 524 525 if (boot_command_line[0]) 526 strlcat(boot_command_line, " ", COMMAND_LINE_SIZE); 527 528 strlcat(boot_command_line, s, max); 529 } 530 531 #ifdef CONFIG_OF_EARLY_FLATTREE 532 533 static int __init bootcmdline_scan_chosen(unsigned long node, const char *uname, 534 int depth, void *data) 535 { 536 bool *dt_bootargs = data; 537 const char *p; 538 int l; 539 540 if (depth != 1 || !data || 541 (strcmp(uname, "chosen") != 0 && strcmp(uname, "chosen@0") != 0)) 542 return 0; 543 544 p = of_get_flat_dt_prop(node, "bootargs", &l); 545 if (p != NULL && l > 0) { 546 bootcmdline_append(p, min(l, COMMAND_LINE_SIZE)); 547 *dt_bootargs = true; 548 } 549 550 return 1; 551 } 552 553 #endif /* CONFIG_OF_EARLY_FLATTREE */ 554 555 static void __init bootcmdline_init(void) 556 { 557 bool dt_bootargs = false; 558 559 /* 560 * If CMDLINE_OVERRIDE is enabled then initializing the command line is 561 * trivial - we simply use the built-in command line unconditionally & 562 * unmodified. 563 */ 564 if (IS_ENABLED(CONFIG_CMDLINE_OVERRIDE)) { 565 strscpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE); 566 return; 567 } 568 569 /* 570 * If the user specified a built-in command line & 571 * MIPS_CMDLINE_BUILTIN_EXTEND, then the built-in command line is 572 * prepended to arguments from the bootloader or DT so we'll copy them 573 * to the start of boot_command_line here. Otherwise, empty 574 * boot_command_line to undo anything early_init_dt_scan_chosen() did. 575 */ 576 if (IS_ENABLED(CONFIG_MIPS_CMDLINE_BUILTIN_EXTEND)) 577 strscpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE); 578 else 579 boot_command_line[0] = 0; 580 581 #ifdef CONFIG_OF_EARLY_FLATTREE 582 /* 583 * If we're configured to take boot arguments from DT, look for those 584 * now. 585 */ 586 if (IS_ENABLED(CONFIG_MIPS_CMDLINE_FROM_DTB) || 587 IS_ENABLED(CONFIG_MIPS_CMDLINE_DTB_EXTEND)) 588 of_scan_flat_dt(bootcmdline_scan_chosen, &dt_bootargs); 589 #endif 590 591 /* 592 * If we didn't get any arguments from DT (regardless of whether that's 593 * because we weren't configured to look for them, or because we looked 594 * & found none) then we'll take arguments from the bootloader. 595 * plat_mem_setup() should have filled arcs_cmdline with arguments from 596 * the bootloader. 597 */ 598 if (IS_ENABLED(CONFIG_MIPS_CMDLINE_DTB_EXTEND) || !dt_bootargs) 599 bootcmdline_append(arcs_cmdline, COMMAND_LINE_SIZE); 600 601 /* 602 * If the user specified a built-in command line & we didn't already 603 * prepend it, we append it to boot_command_line here. 604 */ 605 if (IS_ENABLED(CONFIG_CMDLINE_BOOL) && 606 !IS_ENABLED(CONFIG_MIPS_CMDLINE_BUILTIN_EXTEND)) 607 bootcmdline_append(builtin_cmdline, COMMAND_LINE_SIZE); 608 } 609 610 /* 611 * arch_mem_init - initialize memory management subsystem 612 * 613 * o plat_mem_setup() detects the memory configuration and will record detected 614 * memory areas using memblock_add. 615 * 616 * At this stage the memory configuration of the system is known to the 617 * kernel but generic memory management system is still entirely uninitialized. 618 * 619 * o bootmem_init() 620 * o sparse_init() 621 * o paging_init() 622 * o dma_contiguous_reserve() 623 * 624 * At this stage the bootmem allocator is ready to use. 625 * 626 * NOTE: historically plat_mem_setup did the entire platform initialization. 627 * This was rather impractical because it meant plat_mem_setup had to 628 * get away without any kind of memory allocator. To keep old code from 629 * breaking plat_setup was just renamed to plat_mem_setup and a second platform 630 * initialization hook for anything else was introduced. 631 */ 632 static void __init arch_mem_init(char **cmdline_p) 633 { 634 /* call board setup routine */ 635 plat_mem_setup(); 636 memblock_set_bottom_up(true); 637 638 bootcmdline_init(); 639 strscpy(command_line, boot_command_line, COMMAND_LINE_SIZE); 640 *cmdline_p = command_line; 641 642 parse_early_param(); 643 644 if (usermem) 645 pr_info("User-defined physical RAM map overwrite\n"); 646 647 check_kernel_sections_mem(); 648 649 early_init_fdt_reserve_self(); 650 early_init_fdt_scan_reserved_mem(); 651 652 #ifndef CONFIG_NUMA 653 memblock_set_node(0, PHYS_ADDR_MAX, &memblock.memory, 0); 654 #endif 655 bootmem_init(); 656 657 /* 658 * Prevent memblock from allocating high memory. 659 * This cannot be done before max_low_pfn is detected, so up 660 * to this point is possible to only reserve physical memory 661 * with memblock_reserve; memblock_alloc* can be used 662 * only after this point 663 */ 664 memblock_set_current_limit(PFN_PHYS(max_low_pfn)); 665 666 mips_reserve_vmcore(); 667 668 mips_parse_crashkernel(); 669 device_tree_init(); 670 671 /* 672 * In order to reduce the possibility of kernel panic when failed to 673 * get IO TLB memory under CONFIG_SWIOTLB, it is better to allocate 674 * low memory as small as possible before plat_swiotlb_setup(), so 675 * make sparse_init() using top-down allocation. 676 */ 677 memblock_set_bottom_up(false); 678 sparse_init(); 679 memblock_set_bottom_up(true); 680 681 plat_swiotlb_setup(); 682 683 dma_contiguous_reserve(PFN_PHYS(max_low_pfn)); 684 685 /* Reserve for hibernation. */ 686 memblock_reserve(__pa_symbol(&__nosave_begin), 687 __pa_symbol(&__nosave_end) - __pa_symbol(&__nosave_begin)); 688 689 early_memtest(PFN_PHYS(ARCH_PFN_OFFSET), PFN_PHYS(max_low_pfn)); 690 } 691 692 static void __init resource_init(void) 693 { 694 phys_addr_t start, end; 695 u64 i; 696 697 if (UNCAC_BASE != IO_BASE) 698 return; 699 700 code_resource.start = __pa_symbol(&_text); 701 code_resource.end = __pa_symbol(&_etext) - 1; 702 data_resource.start = __pa_symbol(&_etext); 703 data_resource.end = __pa_symbol(&_edata) - 1; 704 bss_resource.start = __pa_symbol(&__bss_start); 705 bss_resource.end = __pa_symbol(&__bss_stop) - 1; 706 707 for_each_mem_range(i, &start, &end) { 708 struct resource *res; 709 710 res = memblock_alloc(sizeof(struct resource), SMP_CACHE_BYTES); 711 if (!res) 712 panic("%s: Failed to allocate %zu bytes\n", __func__, 713 sizeof(struct resource)); 714 715 res->start = start; 716 /* 717 * In memblock, end points to the first byte after the 718 * range while in resourses, end points to the last byte in 719 * the range. 720 */ 721 res->end = end - 1; 722 res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY; 723 res->name = "System RAM"; 724 725 request_resource(&iomem_resource, res); 726 727 /* 728 * We don't know which RAM region contains kernel data, 729 * so we try it repeatedly and let the resource manager 730 * test it. 731 */ 732 request_resource(res, &code_resource); 733 request_resource(res, &data_resource); 734 request_resource(res, &bss_resource); 735 request_crashkernel(res); 736 } 737 } 738 739 #ifdef CONFIG_SMP 740 static void __init prefill_possible_map(void) 741 { 742 int i, possible = num_possible_cpus(); 743 744 if (possible > nr_cpu_ids) 745 possible = nr_cpu_ids; 746 747 for (i = 0; i < possible; i++) 748 set_cpu_possible(i, true); 749 for (; i < NR_CPUS; i++) 750 set_cpu_possible(i, false); 751 752 set_nr_cpu_ids(possible); 753 } 754 #else 755 static inline void prefill_possible_map(void) {} 756 #endif 757 758 static void __init setup_rng_seed(void) 759 { 760 char *rng_seed_hex = fw_getenv("rngseed"); 761 u8 rng_seed[512]; 762 size_t len; 763 764 if (!rng_seed_hex) 765 return; 766 767 len = min(sizeof(rng_seed), strlen(rng_seed_hex) / 2); 768 if (hex2bin(rng_seed, rng_seed_hex, len)) 769 return; 770 771 add_bootloader_randomness(rng_seed, len); 772 memzero_explicit(rng_seed, len); 773 memzero_explicit(rng_seed_hex, len * 2); 774 } 775 776 void __init setup_arch(char **cmdline_p) 777 { 778 cpu_probe(); 779 mips_cm_probe(); 780 prom_init(); 781 782 setup_early_fdc_console(); 783 #ifdef CONFIG_EARLY_PRINTK 784 setup_early_printk(); 785 #endif 786 cpu_report(); 787 if (IS_ENABLED(CONFIG_CPU_R4X00_BUGS64)) 788 check_bugs64_early(); 789 790 arch_mem_init(cmdline_p); 791 dmi_setup(); 792 793 resource_init(); 794 plat_smp_setup(); 795 prefill_possible_map(); 796 797 cpu_cache_init(); 798 paging_init(); 799 800 memblock_dump_all(); 801 802 setup_rng_seed(); 803 } 804 805 unsigned long kernelsp[NR_CPUS]; 806 unsigned long fw_arg0, fw_arg1, fw_arg2, fw_arg3; 807 808 #ifdef CONFIG_DEBUG_FS 809 struct dentry *mips_debugfs_dir; 810 static int __init debugfs_mips(void) 811 { 812 mips_debugfs_dir = debugfs_create_dir("mips", NULL); 813 return 0; 814 } 815 arch_initcall(debugfs_mips); 816 #endif 817 818 #ifdef CONFIG_DMA_NONCOHERENT 819 static int __init setcoherentio(char *str) 820 { 821 dma_default_coherent = true; 822 pr_info("Hardware DMA cache coherency (command line)\n"); 823 return 0; 824 } 825 early_param("coherentio", setcoherentio); 826 827 static int __init setnocoherentio(char *str) 828 { 829 dma_default_coherent = false; 830 pr_info("Software DMA cache coherency (command line)\n"); 831 return 0; 832 } 833 early_param("nocoherentio", setnocoherentio); 834 #endif 835 836 void __init arch_cpu_finalize_init(void) 837 { 838 unsigned int cpu = smp_processor_id(); 839 840 cpu_data[cpu].udelay_val = loops_per_jiffy; 841 check_bugs32(); 842 843 if (IS_ENABLED(CONFIG_CPU_R4X00_BUGS64)) 844 check_bugs64(); 845 } 846