xref: /linux/arch/mips/kernel/process.c (revision a44e4f3ab16bc808590763a543a93b6fbf3abcc4)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1994 - 1999, 2000 by Ralf Baechle and others.
7  * Copyright (C) 2005, 2006 by Ralf Baechle (ralf@linux-mips.org)
8  * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
9  * Copyright (C) 2004 Thiemo Seufer
10  * Copyright (C) 2013  Imagination Technologies Ltd.
11  */
12 #include <linux/errno.h>
13 #include <linux/sched.h>
14 #include <linux/sched/debug.h>
15 #include <linux/sched/task.h>
16 #include <linux/sched/task_stack.h>
17 #include <linux/tick.h>
18 #include <linux/kernel.h>
19 #include <linux/mm.h>
20 #include <linux/stddef.h>
21 #include <linux/unistd.h>
22 #include <linux/export.h>
23 #include <linux/ptrace.h>
24 #include <linux/mman.h>
25 #include <linux/personality.h>
26 #include <linux/sys.h>
27 #include <linux/init.h>
28 #include <linux/completion.h>
29 #include <linux/kallsyms.h>
30 #include <linux/random.h>
31 #include <linux/prctl.h>
32 #include <linux/nmi.h>
33 #include <linux/cpu.h>
34 
35 #include <asm/abi.h>
36 #include <asm/asm.h>
37 #include <asm/bootinfo.h>
38 #include <asm/cpu.h>
39 #include <asm/dsemul.h>
40 #include <asm/dsp.h>
41 #include <asm/fpu.h>
42 #include <asm/irq.h>
43 #include <asm/mips-cps.h>
44 #include <asm/msa.h>
45 #include <asm/pgtable.h>
46 #include <asm/mipsregs.h>
47 #include <asm/processor.h>
48 #include <asm/reg.h>
49 #include <linux/uaccess.h>
50 #include <asm/io.h>
51 #include <asm/elf.h>
52 #include <asm/isadep.h>
53 #include <asm/inst.h>
54 #include <asm/stacktrace.h>
55 #include <asm/irq_regs.h>
56 
57 #ifdef CONFIG_HOTPLUG_CPU
58 void arch_cpu_idle_dead(void)
59 {
60 	play_dead();
61 }
62 #endif
63 
64 asmlinkage void ret_from_fork(void);
65 asmlinkage void ret_from_kernel_thread(void);
66 
67 void start_thread(struct pt_regs * regs, unsigned long pc, unsigned long sp)
68 {
69 	unsigned long status;
70 
71 	/* New thread loses kernel privileges. */
72 	status = regs->cp0_status & ~(ST0_CU0|ST0_CU1|ST0_FR|KU_MASK);
73 	status |= KU_USER;
74 	regs->cp0_status = status;
75 	lose_fpu(0);
76 	clear_thread_flag(TIF_MSA_CTX_LIVE);
77 	clear_used_math();
78 	atomic_set(&current->thread.bd_emu_frame, BD_EMUFRAME_NONE);
79 	init_dsp();
80 	regs->cp0_epc = pc;
81 	regs->regs[29] = sp;
82 }
83 
84 void exit_thread(struct task_struct *tsk)
85 {
86 	/*
87 	 * User threads may have allocated a delay slot emulation frame.
88 	 * If so, clean up that allocation.
89 	 */
90 	if (!(current->flags & PF_KTHREAD))
91 		dsemul_thread_cleanup(tsk);
92 }
93 
94 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
95 {
96 	/*
97 	 * Save any process state which is live in hardware registers to the
98 	 * parent context prior to duplication. This prevents the new child
99 	 * state becoming stale if the parent is preempted before copy_thread()
100 	 * gets a chance to save the parent's live hardware registers to the
101 	 * child context.
102 	 */
103 	preempt_disable();
104 
105 	if (is_msa_enabled())
106 		save_msa(current);
107 	else if (is_fpu_owner())
108 		_save_fp(current);
109 
110 	save_dsp(current);
111 
112 	preempt_enable();
113 
114 	*dst = *src;
115 	return 0;
116 }
117 
118 /*
119  * Copy architecture-specific thread state
120  */
121 int copy_thread_tls(unsigned long clone_flags, unsigned long usp,
122 	unsigned long kthread_arg, struct task_struct *p, unsigned long tls)
123 {
124 	struct thread_info *ti = task_thread_info(p);
125 	struct pt_regs *childregs, *regs = current_pt_regs();
126 	unsigned long childksp;
127 
128 	childksp = (unsigned long)task_stack_page(p) + THREAD_SIZE - 32;
129 
130 	/* set up new TSS. */
131 	childregs = (struct pt_regs *) childksp - 1;
132 	/*  Put the stack after the struct pt_regs.  */
133 	childksp = (unsigned long) childregs;
134 	p->thread.cp0_status = read_c0_status() & ~(ST0_CU2|ST0_CU1);
135 	if (unlikely(p->flags & PF_KTHREAD)) {
136 		/* kernel thread */
137 		unsigned long status = p->thread.cp0_status;
138 		memset(childregs, 0, sizeof(struct pt_regs));
139 		ti->addr_limit = KERNEL_DS;
140 		p->thread.reg16 = usp; /* fn */
141 		p->thread.reg17 = kthread_arg;
142 		p->thread.reg29 = childksp;
143 		p->thread.reg31 = (unsigned long) ret_from_kernel_thread;
144 #if defined(CONFIG_CPU_R3000) || defined(CONFIG_CPU_TX39XX)
145 		status = (status & ~(ST0_KUP | ST0_IEP | ST0_IEC)) |
146 			 ((status & (ST0_KUC | ST0_IEC)) << 2);
147 #else
148 		status |= ST0_EXL;
149 #endif
150 		childregs->cp0_status = status;
151 		return 0;
152 	}
153 
154 	/* user thread */
155 	*childregs = *regs;
156 	childregs->regs[7] = 0; /* Clear error flag */
157 	childregs->regs[2] = 0; /* Child gets zero as return value */
158 	if (usp)
159 		childregs->regs[29] = usp;
160 	ti->addr_limit = USER_DS;
161 
162 	p->thread.reg29 = (unsigned long) childregs;
163 	p->thread.reg31 = (unsigned long) ret_from_fork;
164 
165 	/*
166 	 * New tasks lose permission to use the fpu. This accelerates context
167 	 * switching for most programs since they don't use the fpu.
168 	 */
169 	childregs->cp0_status &= ~(ST0_CU2|ST0_CU1);
170 
171 	clear_tsk_thread_flag(p, TIF_USEDFPU);
172 	clear_tsk_thread_flag(p, TIF_USEDMSA);
173 	clear_tsk_thread_flag(p, TIF_MSA_CTX_LIVE);
174 
175 #ifdef CONFIG_MIPS_MT_FPAFF
176 	clear_tsk_thread_flag(p, TIF_FPUBOUND);
177 #endif /* CONFIG_MIPS_MT_FPAFF */
178 
179 	atomic_set(&p->thread.bd_emu_frame, BD_EMUFRAME_NONE);
180 
181 	if (clone_flags & CLONE_SETTLS)
182 		ti->tp_value = tls;
183 
184 	return 0;
185 }
186 
187 #ifdef CONFIG_STACKPROTECTOR
188 #include <linux/stackprotector.h>
189 unsigned long __stack_chk_guard __read_mostly;
190 EXPORT_SYMBOL(__stack_chk_guard);
191 #endif
192 
193 struct mips_frame_info {
194 	void		*func;
195 	unsigned long	func_size;
196 	int		frame_size;
197 	int		pc_offset;
198 };
199 
200 #define J_TARGET(pc,target)	\
201 		(((unsigned long)(pc) & 0xf0000000) | ((target) << 2))
202 
203 static inline int is_ra_save_ins(union mips_instruction *ip, int *poff)
204 {
205 #ifdef CONFIG_CPU_MICROMIPS
206 	/*
207 	 * swsp ra,offset
208 	 * swm16 reglist,offset(sp)
209 	 * swm32 reglist,offset(sp)
210 	 * sw32 ra,offset(sp)
211 	 * jradiussp - NOT SUPPORTED
212 	 *
213 	 * microMIPS is way more fun...
214 	 */
215 	if (mm_insn_16bit(ip->word >> 16)) {
216 		switch (ip->mm16_r5_format.opcode) {
217 		case mm_swsp16_op:
218 			if (ip->mm16_r5_format.rt != 31)
219 				return 0;
220 
221 			*poff = ip->mm16_r5_format.imm;
222 			*poff = (*poff << 2) / sizeof(ulong);
223 			return 1;
224 
225 		case mm_pool16c_op:
226 			switch (ip->mm16_m_format.func) {
227 			case mm_swm16_op:
228 				*poff = ip->mm16_m_format.imm;
229 				*poff += 1 + ip->mm16_m_format.rlist;
230 				*poff = (*poff << 2) / sizeof(ulong);
231 				return 1;
232 
233 			default:
234 				return 0;
235 			}
236 
237 		default:
238 			return 0;
239 		}
240 	}
241 
242 	switch (ip->i_format.opcode) {
243 	case mm_sw32_op:
244 		if (ip->i_format.rs != 29)
245 			return 0;
246 		if (ip->i_format.rt != 31)
247 			return 0;
248 
249 		*poff = ip->i_format.simmediate / sizeof(ulong);
250 		return 1;
251 
252 	case mm_pool32b_op:
253 		switch (ip->mm_m_format.func) {
254 		case mm_swm32_func:
255 			if (ip->mm_m_format.rd < 0x10)
256 				return 0;
257 			if (ip->mm_m_format.base != 29)
258 				return 0;
259 
260 			*poff = ip->mm_m_format.simmediate;
261 			*poff += (ip->mm_m_format.rd & 0xf) * sizeof(u32);
262 			*poff /= sizeof(ulong);
263 			return 1;
264 		default:
265 			return 0;
266 		}
267 
268 	default:
269 		return 0;
270 	}
271 #else
272 	/* sw / sd $ra, offset($sp) */
273 	if ((ip->i_format.opcode == sw_op || ip->i_format.opcode == sd_op) &&
274 		ip->i_format.rs == 29 && ip->i_format.rt == 31) {
275 		*poff = ip->i_format.simmediate / sizeof(ulong);
276 		return 1;
277 	}
278 
279 	return 0;
280 #endif
281 }
282 
283 static inline int is_jump_ins(union mips_instruction *ip)
284 {
285 #ifdef CONFIG_CPU_MICROMIPS
286 	/*
287 	 * jr16,jrc,jalr16,jalr16
288 	 * jal
289 	 * jalr/jr,jalr.hb/jr.hb,jalrs,jalrs.hb
290 	 * jraddiusp - NOT SUPPORTED
291 	 *
292 	 * microMIPS is kind of more fun...
293 	 */
294 	if (mm_insn_16bit(ip->word >> 16)) {
295 		if ((ip->mm16_r5_format.opcode == mm_pool16c_op &&
296 		    (ip->mm16_r5_format.rt & mm_jr16_op) == mm_jr16_op))
297 			return 1;
298 		return 0;
299 	}
300 
301 	if (ip->j_format.opcode == mm_j32_op)
302 		return 1;
303 	if (ip->j_format.opcode == mm_jal32_op)
304 		return 1;
305 	if (ip->r_format.opcode != mm_pool32a_op ||
306 			ip->r_format.func != mm_pool32axf_op)
307 		return 0;
308 	return ((ip->u_format.uimmediate >> 6) & mm_jalr_op) == mm_jalr_op;
309 #else
310 	if (ip->j_format.opcode == j_op)
311 		return 1;
312 	if (ip->j_format.opcode == jal_op)
313 		return 1;
314 	if (ip->r_format.opcode != spec_op)
315 		return 0;
316 	return ip->r_format.func == jalr_op || ip->r_format.func == jr_op;
317 #endif
318 }
319 
320 static inline int is_sp_move_ins(union mips_instruction *ip, int *frame_size)
321 {
322 #ifdef CONFIG_CPU_MICROMIPS
323 	unsigned short tmp;
324 
325 	/*
326 	 * addiusp -imm
327 	 * addius5 sp,-imm
328 	 * addiu32 sp,sp,-imm
329 	 * jradiussp - NOT SUPPORTED
330 	 *
331 	 * microMIPS is not more fun...
332 	 */
333 	if (mm_insn_16bit(ip->word >> 16)) {
334 		if (ip->mm16_r3_format.opcode == mm_pool16d_op &&
335 		    ip->mm16_r3_format.simmediate & mm_addiusp_func) {
336 			tmp = ip->mm_b0_format.simmediate >> 1;
337 			tmp = ((tmp & 0x1ff) ^ 0x100) - 0x100;
338 			if ((tmp + 2) < 4) /* 0x0,0x1,0x1fe,0x1ff are special */
339 				tmp ^= 0x100;
340 			*frame_size = -(signed short)(tmp << 2);
341 			return 1;
342 		}
343 		if (ip->mm16_r5_format.opcode == mm_pool16d_op &&
344 		    ip->mm16_r5_format.rt == 29) {
345 			tmp = ip->mm16_r5_format.imm >> 1;
346 			*frame_size = -(signed short)(tmp & 0xf);
347 			return 1;
348 		}
349 		return 0;
350 	}
351 
352 	if (ip->mm_i_format.opcode == mm_addiu32_op &&
353 	    ip->mm_i_format.rt == 29 && ip->mm_i_format.rs == 29) {
354 		*frame_size = -ip->i_format.simmediate;
355 		return 1;
356 	}
357 #else
358 	/* addiu/daddiu sp,sp,-imm */
359 	if (ip->i_format.rs != 29 || ip->i_format.rt != 29)
360 		return 0;
361 
362 	if (ip->i_format.opcode == addiu_op ||
363 	    ip->i_format.opcode == daddiu_op) {
364 		*frame_size = -ip->i_format.simmediate;
365 		return 1;
366 	}
367 #endif
368 	return 0;
369 }
370 
371 static int get_frame_info(struct mips_frame_info *info)
372 {
373 	bool is_mmips = IS_ENABLED(CONFIG_CPU_MICROMIPS);
374 	union mips_instruction insn, *ip;
375 	const unsigned int max_insns = 128;
376 	unsigned int last_insn_size = 0;
377 	unsigned int i;
378 	bool saw_jump = false;
379 
380 	info->pc_offset = -1;
381 	info->frame_size = 0;
382 
383 	ip = (void *)msk_isa16_mode((ulong)info->func);
384 	if (!ip)
385 		goto err;
386 
387 	for (i = 0; i < max_insns; i++) {
388 		ip = (void *)ip + last_insn_size;
389 
390 		if (is_mmips && mm_insn_16bit(ip->halfword[0])) {
391 			insn.word = ip->halfword[0] << 16;
392 			last_insn_size = 2;
393 		} else if (is_mmips) {
394 			insn.word = ip->halfword[0] << 16 | ip->halfword[1];
395 			last_insn_size = 4;
396 		} else {
397 			insn.word = ip->word;
398 			last_insn_size = 4;
399 		}
400 
401 		if (!info->frame_size) {
402 			is_sp_move_ins(&insn, &info->frame_size);
403 			continue;
404 		} else if (!saw_jump && is_jump_ins(ip)) {
405 			/*
406 			 * If we see a jump instruction, we are finished
407 			 * with the frame save.
408 			 *
409 			 * Some functions can have a shortcut return at
410 			 * the beginning of the function, so don't start
411 			 * looking for jump instruction until we see the
412 			 * frame setup.
413 			 *
414 			 * The RA save instruction can get put into the
415 			 * delay slot of the jump instruction, so look
416 			 * at the next instruction, too.
417 			 */
418 			saw_jump = true;
419 			continue;
420 		}
421 		if (info->pc_offset == -1 &&
422 		    is_ra_save_ins(&insn, &info->pc_offset))
423 			break;
424 		if (saw_jump)
425 			break;
426 	}
427 	if (info->frame_size && info->pc_offset >= 0) /* nested */
428 		return 0;
429 	if (info->pc_offset < 0) /* leaf */
430 		return 1;
431 	/* prologue seems bogus... */
432 err:
433 	return -1;
434 }
435 
436 static struct mips_frame_info schedule_mfi __read_mostly;
437 
438 #ifdef CONFIG_KALLSYMS
439 static unsigned long get___schedule_addr(void)
440 {
441 	return kallsyms_lookup_name("__schedule");
442 }
443 #else
444 static unsigned long get___schedule_addr(void)
445 {
446 	union mips_instruction *ip = (void *)schedule;
447 	int max_insns = 8;
448 	int i;
449 
450 	for (i = 0; i < max_insns; i++, ip++) {
451 		if (ip->j_format.opcode == j_op)
452 			return J_TARGET(ip, ip->j_format.target);
453 	}
454 	return 0;
455 }
456 #endif
457 
458 static int __init frame_info_init(void)
459 {
460 	unsigned long size = 0;
461 #ifdef CONFIG_KALLSYMS
462 	unsigned long ofs;
463 #endif
464 	unsigned long addr;
465 
466 	addr = get___schedule_addr();
467 	if (!addr)
468 		addr = (unsigned long)schedule;
469 
470 #ifdef CONFIG_KALLSYMS
471 	kallsyms_lookup_size_offset(addr, &size, &ofs);
472 #endif
473 	schedule_mfi.func = (void *)addr;
474 	schedule_mfi.func_size = size;
475 
476 	get_frame_info(&schedule_mfi);
477 
478 	/*
479 	 * Without schedule() frame info, result given by
480 	 * thread_saved_pc() and get_wchan() are not reliable.
481 	 */
482 	if (schedule_mfi.pc_offset < 0)
483 		printk("Can't analyze schedule() prologue at %p\n", schedule);
484 
485 	return 0;
486 }
487 
488 arch_initcall(frame_info_init);
489 
490 /*
491  * Return saved PC of a blocked thread.
492  */
493 static unsigned long thread_saved_pc(struct task_struct *tsk)
494 {
495 	struct thread_struct *t = &tsk->thread;
496 
497 	/* New born processes are a special case */
498 	if (t->reg31 == (unsigned long) ret_from_fork)
499 		return t->reg31;
500 	if (schedule_mfi.pc_offset < 0)
501 		return 0;
502 	return ((unsigned long *)t->reg29)[schedule_mfi.pc_offset];
503 }
504 
505 
506 #ifdef CONFIG_KALLSYMS
507 /* generic stack unwinding function */
508 unsigned long notrace unwind_stack_by_address(unsigned long stack_page,
509 					      unsigned long *sp,
510 					      unsigned long pc,
511 					      unsigned long *ra)
512 {
513 	unsigned long low, high, irq_stack_high;
514 	struct mips_frame_info info;
515 	unsigned long size, ofs;
516 	struct pt_regs *regs;
517 	int leaf;
518 
519 	if (!stack_page)
520 		return 0;
521 
522 	/*
523 	 * IRQ stacks start at IRQ_STACK_START
524 	 * task stacks at THREAD_SIZE - 32
525 	 */
526 	low = stack_page;
527 	if (!preemptible() && on_irq_stack(raw_smp_processor_id(), *sp)) {
528 		high = stack_page + IRQ_STACK_START;
529 		irq_stack_high = high;
530 	} else {
531 		high = stack_page + THREAD_SIZE - 32;
532 		irq_stack_high = 0;
533 	}
534 
535 	/*
536 	 * If we reached the top of the interrupt stack, start unwinding
537 	 * the interrupted task stack.
538 	 */
539 	if (unlikely(*sp == irq_stack_high)) {
540 		unsigned long task_sp = *(unsigned long *)*sp;
541 
542 		/*
543 		 * Check that the pointer saved in the IRQ stack head points to
544 		 * something within the stack of the current task
545 		 */
546 		if (!object_is_on_stack((void *)task_sp))
547 			return 0;
548 
549 		/*
550 		 * Follow pointer to tasks kernel stack frame where interrupted
551 		 * state was saved.
552 		 */
553 		regs = (struct pt_regs *)task_sp;
554 		pc = regs->cp0_epc;
555 		if (!user_mode(regs) && __kernel_text_address(pc)) {
556 			*sp = regs->regs[29];
557 			*ra = regs->regs[31];
558 			return pc;
559 		}
560 		return 0;
561 	}
562 	if (!kallsyms_lookup_size_offset(pc, &size, &ofs))
563 		return 0;
564 	/*
565 	 * Return ra if an exception occurred at the first instruction
566 	 */
567 	if (unlikely(ofs == 0)) {
568 		pc = *ra;
569 		*ra = 0;
570 		return pc;
571 	}
572 
573 	info.func = (void *)(pc - ofs);
574 	info.func_size = ofs;	/* analyze from start to ofs */
575 	leaf = get_frame_info(&info);
576 	if (leaf < 0)
577 		return 0;
578 
579 	if (*sp < low || *sp + info.frame_size > high)
580 		return 0;
581 
582 	if (leaf)
583 		/*
584 		 * For some extreme cases, get_frame_info() can
585 		 * consider wrongly a nested function as a leaf
586 		 * one. In that cases avoid to return always the
587 		 * same value.
588 		 */
589 		pc = pc != *ra ? *ra : 0;
590 	else
591 		pc = ((unsigned long *)(*sp))[info.pc_offset];
592 
593 	*sp += info.frame_size;
594 	*ra = 0;
595 	return __kernel_text_address(pc) ? pc : 0;
596 }
597 EXPORT_SYMBOL(unwind_stack_by_address);
598 
599 /* used by show_backtrace() */
600 unsigned long unwind_stack(struct task_struct *task, unsigned long *sp,
601 			   unsigned long pc, unsigned long *ra)
602 {
603 	unsigned long stack_page = 0;
604 	int cpu;
605 
606 	for_each_possible_cpu(cpu) {
607 		if (on_irq_stack(cpu, *sp)) {
608 			stack_page = (unsigned long)irq_stack[cpu];
609 			break;
610 		}
611 	}
612 
613 	if (!stack_page)
614 		stack_page = (unsigned long)task_stack_page(task);
615 
616 	return unwind_stack_by_address(stack_page, sp, pc, ra);
617 }
618 #endif
619 
620 /*
621  * get_wchan - a maintenance nightmare^W^Wpain in the ass ...
622  */
623 unsigned long get_wchan(struct task_struct *task)
624 {
625 	unsigned long pc = 0;
626 #ifdef CONFIG_KALLSYMS
627 	unsigned long sp;
628 	unsigned long ra = 0;
629 #endif
630 
631 	if (!task || task == current || task->state == TASK_RUNNING)
632 		goto out;
633 	if (!task_stack_page(task))
634 		goto out;
635 
636 	pc = thread_saved_pc(task);
637 
638 #ifdef CONFIG_KALLSYMS
639 	sp = task->thread.reg29 + schedule_mfi.frame_size;
640 
641 	while (in_sched_functions(pc))
642 		pc = unwind_stack(task, &sp, pc, &ra);
643 #endif
644 
645 out:
646 	return pc;
647 }
648 
649 unsigned long mips_stack_top(void)
650 {
651 	unsigned long top = TASK_SIZE & PAGE_MASK;
652 
653 	/* One page for branch delay slot "emulation" */
654 	top -= PAGE_SIZE;
655 
656 	/* Space for the VDSO, data page & GIC user page */
657 	top -= PAGE_ALIGN(current->thread.abi->vdso->size);
658 	top -= PAGE_SIZE;
659 	top -= mips_gic_present() ? PAGE_SIZE : 0;
660 
661 	/* Space for cache colour alignment */
662 	if (cpu_has_dc_aliases)
663 		top -= shm_align_mask + 1;
664 
665 	/* Space to randomize the VDSO base */
666 	if (current->flags & PF_RANDOMIZE)
667 		top -= VDSO_RANDOMIZE_SIZE;
668 
669 	return top;
670 }
671 
672 /*
673  * Don't forget that the stack pointer must be aligned on a 8 bytes
674  * boundary for 32-bits ABI and 16 bytes for 64-bits ABI.
675  */
676 unsigned long arch_align_stack(unsigned long sp)
677 {
678 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
679 		sp -= get_random_int() & ~PAGE_MASK;
680 
681 	return sp & ALMASK;
682 }
683 
684 static DEFINE_PER_CPU(call_single_data_t, backtrace_csd);
685 static struct cpumask backtrace_csd_busy;
686 
687 static void handle_backtrace(void *info)
688 {
689 	nmi_cpu_backtrace(get_irq_regs());
690 	cpumask_clear_cpu(smp_processor_id(), &backtrace_csd_busy);
691 }
692 
693 static void raise_backtrace(cpumask_t *mask)
694 {
695 	call_single_data_t *csd;
696 	int cpu;
697 
698 	for_each_cpu(cpu, mask) {
699 		/*
700 		 * If we previously sent an IPI to the target CPU & it hasn't
701 		 * cleared its bit in the busy cpumask then it didn't handle
702 		 * our previous IPI & it's not safe for us to reuse the
703 		 * call_single_data_t.
704 		 */
705 		if (cpumask_test_and_set_cpu(cpu, &backtrace_csd_busy)) {
706 			pr_warn("Unable to send backtrace IPI to CPU%u - perhaps it hung?\n",
707 				cpu);
708 			continue;
709 		}
710 
711 		csd = &per_cpu(backtrace_csd, cpu);
712 		csd->func = handle_backtrace;
713 		smp_call_function_single_async(cpu, csd);
714 	}
715 }
716 
717 void arch_trigger_cpumask_backtrace(const cpumask_t *mask, bool exclude_self)
718 {
719 	nmi_trigger_cpumask_backtrace(mask, exclude_self, raise_backtrace);
720 }
721 
722 int mips_get_process_fp_mode(struct task_struct *task)
723 {
724 	int value = 0;
725 
726 	if (!test_tsk_thread_flag(task, TIF_32BIT_FPREGS))
727 		value |= PR_FP_MODE_FR;
728 	if (test_tsk_thread_flag(task, TIF_HYBRID_FPREGS))
729 		value |= PR_FP_MODE_FRE;
730 
731 	return value;
732 }
733 
734 static long prepare_for_fp_mode_switch(void *unused)
735 {
736 	/*
737 	 * This is icky, but we use this to simply ensure that all CPUs have
738 	 * context switched, regardless of whether they were previously running
739 	 * kernel or user code. This ensures that no CPU that a mode-switching
740 	 * program may execute on keeps its FPU enabled (& in the old mode)
741 	 * throughout the mode switch.
742 	 */
743 	return 0;
744 }
745 
746 int mips_set_process_fp_mode(struct task_struct *task, unsigned int value)
747 {
748 	const unsigned int known_bits = PR_FP_MODE_FR | PR_FP_MODE_FRE;
749 	struct task_struct *t;
750 	struct cpumask process_cpus;
751 	int cpu;
752 
753 	/* If nothing to change, return right away, successfully.  */
754 	if (value == mips_get_process_fp_mode(task))
755 		return 0;
756 
757 	/* Only accept a mode change if 64-bit FP enabled for o32.  */
758 	if (!IS_ENABLED(CONFIG_MIPS_O32_FP64_SUPPORT))
759 		return -EOPNOTSUPP;
760 
761 	/* And only for o32 tasks.  */
762 	if (IS_ENABLED(CONFIG_64BIT) && !test_thread_flag(TIF_32BIT_REGS))
763 		return -EOPNOTSUPP;
764 
765 	/* Check the value is valid */
766 	if (value & ~known_bits)
767 		return -EOPNOTSUPP;
768 
769 	/* Setting FRE without FR is not supported.  */
770 	if ((value & (PR_FP_MODE_FR | PR_FP_MODE_FRE)) == PR_FP_MODE_FRE)
771 		return -EOPNOTSUPP;
772 
773 	/* Avoid inadvertently triggering emulation */
774 	if ((value & PR_FP_MODE_FR) && raw_cpu_has_fpu &&
775 	    !(raw_current_cpu_data.fpu_id & MIPS_FPIR_F64))
776 		return -EOPNOTSUPP;
777 	if ((value & PR_FP_MODE_FRE) && raw_cpu_has_fpu && !cpu_has_fre)
778 		return -EOPNOTSUPP;
779 
780 	/* FR = 0 not supported in MIPS R6 */
781 	if (!(value & PR_FP_MODE_FR) && raw_cpu_has_fpu && cpu_has_mips_r6)
782 		return -EOPNOTSUPP;
783 
784 	/* Indicate the new FP mode in each thread */
785 	for_each_thread(task, t) {
786 		/* Update desired FP register width */
787 		if (value & PR_FP_MODE_FR) {
788 			clear_tsk_thread_flag(t, TIF_32BIT_FPREGS);
789 		} else {
790 			set_tsk_thread_flag(t, TIF_32BIT_FPREGS);
791 			clear_tsk_thread_flag(t, TIF_MSA_CTX_LIVE);
792 		}
793 
794 		/* Update desired FP single layout */
795 		if (value & PR_FP_MODE_FRE)
796 			set_tsk_thread_flag(t, TIF_HYBRID_FPREGS);
797 		else
798 			clear_tsk_thread_flag(t, TIF_HYBRID_FPREGS);
799 	}
800 
801 	/*
802 	 * We need to ensure that all threads in the process have switched mode
803 	 * before returning, in order to allow userland to not worry about
804 	 * races. We can do this by forcing all CPUs that any thread in the
805 	 * process may be running on to schedule something else - in this case
806 	 * prepare_for_fp_mode_switch().
807 	 *
808 	 * We begin by generating a mask of all CPUs that any thread in the
809 	 * process may be running on.
810 	 */
811 	cpumask_clear(&process_cpus);
812 	for_each_thread(task, t)
813 		cpumask_set_cpu(task_cpu(t), &process_cpus);
814 
815 	/*
816 	 * Now we schedule prepare_for_fp_mode_switch() on each of those CPUs.
817 	 *
818 	 * The CPUs may have rescheduled already since we switched mode or
819 	 * generated the cpumask, but that doesn't matter. If the task in this
820 	 * process is scheduled out then our scheduling
821 	 * prepare_for_fp_mode_switch() will simply be redundant. If it's
822 	 * scheduled in then it will already have picked up the new FP mode
823 	 * whilst doing so.
824 	 */
825 	get_online_cpus();
826 	for_each_cpu_and(cpu, &process_cpus, cpu_online_mask)
827 		work_on_cpu(cpu, prepare_for_fp_mode_switch, NULL);
828 	put_online_cpus();
829 
830 	return 0;
831 }
832 
833 #if defined(CONFIG_32BIT) || defined(CONFIG_MIPS32_O32)
834 void mips_dump_regs32(u32 *uregs, const struct pt_regs *regs)
835 {
836 	unsigned int i;
837 
838 	for (i = MIPS32_EF_R1; i <= MIPS32_EF_R31; i++) {
839 		/* k0/k1 are copied as zero. */
840 		if (i == MIPS32_EF_R26 || i == MIPS32_EF_R27)
841 			uregs[i] = 0;
842 		else
843 			uregs[i] = regs->regs[i - MIPS32_EF_R0];
844 	}
845 
846 	uregs[MIPS32_EF_LO] = regs->lo;
847 	uregs[MIPS32_EF_HI] = regs->hi;
848 	uregs[MIPS32_EF_CP0_EPC] = regs->cp0_epc;
849 	uregs[MIPS32_EF_CP0_BADVADDR] = regs->cp0_badvaddr;
850 	uregs[MIPS32_EF_CP0_STATUS] = regs->cp0_status;
851 	uregs[MIPS32_EF_CP0_CAUSE] = regs->cp0_cause;
852 }
853 #endif /* CONFIG_32BIT || CONFIG_MIPS32_O32 */
854 
855 #ifdef CONFIG_64BIT
856 void mips_dump_regs64(u64 *uregs, const struct pt_regs *regs)
857 {
858 	unsigned int i;
859 
860 	for (i = MIPS64_EF_R1; i <= MIPS64_EF_R31; i++) {
861 		/* k0/k1 are copied as zero. */
862 		if (i == MIPS64_EF_R26 || i == MIPS64_EF_R27)
863 			uregs[i] = 0;
864 		else
865 			uregs[i] = regs->regs[i - MIPS64_EF_R0];
866 	}
867 
868 	uregs[MIPS64_EF_LO] = regs->lo;
869 	uregs[MIPS64_EF_HI] = regs->hi;
870 	uregs[MIPS64_EF_CP0_EPC] = regs->cp0_epc;
871 	uregs[MIPS64_EF_CP0_BADVADDR] = regs->cp0_badvaddr;
872 	uregs[MIPS64_EF_CP0_STATUS] = regs->cp0_status;
873 	uregs[MIPS64_EF_CP0_CAUSE] = regs->cp0_cause;
874 }
875 #endif /* CONFIG_64BIT */
876