xref: /linux/arch/mips/kernel/process.c (revision f3d9478b2ce468c3115b02ecae7e975990697f15)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1994 - 1999, 2000 by Ralf Baechle and others.
7  * Copyright (C) 2005, 2006 by Ralf Baechle (ralf@linux-mips.org)
8  * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
9  * Copyright (C) 2004 Thiemo Seufer
10  */
11 #include <linux/config.h>
12 #include <linux/errno.h>
13 #include <linux/module.h>
14 #include <linux/sched.h>
15 #include <linux/kernel.h>
16 #include <linux/mm.h>
17 #include <linux/stddef.h>
18 #include <linux/unistd.h>
19 #include <linux/ptrace.h>
20 #include <linux/slab.h>
21 #include <linux/mman.h>
22 #include <linux/personality.h>
23 #include <linux/sys.h>
24 #include <linux/user.h>
25 #include <linux/a.out.h>
26 #include <linux/init.h>
27 #include <linux/completion.h>
28 #include <linux/kallsyms.h>
29 
30 #include <asm/abi.h>
31 #include <asm/bootinfo.h>
32 #include <asm/cpu.h>
33 #include <asm/dsp.h>
34 #include <asm/fpu.h>
35 #include <asm/pgtable.h>
36 #include <asm/system.h>
37 #include <asm/mipsregs.h>
38 #include <asm/processor.h>
39 #include <asm/uaccess.h>
40 #include <asm/io.h>
41 #include <asm/elf.h>
42 #include <asm/isadep.h>
43 #include <asm/inst.h>
44 #ifdef CONFIG_MIPS_MT_SMTC
45 #include <asm/mipsmtregs.h>
46 extern void smtc_idle_loop_hook(void);
47 #endif /* CONFIG_MIPS_MT_SMTC */
48 
49 /*
50  * The idle thread. There's no useful work to be done, so just try to conserve
51  * power and have a low exit latency (ie sit in a loop waiting for somebody to
52  * say that they'd like to reschedule)
53  */
54 ATTRIB_NORET void cpu_idle(void)
55 {
56 	/* endless idle loop with no priority at all */
57 	while (1) {
58 		while (!need_resched()) {
59 #ifdef CONFIG_MIPS_MT_SMTC
60 			smtc_idle_loop_hook();
61 #endif /* CONFIG_MIPS_MT_SMTC */
62 			if (cpu_wait)
63 				(*cpu_wait)();
64 		}
65 		preempt_enable_no_resched();
66 		schedule();
67 		preempt_disable();
68 	}
69 }
70 
71 /*
72  * Native o32 and N64 ABI without DSP ASE
73  */
74 struct mips_abi mips_abi = {
75 	.do_signal	= do_signal,
76 #ifdef CONFIG_TRAD_SIGNALS
77 	.setup_frame	= setup_frame,
78 #endif
79 	.setup_rt_frame	= setup_rt_frame
80 };
81 
82 #ifdef CONFIG_MIPS32_O32
83 /*
84  * o32 compatibility on 64-bit kernels, without DSP ASE
85  */
86 struct mips_abi mips_abi_32 = {
87 	.do_signal	= do_signal32,
88 	.setup_frame	= setup_frame_32,
89 	.setup_rt_frame	= setup_rt_frame_32
90 };
91 #endif /* CONFIG_MIPS32_O32 */
92 
93 #ifdef CONFIG_MIPS32_N32
94 /*
95  * N32 on 64-bit kernels, without DSP ASE
96  */
97 struct mips_abi mips_abi_n32 = {
98 	.do_signal	= do_signal,
99 	.setup_rt_frame	= setup_rt_frame_n32
100 };
101 #endif /* CONFIG_MIPS32_N32 */
102 
103 asmlinkage void ret_from_fork(void);
104 
105 void start_thread(struct pt_regs * regs, unsigned long pc, unsigned long sp)
106 {
107 	unsigned long status;
108 
109 	/* New thread loses kernel privileges. */
110 	status = regs->cp0_status & ~(ST0_CU0|ST0_CU1|KU_MASK);
111 #ifdef CONFIG_64BIT
112 	status &= ~ST0_FR;
113 	status |= (current->thread.mflags & MF_32BIT_REGS) ? 0 : ST0_FR;
114 #endif
115 	status |= KU_USER;
116 	regs->cp0_status = status;
117 	clear_used_math();
118 	lose_fpu();
119 	if (cpu_has_dsp)
120 		__init_dsp();
121 	regs->cp0_epc = pc;
122 	regs->regs[29] = sp;
123 	current_thread_info()->addr_limit = USER_DS;
124 }
125 
126 void exit_thread(void)
127 {
128 }
129 
130 void flush_thread(void)
131 {
132 }
133 
134 int copy_thread(int nr, unsigned long clone_flags, unsigned long usp,
135 	unsigned long unused, struct task_struct *p, struct pt_regs *regs)
136 {
137 	struct thread_info *ti = task_thread_info(p);
138 	struct pt_regs *childregs;
139 	long childksp;
140 	p->set_child_tid = p->clear_child_tid = NULL;
141 
142 	childksp = (unsigned long)task_stack_page(p) + THREAD_SIZE - 32;
143 
144 	preempt_disable();
145 
146 	if (is_fpu_owner())
147 		save_fp(p);
148 
149 	if (cpu_has_dsp)
150 		save_dsp(p);
151 
152 	preempt_enable();
153 
154 	/* set up new TSS. */
155 	childregs = (struct pt_regs *) childksp - 1;
156 	*childregs = *regs;
157 	childregs->regs[7] = 0;	/* Clear error flag */
158 
159 #if defined(CONFIG_BINFMT_IRIX)
160 	if (current->personality != PER_LINUX) {
161 		/* Under IRIX things are a little different. */
162 		childregs->regs[3] = 1;
163 		regs->regs[3] = 0;
164 	}
165 #endif
166 	childregs->regs[2] = 0;	/* Child gets zero as return value */
167 	regs->regs[2] = p->pid;
168 
169 	if (childregs->cp0_status & ST0_CU0) {
170 		childregs->regs[28] = (unsigned long) ti;
171 		childregs->regs[29] = childksp;
172 		ti->addr_limit = KERNEL_DS;
173 	} else {
174 		childregs->regs[29] = usp;
175 		ti->addr_limit = USER_DS;
176 	}
177 	p->thread.reg29 = (unsigned long) childregs;
178 	p->thread.reg31 = (unsigned long) ret_from_fork;
179 
180 	/*
181 	 * New tasks lose permission to use the fpu. This accelerates context
182 	 * switching for most programs since they don't use the fpu.
183 	 */
184 	p->thread.cp0_status = read_c0_status() & ~(ST0_CU2|ST0_CU1);
185 	childregs->cp0_status &= ~(ST0_CU2|ST0_CU1);
186 	clear_tsk_thread_flag(p, TIF_USEDFPU);
187 
188 #ifdef CONFIG_MIPS_MT_FPAFF
189 	/*
190 	 * FPU affinity support is cleaner if we track the
191 	 * user-visible CPU affinity from the very beginning.
192 	 * The generic cpus_allowed mask will already have
193 	 * been copied from the parent before copy_thread
194 	 * is invoked.
195 	 */
196 	p->thread.user_cpus_allowed = p->cpus_allowed;
197 #endif /* CONFIG_MIPS_MT_FPAFF */
198 
199 	if (clone_flags & CLONE_SETTLS)
200 		ti->tp_value = regs->regs[7];
201 
202 	return 0;
203 }
204 
205 /* Fill in the fpu structure for a core dump.. */
206 int dump_fpu(struct pt_regs *regs, elf_fpregset_t *r)
207 {
208 	memcpy(r, &current->thread.fpu, sizeof(current->thread.fpu));
209 
210 	return 1;
211 }
212 
213 void elf_dump_regs(elf_greg_t *gp, struct pt_regs *regs)
214 {
215 	int i;
216 
217 	for (i = 0; i < EF_R0; i++)
218 		gp[i] = 0;
219 	gp[EF_R0] = 0;
220 	for (i = 1; i <= 31; i++)
221 		gp[EF_R0 + i] = regs->regs[i];
222 	gp[EF_R26] = 0;
223 	gp[EF_R27] = 0;
224 	gp[EF_LO] = regs->lo;
225 	gp[EF_HI] = regs->hi;
226 	gp[EF_CP0_EPC] = regs->cp0_epc;
227 	gp[EF_CP0_BADVADDR] = regs->cp0_badvaddr;
228 	gp[EF_CP0_STATUS] = regs->cp0_status;
229 	gp[EF_CP0_CAUSE] = regs->cp0_cause;
230 #ifdef EF_UNUSED0
231 	gp[EF_UNUSED0] = 0;
232 #endif
233 }
234 
235 int dump_task_regs (struct task_struct *tsk, elf_gregset_t *regs)
236 {
237 	elf_dump_regs(*regs, task_pt_regs(tsk));
238 	return 1;
239 }
240 
241 int dump_task_fpu (struct task_struct *t, elf_fpregset_t *fpr)
242 {
243 	memcpy(fpr, &t->thread.fpu, sizeof(current->thread.fpu));
244 
245 	return 1;
246 }
247 
248 /*
249  * Create a kernel thread
250  */
251 ATTRIB_NORET void kernel_thread_helper(void *arg, int (*fn)(void *))
252 {
253 	do_exit(fn(arg));
254 }
255 
256 long kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
257 {
258 	struct pt_regs regs;
259 
260 	memset(&regs, 0, sizeof(regs));
261 
262 	regs.regs[4] = (unsigned long) arg;
263 	regs.regs[5] = (unsigned long) fn;
264 	regs.cp0_epc = (unsigned long) kernel_thread_helper;
265 	regs.cp0_status = read_c0_status();
266 #if defined(CONFIG_CPU_R3000) || defined(CONFIG_CPU_TX39XX)
267 	regs.cp0_status &= ~(ST0_KUP | ST0_IEC);
268 	regs.cp0_status |= ST0_IEP;
269 #else
270 	regs.cp0_status |= ST0_EXL;
271 #endif
272 
273 	/* Ok, create the new process.. */
274 	return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs, 0, NULL, NULL);
275 }
276 
277 static struct mips_frame_info {
278 	void *func;
279 	unsigned long func_size;
280 	int frame_size;
281 	int pc_offset;
282 } *schedule_frame, mfinfo[64];
283 static int mfinfo_num;
284 
285 static int __init get_frame_info(struct mips_frame_info *info)
286 {
287 	int i;
288 	void *func = info->func;
289 	union mips_instruction *ip = (union mips_instruction *)func;
290 	info->pc_offset = -1;
291 	info->frame_size = 0;
292 	for (i = 0; i < 128; i++, ip++) {
293 		/* if jal, jalr, jr, stop. */
294 		if (ip->j_format.opcode == jal_op ||
295 		    (ip->r_format.opcode == spec_op &&
296 		     (ip->r_format.func == jalr_op ||
297 		      ip->r_format.func == jr_op)))
298 			break;
299 
300 		if (info->func_size && i >= info->func_size / 4)
301 			break;
302 		if (
303 #ifdef CONFIG_32BIT
304 		    ip->i_format.opcode == addiu_op &&
305 #endif
306 #ifdef CONFIG_64BIT
307 		    ip->i_format.opcode == daddiu_op &&
308 #endif
309 		    ip->i_format.rs == 29 &&
310 		    ip->i_format.rt == 29) {
311 			/* addiu/daddiu sp,sp,-imm */
312 			if (info->frame_size)
313 				continue;
314 			info->frame_size = - ip->i_format.simmediate;
315 		}
316 
317 		if (
318 #ifdef CONFIG_32BIT
319 		    ip->i_format.opcode == sw_op &&
320 #endif
321 #ifdef CONFIG_64BIT
322 		    ip->i_format.opcode == sd_op &&
323 #endif
324 		    ip->i_format.rs == 29 &&
325 		    ip->i_format.rt == 31) {
326 			/* sw / sd $ra, offset($sp) */
327 			if (info->pc_offset != -1)
328 				continue;
329 			info->pc_offset =
330 				ip->i_format.simmediate / sizeof(long);
331 		}
332 	}
333 	if (info->pc_offset == -1 || info->frame_size == 0) {
334 		if (func == schedule)
335 			printk("Can't analyze prologue code at %p\n", func);
336 		info->pc_offset = -1;
337 		info->frame_size = 0;
338 	}
339 
340 	return 0;
341 }
342 
343 static int __init frame_info_init(void)
344 {
345 	int i;
346 #ifdef CONFIG_KALLSYMS
347 	char *modname;
348 	char namebuf[KSYM_NAME_LEN + 1];
349 	unsigned long start, size, ofs;
350 	extern char __sched_text_start[], __sched_text_end[];
351 	extern char __lock_text_start[], __lock_text_end[];
352 
353 	start = (unsigned long)__sched_text_start;
354 	for (i = 0; i < ARRAY_SIZE(mfinfo); i++) {
355 		if (start == (unsigned long)schedule)
356 			schedule_frame = &mfinfo[i];
357 		if (!kallsyms_lookup(start, &size, &ofs, &modname, namebuf))
358 			break;
359 		mfinfo[i].func = (void *)(start + ofs);
360 		mfinfo[i].func_size = size;
361 		start += size - ofs;
362 		if (start >= (unsigned long)__lock_text_end)
363 			break;
364 		if (start == (unsigned long)__sched_text_end)
365 			start = (unsigned long)__lock_text_start;
366 	}
367 #else
368 	mfinfo[0].func = schedule;
369 	schedule_frame = &mfinfo[0];
370 #endif
371 	for (i = 0; i < ARRAY_SIZE(mfinfo) && mfinfo[i].func; i++)
372 		get_frame_info(&mfinfo[i]);
373 
374 	mfinfo_num = i;
375 	return 0;
376 }
377 
378 arch_initcall(frame_info_init);
379 
380 /*
381  * Return saved PC of a blocked thread.
382  */
383 unsigned long thread_saved_pc(struct task_struct *tsk)
384 {
385 	struct thread_struct *t = &tsk->thread;
386 
387 	/* New born processes are a special case */
388 	if (t->reg31 == (unsigned long) ret_from_fork)
389 		return t->reg31;
390 
391 	if (!schedule_frame || schedule_frame->pc_offset < 0)
392 		return 0;
393 	return ((unsigned long *)t->reg29)[schedule_frame->pc_offset];
394 }
395 
396 /* get_wchan - a maintenance nightmare^W^Wpain in the ass ...  */
397 unsigned long get_wchan(struct task_struct *p)
398 {
399 	unsigned long stack_page;
400 	unsigned long pc;
401 #ifdef CONFIG_KALLSYMS
402 	unsigned long frame;
403 #endif
404 
405 	if (!p || p == current || p->state == TASK_RUNNING)
406 		return 0;
407 
408 	stack_page = (unsigned long)task_stack_page(p);
409 	if (!stack_page || !mfinfo_num)
410 		return 0;
411 
412 	pc = thread_saved_pc(p);
413 #ifdef CONFIG_KALLSYMS
414 	if (!in_sched_functions(pc))
415 		return pc;
416 
417 	frame = p->thread.reg29 + schedule_frame->frame_size;
418 	do {
419 		int i;
420 
421 		if (frame < stack_page || frame > stack_page + THREAD_SIZE - 32)
422 			return 0;
423 
424 		for (i = mfinfo_num - 1; i >= 0; i--) {
425 			if (pc >= (unsigned long) mfinfo[i].func)
426 				break;
427 		}
428 		if (i < 0)
429 			break;
430 
431 		pc = ((unsigned long *)frame)[mfinfo[i].pc_offset];
432 		if (!mfinfo[i].frame_size)
433 			break;
434 		frame += mfinfo[i].frame_size;
435 	} while (in_sched_functions(pc));
436 #endif
437 
438 	return pc;
439 }
440 
441