1 /* 2 * Copyright (C) 2005 MIPS Technologies, Inc. All rights reserved. 3 * Copyright (C) 2005, 06 Ralf Baechle (ralf@linux-mips.org) 4 * 5 * This program is free software; you can distribute it and/or modify it 6 * under the terms of the GNU General Public License (Version 2) as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * for more details. 13 * 14 * You should have received a copy of the GNU General Public License along 15 * with this program; if not, write to the Free Software Foundation, Inc., 16 * 59 Temple Place - Suite 330, Boston MA 02111-1307, USA. 17 * 18 */ 19 20 #include <linux/device.h> 21 #include <linux/kernel.h> 22 #include <linux/module.h> 23 #include <linux/fs.h> 24 #include <linux/init.h> 25 #include <asm/uaccess.h> 26 #include <linux/slab.h> 27 #include <linux/list.h> 28 #include <linux/vmalloc.h> 29 #include <linux/elf.h> 30 #include <linux/seq_file.h> 31 #include <linux/syscalls.h> 32 #include <linux/moduleloader.h> 33 #include <linux/interrupt.h> 34 #include <linux/poll.h> 35 #include <linux/sched.h> 36 #include <linux/wait.h> 37 #include <asm/mipsmtregs.h> 38 #include <asm/mips_mt.h> 39 #include <asm/cacheflush.h> 40 #include <asm/atomic.h> 41 #include <asm/cpu.h> 42 #include <asm/processor.h> 43 #include <asm/system.h> 44 #include <asm/vpe.h> 45 #include <asm/rtlx.h> 46 47 #define RTLX_TARG_VPE 1 48 49 static struct rtlx_info *rtlx; 50 static int major; 51 static char module_name[] = "rtlx"; 52 53 static struct chan_waitqueues { 54 wait_queue_head_t rt_queue; 55 wait_queue_head_t lx_queue; 56 int in_open; 57 } channel_wqs[RTLX_CHANNELS]; 58 59 static struct irqaction irq; 60 static int irq_num; 61 static struct vpe_notifications notify; 62 static int sp_stopping = 0; 63 64 extern void *vpe_get_shared(int index); 65 66 static void rtlx_dispatch(void) 67 { 68 do_IRQ(MIPS_CPU_IRQ_BASE + MIPS_CPU_RTLX_IRQ); 69 } 70 71 72 /* Interrupt handler may be called before rtlx_init has otherwise had 73 a chance to run. 74 */ 75 static irqreturn_t rtlx_interrupt(int irq, void *dev_id) 76 { 77 int i; 78 79 for (i = 0; i < RTLX_CHANNELS; i++) { 80 wake_up(&channel_wqs[i].lx_queue); 81 wake_up(&channel_wqs[i].rt_queue); 82 } 83 84 return IRQ_HANDLED; 85 } 86 87 static __attribute_used__ void dump_rtlx(void) 88 { 89 int i; 90 91 printk("id 0x%lx state %d\n", rtlx->id, rtlx->state); 92 93 for (i = 0; i < RTLX_CHANNELS; i++) { 94 struct rtlx_channel *chan = &rtlx->channel[i]; 95 96 printk(" rt_state %d lx_state %d buffer_size %d\n", 97 chan->rt_state, chan->lx_state, chan->buffer_size); 98 99 printk(" rt_read %d rt_write %d\n", 100 chan->rt_read, chan->rt_write); 101 102 printk(" lx_read %d lx_write %d\n", 103 chan->lx_read, chan->lx_write); 104 105 printk(" rt_buffer <%s>\n", chan->rt_buffer); 106 printk(" lx_buffer <%s>\n", chan->lx_buffer); 107 } 108 } 109 110 /* call when we have the address of the shared structure from the SP side. */ 111 static int rtlx_init(struct rtlx_info *rtlxi) 112 { 113 if (rtlxi->id != RTLX_ID) { 114 printk(KERN_ERR "no valid RTLX id at 0x%p 0x%x\n", rtlxi, rtlxi->id); 115 return -ENOEXEC; 116 } 117 118 rtlx = rtlxi; 119 120 return 0; 121 } 122 123 /* notifications */ 124 static void starting(int vpe) 125 { 126 int i; 127 sp_stopping = 0; 128 129 /* force a reload of rtlx */ 130 rtlx=NULL; 131 132 /* wake up any sleeping rtlx_open's */ 133 for (i = 0; i < RTLX_CHANNELS; i++) 134 wake_up_interruptible(&channel_wqs[i].lx_queue); 135 } 136 137 static void stopping(int vpe) 138 { 139 int i; 140 141 sp_stopping = 1; 142 for (i = 0; i < RTLX_CHANNELS; i++) 143 wake_up_interruptible(&channel_wqs[i].lx_queue); 144 } 145 146 147 int rtlx_open(int index, int can_sleep) 148 { 149 int ret; 150 struct rtlx_channel *chan; 151 volatile struct rtlx_info **p; 152 153 if (index >= RTLX_CHANNELS) { 154 printk(KERN_DEBUG "rtlx_open index out of range\n"); 155 return -ENOSYS; 156 } 157 158 if (channel_wqs[index].in_open) { 159 printk(KERN_DEBUG "rtlx_open channel %d already opened\n", index); 160 return -EBUSY; 161 } 162 163 channel_wqs[index].in_open++; 164 165 if (rtlx == NULL) { 166 if( (p = vpe_get_shared(RTLX_TARG_VPE)) == NULL) { 167 if (can_sleep) { 168 DECLARE_WAITQUEUE(wait, current); 169 170 /* go to sleep */ 171 add_wait_queue(&channel_wqs[index].lx_queue, &wait); 172 173 set_current_state(TASK_INTERRUPTIBLE); 174 while ((p = vpe_get_shared(RTLX_TARG_VPE)) == NULL) { 175 schedule(); 176 set_current_state(TASK_INTERRUPTIBLE); 177 } 178 179 set_current_state(TASK_RUNNING); 180 remove_wait_queue(&channel_wqs[index].lx_queue, &wait); 181 182 /* back running */ 183 } else { 184 printk( KERN_DEBUG "No SP program loaded, and device " 185 "opened with O_NONBLOCK\n"); 186 channel_wqs[index].in_open = 0; 187 return -ENOSYS; 188 } 189 } 190 191 if (*p == NULL) { 192 if (can_sleep) { 193 DECLARE_WAITQUEUE(wait, current); 194 195 /* go to sleep */ 196 add_wait_queue(&channel_wqs[index].lx_queue, &wait); 197 198 set_current_state(TASK_INTERRUPTIBLE); 199 while (*p == NULL) { 200 schedule(); 201 202 /* reset task state to interruptable otherwise 203 we'll whizz round here like a very fast loopy 204 thing. schedule() appears to return with state 205 set to TASK_RUNNING. 206 207 If the loaded SP program, for whatever reason, 208 doesn't set up the shared structure *p will never 209 become true. So whoever connected to either /dev/rt? 210 or if it was kspd, will then take up rather a lot of 211 processor cycles. 212 */ 213 214 set_current_state(TASK_INTERRUPTIBLE); 215 } 216 217 set_current_state(TASK_RUNNING); 218 remove_wait_queue(&channel_wqs[index].lx_queue, &wait); 219 220 /* back running */ 221 } 222 else { 223 printk(" *vpe_get_shared is NULL. " 224 "Has an SP program been loaded?\n"); 225 channel_wqs[index].in_open = 0; 226 return -ENOSYS; 227 } 228 } 229 230 if ((unsigned int)*p < KSEG0) { 231 printk(KERN_WARNING "vpe_get_shared returned an invalid pointer " 232 "maybe an error code %d\n", (int)*p); 233 channel_wqs[index].in_open = 0; 234 return -ENOSYS; 235 } 236 237 if ((ret = rtlx_init(*p)) < 0) { 238 channel_wqs[index].in_open = 0; 239 return ret; 240 } 241 } 242 243 chan = &rtlx->channel[index]; 244 245 if (chan->lx_state == RTLX_STATE_OPENED) { 246 channel_wqs[index].in_open = 0; 247 return -EBUSY; 248 } 249 250 chan->lx_state = RTLX_STATE_OPENED; 251 channel_wqs[index].in_open = 0; 252 return 0; 253 } 254 255 int rtlx_release(int index) 256 { 257 rtlx->channel[index].lx_state = RTLX_STATE_UNUSED; 258 return 0; 259 } 260 261 unsigned int rtlx_read_poll(int index, int can_sleep) 262 { 263 struct rtlx_channel *chan; 264 265 if (rtlx == NULL) 266 return 0; 267 268 chan = &rtlx->channel[index]; 269 270 /* data available to read? */ 271 if (chan->lx_read == chan->lx_write) { 272 if (can_sleep) { 273 DECLARE_WAITQUEUE(wait, current); 274 275 /* go to sleep */ 276 add_wait_queue(&channel_wqs[index].lx_queue, &wait); 277 278 set_current_state(TASK_INTERRUPTIBLE); 279 while (chan->lx_read == chan->lx_write) { 280 schedule(); 281 282 set_current_state(TASK_INTERRUPTIBLE); 283 284 if (sp_stopping) { 285 set_current_state(TASK_RUNNING); 286 remove_wait_queue(&channel_wqs[index].lx_queue, &wait); 287 return 0; 288 } 289 } 290 291 set_current_state(TASK_RUNNING); 292 remove_wait_queue(&channel_wqs[index].lx_queue, &wait); 293 294 /* back running */ 295 } 296 else 297 return 0; 298 } 299 300 return (chan->lx_write + chan->buffer_size - chan->lx_read) 301 % chan->buffer_size; 302 } 303 304 static inline int write_spacefree(int read, int write, int size) 305 { 306 if (read == write) { 307 /* 308 * Never fill the buffer completely, so indexes are always 309 * equal if empty and only empty, or !equal if data available 310 */ 311 return size - 1; 312 } 313 314 return ((read + size - write) % size) - 1; 315 } 316 317 unsigned int rtlx_write_poll(int index) 318 { 319 struct rtlx_channel *chan = &rtlx->channel[index]; 320 return write_spacefree(chan->rt_read, chan->rt_write, chan->buffer_size); 321 } 322 323 static inline void copy_to(void *dst, void *src, size_t count, int user) 324 { 325 if (user) 326 copy_to_user(dst, src, count); 327 else 328 memcpy(dst, src, count); 329 } 330 331 static inline void copy_from(void *dst, void *src, size_t count, int user) 332 { 333 if (user) 334 copy_from_user(dst, src, count); 335 else 336 memcpy(dst, src, count); 337 } 338 339 ssize_t rtlx_read(int index, void *buff, size_t count, int user) 340 { 341 size_t fl = 0L; 342 struct rtlx_channel *lx; 343 344 if (rtlx == NULL) 345 return -ENOSYS; 346 347 lx = &rtlx->channel[index]; 348 349 /* find out how much in total */ 350 count = min(count, 351 (size_t)(lx->lx_write + lx->buffer_size - lx->lx_read) 352 % lx->buffer_size); 353 354 /* then how much from the read pointer onwards */ 355 fl = min( count, (size_t)lx->buffer_size - lx->lx_read); 356 357 copy_to(buff, &lx->lx_buffer[lx->lx_read], fl, user); 358 359 /* and if there is anything left at the beginning of the buffer */ 360 if ( count - fl ) 361 copy_to (buff + fl, lx->lx_buffer, count - fl, user); 362 363 /* update the index */ 364 lx->lx_read += count; 365 lx->lx_read %= lx->buffer_size; 366 367 return count; 368 } 369 370 ssize_t rtlx_write(int index, void *buffer, size_t count, int user) 371 { 372 struct rtlx_channel *rt; 373 size_t fl; 374 375 if (rtlx == NULL) 376 return(-ENOSYS); 377 378 rt = &rtlx->channel[index]; 379 380 /* total number of bytes to copy */ 381 count = min(count, 382 (size_t)write_spacefree(rt->rt_read, rt->rt_write, 383 rt->buffer_size)); 384 385 /* first bit from write pointer to the end of the buffer, or count */ 386 fl = min(count, (size_t) rt->buffer_size - rt->rt_write); 387 388 copy_from (&rt->rt_buffer[rt->rt_write], buffer, fl, user); 389 390 /* if there's any left copy to the beginning of the buffer */ 391 if( count - fl ) 392 copy_from (rt->rt_buffer, buffer + fl, count - fl, user); 393 394 rt->rt_write += count; 395 rt->rt_write %= rt->buffer_size; 396 397 return(count); 398 } 399 400 401 static int file_open(struct inode *inode, struct file *filp) 402 { 403 int minor = iminor(inode); 404 405 return rtlx_open(minor, (filp->f_flags & O_NONBLOCK) ? 0 : 1); 406 } 407 408 static int file_release(struct inode *inode, struct file *filp) 409 { 410 int minor = iminor(inode); 411 412 return rtlx_release(minor); 413 } 414 415 static unsigned int file_poll(struct file *file, poll_table * wait) 416 { 417 int minor; 418 unsigned int mask = 0; 419 420 minor = iminor(file->f_path.dentry->d_inode); 421 422 poll_wait(file, &channel_wqs[minor].rt_queue, wait); 423 poll_wait(file, &channel_wqs[minor].lx_queue, wait); 424 425 if (rtlx == NULL) 426 return 0; 427 428 /* data available to read? */ 429 if (rtlx_read_poll(minor, 0)) 430 mask |= POLLIN | POLLRDNORM; 431 432 /* space to write */ 433 if (rtlx_write_poll(minor)) 434 mask |= POLLOUT | POLLWRNORM; 435 436 return mask; 437 } 438 439 static ssize_t file_read(struct file *file, char __user * buffer, size_t count, 440 loff_t * ppos) 441 { 442 int minor = iminor(file->f_path.dentry->d_inode); 443 444 /* data available? */ 445 if (!rtlx_read_poll(minor, (file->f_flags & O_NONBLOCK) ? 0 : 1)) { 446 return 0; // -EAGAIN makes cat whinge 447 } 448 449 return rtlx_read(minor, buffer, count, 1); 450 } 451 452 static ssize_t file_write(struct file *file, const char __user * buffer, 453 size_t count, loff_t * ppos) 454 { 455 int minor; 456 struct rtlx_channel *rt; 457 DECLARE_WAITQUEUE(wait, current); 458 459 minor = iminor(file->f_path.dentry->d_inode); 460 rt = &rtlx->channel[minor]; 461 462 /* any space left... */ 463 if (!rtlx_write_poll(minor)) { 464 465 if (file->f_flags & O_NONBLOCK) 466 return -EAGAIN; 467 468 add_wait_queue(&channel_wqs[minor].rt_queue, &wait); 469 set_current_state(TASK_INTERRUPTIBLE); 470 471 while (!rtlx_write_poll(minor)) 472 schedule(); 473 474 set_current_state(TASK_RUNNING); 475 remove_wait_queue(&channel_wqs[minor].rt_queue, &wait); 476 } 477 478 return rtlx_write(minor, (void *)buffer, count, 1); 479 } 480 481 static const struct file_operations rtlx_fops = { 482 .owner = THIS_MODULE, 483 .open = file_open, 484 .release = file_release, 485 .write = file_write, 486 .read = file_read, 487 .poll = file_poll 488 }; 489 490 static struct irqaction rtlx_irq = { 491 .handler = rtlx_interrupt, 492 .flags = IRQF_DISABLED, 493 .name = "RTLX", 494 }; 495 496 static int rtlx_irq_num = MIPS_CPU_IRQ_BASE + MIPS_CPU_RTLX_IRQ; 497 498 static char register_chrdev_failed[] __initdata = 499 KERN_ERR "rtlx_module_init: unable to register device\n"; 500 501 static int rtlx_module_init(void) 502 { 503 struct device *dev; 504 int i, err; 505 506 major = register_chrdev(0, module_name, &rtlx_fops); 507 if (major < 0) { 508 printk(register_chrdev_failed); 509 return major; 510 } 511 512 /* initialise the wait queues */ 513 for (i = 0; i < RTLX_CHANNELS; i++) { 514 init_waitqueue_head(&channel_wqs[i].rt_queue); 515 init_waitqueue_head(&channel_wqs[i].lx_queue); 516 channel_wqs[i].in_open = 0; 517 518 dev = device_create(mt_class, NULL, MKDEV(major, i), 519 "%s%d", module_name, i); 520 if (IS_ERR(dev)) { 521 err = PTR_ERR(dev); 522 goto out_chrdev; 523 } 524 } 525 526 /* set up notifiers */ 527 notify.start = starting; 528 notify.stop = stopping; 529 vpe_notify(RTLX_TARG_VPE, ¬ify); 530 531 if (cpu_has_vint) 532 set_vi_handler(MIPS_CPU_RTLX_IRQ, rtlx_dispatch); 533 534 rtlx_irq.dev_id = rtlx; 535 setup_irq(rtlx_irq_num, &rtlx_irq); 536 537 return 0; 538 539 out_chrdev: 540 for (i = 0; i < RTLX_CHANNELS; i++) 541 device_destroy(mt_class, MKDEV(major, i)); 542 543 return err; 544 } 545 546 static void __exit rtlx_module_exit(void) 547 { 548 int i; 549 550 for (i = 0; i < RTLX_CHANNELS; i++) 551 device_destroy(mt_class, MKDEV(major, i)); 552 553 unregister_chrdev(major, module_name); 554 } 555 556 module_init(rtlx_module_init); 557 module_exit(rtlx_module_exit); 558 559 MODULE_DESCRIPTION("MIPS RTLX"); 560 MODULE_AUTHOR("Elizabeth Oldham, MIPS Technologies, Inc."); 561 MODULE_LICENSE("GPL"); 562