xref: /linux/arch/mips/kernel/pm-cps.c (revision c5aec4c76af1a2d89ee2f2d4d5463b2ad2d85de5)
1 /*
2  * Copyright (C) 2014 Imagination Technologies
3  * Author: Paul Burton <paul.burton@imgtec.com>
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License as published by the
7  * Free Software Foundation;  either version 2 of the  License, or (at your
8  * option) any later version.
9  */
10 
11 #include <linux/init.h>
12 #include <linux/percpu.h>
13 #include <linux/slab.h>
14 
15 #include <asm/asm-offsets.h>
16 #include <asm/cacheflush.h>
17 #include <asm/cacheops.h>
18 #include <asm/idle.h>
19 #include <asm/mips-cm.h>
20 #include <asm/mips-cpc.h>
21 #include <asm/mipsmtregs.h>
22 #include <asm/pm.h>
23 #include <asm/pm-cps.h>
24 #include <asm/smp-cps.h>
25 #include <asm/uasm.h>
26 
27 /*
28  * cps_nc_entry_fn - type of a generated non-coherent state entry function
29  * @online: the count of online coupled VPEs
30  * @nc_ready_count: pointer to a non-coherent mapping of the core ready_count
31  *
32  * The code entering & exiting non-coherent states is generated at runtime
33  * using uasm, in order to ensure that the compiler cannot insert a stray
34  * memory access at an unfortunate time and to allow the generation of optimal
35  * core-specific code particularly for cache routines. If coupled_coherence
36  * is non-zero and this is the entry function for the CPS_PM_NC_WAIT state,
37  * returns the number of VPEs that were in the wait state at the point this
38  * VPE left it. Returns garbage if coupled_coherence is zero or this is not
39  * the entry function for CPS_PM_NC_WAIT.
40  */
41 typedef unsigned (*cps_nc_entry_fn)(unsigned online, u32 *nc_ready_count);
42 
43 /*
44  * The entry point of the generated non-coherent idle state entry/exit
45  * functions. Actually per-core rather than per-CPU.
46  */
47 static DEFINE_PER_CPU_READ_MOSTLY(cps_nc_entry_fn[CPS_PM_STATE_COUNT],
48 				  nc_asm_enter);
49 
50 /* Bitmap indicating which states are supported by the system */
51 DECLARE_BITMAP(state_support, CPS_PM_STATE_COUNT);
52 
53 /*
54  * Indicates the number of coupled VPEs ready to operate in a non-coherent
55  * state. Actually per-core rather than per-CPU.
56  */
57 static DEFINE_PER_CPU_ALIGNED(u32*, ready_count);
58 static DEFINE_PER_CPU_ALIGNED(void*, ready_count_alloc);
59 
60 /* Indicates online CPUs coupled with the current CPU */
61 static DEFINE_PER_CPU_ALIGNED(cpumask_t, online_coupled);
62 
63 /*
64  * Used to synchronize entry to deep idle states. Actually per-core rather
65  * than per-CPU.
66  */
67 static DEFINE_PER_CPU_ALIGNED(atomic_t, pm_barrier);
68 
69 /* Saved CPU state across the CPS_PM_POWER_GATED state */
70 DEFINE_PER_CPU_ALIGNED(struct mips_static_suspend_state, cps_cpu_state);
71 
72 /* A somewhat arbitrary number of labels & relocs for uasm */
73 static struct uasm_label labels[32] __initdata;
74 static struct uasm_reloc relocs[32] __initdata;
75 
76 /* CPU dependant sync types */
77 static unsigned stype_intervention;
78 static unsigned stype_memory;
79 static unsigned stype_ordering;
80 
81 enum mips_reg {
82 	zero, at, v0, v1, a0, a1, a2, a3,
83 	t0, t1, t2, t3, t4, t5, t6, t7,
84 	s0, s1, s2, s3, s4, s5, s6, s7,
85 	t8, t9, k0, k1, gp, sp, fp, ra,
86 };
87 
88 bool cps_pm_support_state(enum cps_pm_state state)
89 {
90 	return test_bit(state, state_support);
91 }
92 
93 static void coupled_barrier(atomic_t *a, unsigned online)
94 {
95 	/*
96 	 * This function is effectively the same as
97 	 * cpuidle_coupled_parallel_barrier, which can't be used here since
98 	 * there's no cpuidle device.
99 	 */
100 
101 	if (!coupled_coherence)
102 		return;
103 
104 	smp_mb__before_atomic_inc();
105 	atomic_inc(a);
106 
107 	while (atomic_read(a) < online)
108 		cpu_relax();
109 
110 	if (atomic_inc_return(a) == online * 2) {
111 		atomic_set(a, 0);
112 		return;
113 	}
114 
115 	while (atomic_read(a) > online)
116 		cpu_relax();
117 }
118 
119 int cps_pm_enter_state(enum cps_pm_state state)
120 {
121 	unsigned cpu = smp_processor_id();
122 	unsigned core = current_cpu_data.core;
123 	unsigned online, left;
124 	cpumask_t *coupled_mask = this_cpu_ptr(&online_coupled);
125 	u32 *core_ready_count, *nc_core_ready_count;
126 	void *nc_addr;
127 	cps_nc_entry_fn entry;
128 	struct core_boot_config *core_cfg;
129 	struct vpe_boot_config *vpe_cfg;
130 
131 	/* Check that there is an entry function for this state */
132 	entry = per_cpu(nc_asm_enter, core)[state];
133 	if (!entry)
134 		return -EINVAL;
135 
136 	/* Calculate which coupled CPUs (VPEs) are online */
137 #ifdef CONFIG_MIPS_MT
138 	if (cpu_online(cpu)) {
139 		cpumask_and(coupled_mask, cpu_online_mask,
140 			    &cpu_sibling_map[cpu]);
141 		online = cpumask_weight(coupled_mask);
142 		cpumask_clear_cpu(cpu, coupled_mask);
143 	} else
144 #endif
145 	{
146 		cpumask_clear(coupled_mask);
147 		online = 1;
148 	}
149 
150 	/* Setup the VPE to run mips_cps_pm_restore when started again */
151 	if (config_enabled(CONFIG_CPU_PM) && state == CPS_PM_POWER_GATED) {
152 		core_cfg = &mips_cps_core_bootcfg[core];
153 		vpe_cfg = &core_cfg->vpe_config[current_cpu_data.vpe_id];
154 		vpe_cfg->pc = (unsigned long)mips_cps_pm_restore;
155 		vpe_cfg->gp = (unsigned long)current_thread_info();
156 		vpe_cfg->sp = 0;
157 	}
158 
159 	/* Indicate that this CPU might not be coherent */
160 	cpumask_clear_cpu(cpu, &cpu_coherent_mask);
161 	smp_mb__after_clear_bit();
162 
163 	/* Create a non-coherent mapping of the core ready_count */
164 	core_ready_count = per_cpu(ready_count, core);
165 	nc_addr = kmap_noncoherent(virt_to_page(core_ready_count),
166 				   (unsigned long)core_ready_count);
167 	nc_addr += ((unsigned long)core_ready_count & ~PAGE_MASK);
168 	nc_core_ready_count = nc_addr;
169 
170 	/* Ensure ready_count is zero-initialised before the assembly runs */
171 	ACCESS_ONCE(*nc_core_ready_count) = 0;
172 	coupled_barrier(&per_cpu(pm_barrier, core), online);
173 
174 	/* Run the generated entry code */
175 	left = entry(online, nc_core_ready_count);
176 
177 	/* Remove the non-coherent mapping of ready_count */
178 	kunmap_noncoherent();
179 
180 	/* Indicate that this CPU is definitely coherent */
181 	cpumask_set_cpu(cpu, &cpu_coherent_mask);
182 
183 	/*
184 	 * If this VPE is the first to leave the non-coherent wait state then
185 	 * it needs to wake up any coupled VPEs still running their wait
186 	 * instruction so that they return to cpuidle, which can then complete
187 	 * coordination between the coupled VPEs & provide the governor with
188 	 * a chance to reflect on the length of time the VPEs were in the
189 	 * idle state.
190 	 */
191 	if (coupled_coherence && (state == CPS_PM_NC_WAIT) && (left == online))
192 		arch_send_call_function_ipi_mask(coupled_mask);
193 
194 	return 0;
195 }
196 
197 static void __init cps_gen_cache_routine(u32 **pp, struct uasm_label **pl,
198 					 struct uasm_reloc **pr,
199 					 const struct cache_desc *cache,
200 					 unsigned op, int lbl)
201 {
202 	unsigned cache_size = cache->ways << cache->waybit;
203 	unsigned i;
204 	const unsigned unroll_lines = 32;
205 
206 	/* If the cache isn't present this function has it easy */
207 	if (cache->flags & MIPS_CACHE_NOT_PRESENT)
208 		return;
209 
210 	/* Load base address */
211 	UASM_i_LA(pp, t0, (long)CKSEG0);
212 
213 	/* Calculate end address */
214 	if (cache_size < 0x8000)
215 		uasm_i_addiu(pp, t1, t0, cache_size);
216 	else
217 		UASM_i_LA(pp, t1, (long)(CKSEG0 + cache_size));
218 
219 	/* Start of cache op loop */
220 	uasm_build_label(pl, *pp, lbl);
221 
222 	/* Generate the cache ops */
223 	for (i = 0; i < unroll_lines; i++)
224 		uasm_i_cache(pp, op, i * cache->linesz, t0);
225 
226 	/* Update the base address */
227 	uasm_i_addiu(pp, t0, t0, unroll_lines * cache->linesz);
228 
229 	/* Loop if we haven't reached the end address yet */
230 	uasm_il_bne(pp, pr, t0, t1, lbl);
231 	uasm_i_nop(pp);
232 }
233 
234 static int __init cps_gen_flush_fsb(u32 **pp, struct uasm_label **pl,
235 				    struct uasm_reloc **pr,
236 				    const struct cpuinfo_mips *cpu_info,
237 				    int lbl)
238 {
239 	unsigned i, fsb_size = 8;
240 	unsigned num_loads = (fsb_size * 3) / 2;
241 	unsigned line_stride = 2;
242 	unsigned line_size = cpu_info->dcache.linesz;
243 	unsigned perf_counter, perf_event;
244 	unsigned revision = cpu_info->processor_id & PRID_REV_MASK;
245 
246 	/*
247 	 * Determine whether this CPU requires an FSB flush, and if so which
248 	 * performance counter/event reflect stalls due to a full FSB.
249 	 */
250 	switch (__get_cpu_type(cpu_info->cputype)) {
251 	case CPU_INTERAPTIV:
252 		perf_counter = 1;
253 		perf_event = 51;
254 		break;
255 
256 	case CPU_PROAPTIV:
257 		/* Newer proAptiv cores don't require this workaround */
258 		if (revision >= PRID_REV_ENCODE_332(1, 1, 0))
259 			return 0;
260 
261 		/* On older ones it's unavailable */
262 		return -1;
263 
264 	/* CPUs which do not require the workaround */
265 	case CPU_P5600:
266 		return 0;
267 
268 	default:
269 		WARN_ONCE(1, "pm-cps: FSB flush unsupported for this CPU\n");
270 		return -1;
271 	}
272 
273 	/*
274 	 * Ensure that the fill/store buffer (FSB) is not holding the results
275 	 * of a prefetch, since if it is then the CPC sequencer may become
276 	 * stuck in the D3 (ClrBus) state whilst entering a low power state.
277 	 */
278 
279 	/* Preserve perf counter setup */
280 	uasm_i_mfc0(pp, t2, 25, (perf_counter * 2) + 0); /* PerfCtlN */
281 	uasm_i_mfc0(pp, t3, 25, (perf_counter * 2) + 1); /* PerfCntN */
282 
283 	/* Setup perf counter to count FSB full pipeline stalls */
284 	uasm_i_addiu(pp, t0, zero, (perf_event << 5) | 0xf);
285 	uasm_i_mtc0(pp, t0, 25, (perf_counter * 2) + 0); /* PerfCtlN */
286 	uasm_i_ehb(pp);
287 	uasm_i_mtc0(pp, zero, 25, (perf_counter * 2) + 1); /* PerfCntN */
288 	uasm_i_ehb(pp);
289 
290 	/* Base address for loads */
291 	UASM_i_LA(pp, t0, (long)CKSEG0);
292 
293 	/* Start of clear loop */
294 	uasm_build_label(pl, *pp, lbl);
295 
296 	/* Perform some loads to fill the FSB */
297 	for (i = 0; i < num_loads; i++)
298 		uasm_i_lw(pp, zero, i * line_size * line_stride, t0);
299 
300 	/*
301 	 * Invalidate the new D-cache entries so that the cache will need
302 	 * refilling (via the FSB) if the loop is executed again.
303 	 */
304 	for (i = 0; i < num_loads; i++) {
305 		uasm_i_cache(pp, Hit_Invalidate_D,
306 			     i * line_size * line_stride, t0);
307 		uasm_i_cache(pp, Hit_Writeback_Inv_SD,
308 			     i * line_size * line_stride, t0);
309 	}
310 
311 	/* Completion barrier */
312 	uasm_i_sync(pp, stype_memory);
313 	uasm_i_ehb(pp);
314 
315 	/* Check whether the pipeline stalled due to the FSB being full */
316 	uasm_i_mfc0(pp, t1, 25, (perf_counter * 2) + 1); /* PerfCntN */
317 
318 	/* Loop if it didn't */
319 	uasm_il_beqz(pp, pr, t1, lbl);
320 	uasm_i_nop(pp);
321 
322 	/* Restore perf counter 1. The count may well now be wrong... */
323 	uasm_i_mtc0(pp, t2, 25, (perf_counter * 2) + 0); /* PerfCtlN */
324 	uasm_i_ehb(pp);
325 	uasm_i_mtc0(pp, t3, 25, (perf_counter * 2) + 1); /* PerfCntN */
326 	uasm_i_ehb(pp);
327 
328 	return 0;
329 }
330 
331 static void __init cps_gen_set_top_bit(u32 **pp, struct uasm_label **pl,
332 				       struct uasm_reloc **pr,
333 				       unsigned r_addr, int lbl)
334 {
335 	uasm_i_lui(pp, t0, uasm_rel_hi(0x80000000));
336 	uasm_build_label(pl, *pp, lbl);
337 	uasm_i_ll(pp, t1, 0, r_addr);
338 	uasm_i_or(pp, t1, t1, t0);
339 	uasm_i_sc(pp, t1, 0, r_addr);
340 	uasm_il_beqz(pp, pr, t1, lbl);
341 	uasm_i_nop(pp);
342 }
343 
344 static void * __init cps_gen_entry_code(unsigned cpu, enum cps_pm_state state)
345 {
346 	struct uasm_label *l = labels;
347 	struct uasm_reloc *r = relocs;
348 	u32 *buf, *p;
349 	const unsigned r_online = a0;
350 	const unsigned r_nc_count = a1;
351 	const unsigned r_pcohctl = t7;
352 	const unsigned max_instrs = 256;
353 	unsigned cpc_cmd;
354 	int err;
355 	enum {
356 		lbl_incready = 1,
357 		lbl_poll_cont,
358 		lbl_secondary_hang,
359 		lbl_disable_coherence,
360 		lbl_flush_fsb,
361 		lbl_invicache,
362 		lbl_flushdcache,
363 		lbl_hang,
364 		lbl_set_cont,
365 		lbl_secondary_cont,
366 		lbl_decready,
367 	};
368 
369 	/* Allocate a buffer to hold the generated code */
370 	p = buf = kcalloc(max_instrs, sizeof(u32), GFP_KERNEL);
371 	if (!buf)
372 		return NULL;
373 
374 	/* Clear labels & relocs ready for (re)use */
375 	memset(labels, 0, sizeof(labels));
376 	memset(relocs, 0, sizeof(relocs));
377 
378 	if (config_enabled(CONFIG_CPU_PM) && state == CPS_PM_POWER_GATED) {
379 		/*
380 		 * Save CPU state. Note the non-standard calling convention
381 		 * with the return address placed in v0 to avoid clobbering
382 		 * the ra register before it is saved.
383 		 */
384 		UASM_i_LA(&p, t0, (long)mips_cps_pm_save);
385 		uasm_i_jalr(&p, v0, t0);
386 		uasm_i_nop(&p);
387 	}
388 
389 	/*
390 	 * Load addresses of required CM & CPC registers. This is done early
391 	 * because they're needed in both the enable & disable coherence steps
392 	 * but in the coupled case the enable step will only run on one VPE.
393 	 */
394 	UASM_i_LA(&p, r_pcohctl, (long)addr_gcr_cl_coherence());
395 
396 	if (coupled_coherence) {
397 		/* Increment ready_count */
398 		uasm_i_sync(&p, stype_ordering);
399 		uasm_build_label(&l, p, lbl_incready);
400 		uasm_i_ll(&p, t1, 0, r_nc_count);
401 		uasm_i_addiu(&p, t2, t1, 1);
402 		uasm_i_sc(&p, t2, 0, r_nc_count);
403 		uasm_il_beqz(&p, &r, t2, lbl_incready);
404 		uasm_i_addiu(&p, t1, t1, 1);
405 
406 		/* Ordering barrier */
407 		uasm_i_sync(&p, stype_ordering);
408 
409 		/*
410 		 * If this is the last VPE to become ready for non-coherence
411 		 * then it should branch below.
412 		 */
413 		uasm_il_beq(&p, &r, t1, r_online, lbl_disable_coherence);
414 		uasm_i_nop(&p);
415 
416 		if (state < CPS_PM_POWER_GATED) {
417 			/*
418 			 * Otherwise this is not the last VPE to become ready
419 			 * for non-coherence. It needs to wait until coherence
420 			 * has been disabled before proceeding, which it will do
421 			 * by polling for the top bit of ready_count being set.
422 			 */
423 			uasm_i_addiu(&p, t1, zero, -1);
424 			uasm_build_label(&l, p, lbl_poll_cont);
425 			uasm_i_lw(&p, t0, 0, r_nc_count);
426 			uasm_il_bltz(&p, &r, t0, lbl_secondary_cont);
427 			uasm_i_ehb(&p);
428 			uasm_i_yield(&p, zero, t1);
429 			uasm_il_b(&p, &r, lbl_poll_cont);
430 			uasm_i_nop(&p);
431 		} else {
432 			/*
433 			 * The core will lose power & this VPE will not continue
434 			 * so it can simply halt here.
435 			 */
436 			uasm_i_addiu(&p, t0, zero, TCHALT_H);
437 			uasm_i_mtc0(&p, t0, 2, 4);
438 			uasm_build_label(&l, p, lbl_secondary_hang);
439 			uasm_il_b(&p, &r, lbl_secondary_hang);
440 			uasm_i_nop(&p);
441 		}
442 	}
443 
444 	/*
445 	 * This is the point of no return - this VPE will now proceed to
446 	 * disable coherence. At this point we *must* be sure that no other
447 	 * VPE within the core will interfere with the L1 dcache.
448 	 */
449 	uasm_build_label(&l, p, lbl_disable_coherence);
450 
451 	/* Invalidate the L1 icache */
452 	cps_gen_cache_routine(&p, &l, &r, &cpu_data[cpu].icache,
453 			      Index_Invalidate_I, lbl_invicache);
454 
455 	/* Writeback & invalidate the L1 dcache */
456 	cps_gen_cache_routine(&p, &l, &r, &cpu_data[cpu].dcache,
457 			      Index_Writeback_Inv_D, lbl_flushdcache);
458 
459 	/* Completion barrier */
460 	uasm_i_sync(&p, stype_memory);
461 	uasm_i_ehb(&p);
462 
463 	/*
464 	 * Disable all but self interventions. The load from COHCTL is defined
465 	 * by the interAptiv & proAptiv SUMs as ensuring that the operation
466 	 * resulting from the preceeding store is complete.
467 	 */
468 	uasm_i_addiu(&p, t0, zero, 1 << cpu_data[cpu].core);
469 	uasm_i_sw(&p, t0, 0, r_pcohctl);
470 	uasm_i_lw(&p, t0, 0, r_pcohctl);
471 
472 	/* Sync to ensure previous interventions are complete */
473 	uasm_i_sync(&p, stype_intervention);
474 	uasm_i_ehb(&p);
475 
476 	/* Disable coherence */
477 	uasm_i_sw(&p, zero, 0, r_pcohctl);
478 	uasm_i_lw(&p, t0, 0, r_pcohctl);
479 
480 	if (state >= CPS_PM_CLOCK_GATED) {
481 		err = cps_gen_flush_fsb(&p, &l, &r, &cpu_data[cpu],
482 					lbl_flush_fsb);
483 		if (err)
484 			goto out_err;
485 
486 		/* Determine the CPC command to issue */
487 		switch (state) {
488 		case CPS_PM_CLOCK_GATED:
489 			cpc_cmd = CPC_Cx_CMD_CLOCKOFF;
490 			break;
491 		case CPS_PM_POWER_GATED:
492 			cpc_cmd = CPC_Cx_CMD_PWRDOWN;
493 			break;
494 		default:
495 			BUG();
496 			goto out_err;
497 		}
498 
499 		/* Issue the CPC command */
500 		UASM_i_LA(&p, t0, (long)addr_cpc_cl_cmd());
501 		uasm_i_addiu(&p, t1, zero, cpc_cmd);
502 		uasm_i_sw(&p, t1, 0, t0);
503 
504 		if (state == CPS_PM_POWER_GATED) {
505 			/* If anything goes wrong just hang */
506 			uasm_build_label(&l, p, lbl_hang);
507 			uasm_il_b(&p, &r, lbl_hang);
508 			uasm_i_nop(&p);
509 
510 			/*
511 			 * There's no point generating more code, the core is
512 			 * powered down & if powered back up will run from the
513 			 * reset vector not from here.
514 			 */
515 			goto gen_done;
516 		}
517 
518 		/* Completion barrier */
519 		uasm_i_sync(&p, stype_memory);
520 		uasm_i_ehb(&p);
521 	}
522 
523 	if (state == CPS_PM_NC_WAIT) {
524 		/*
525 		 * At this point it is safe for all VPEs to proceed with
526 		 * execution. This VPE will set the top bit of ready_count
527 		 * to indicate to the other VPEs that they may continue.
528 		 */
529 		if (coupled_coherence)
530 			cps_gen_set_top_bit(&p, &l, &r, r_nc_count,
531 					    lbl_set_cont);
532 
533 		/*
534 		 * VPEs which did not disable coherence will continue
535 		 * executing, after coherence has been disabled, from this
536 		 * point.
537 		 */
538 		uasm_build_label(&l, p, lbl_secondary_cont);
539 
540 		/* Now perform our wait */
541 		uasm_i_wait(&p, 0);
542 	}
543 
544 	/*
545 	 * Re-enable coherence. Note that for CPS_PM_NC_WAIT all coupled VPEs
546 	 * will run this. The first will actually re-enable coherence & the
547 	 * rest will just be performing a rather unusual nop.
548 	 */
549 	uasm_i_addiu(&p, t0, zero, CM_GCR_Cx_COHERENCE_COHDOMAINEN_MSK);
550 	uasm_i_sw(&p, t0, 0, r_pcohctl);
551 	uasm_i_lw(&p, t0, 0, r_pcohctl);
552 
553 	/* Completion barrier */
554 	uasm_i_sync(&p, stype_memory);
555 	uasm_i_ehb(&p);
556 
557 	if (coupled_coherence && (state == CPS_PM_NC_WAIT)) {
558 		/* Decrement ready_count */
559 		uasm_build_label(&l, p, lbl_decready);
560 		uasm_i_sync(&p, stype_ordering);
561 		uasm_i_ll(&p, t1, 0, r_nc_count);
562 		uasm_i_addiu(&p, t2, t1, -1);
563 		uasm_i_sc(&p, t2, 0, r_nc_count);
564 		uasm_il_beqz(&p, &r, t2, lbl_decready);
565 		uasm_i_andi(&p, v0, t1, (1 << fls(smp_num_siblings)) - 1);
566 
567 		/* Ordering barrier */
568 		uasm_i_sync(&p, stype_ordering);
569 	}
570 
571 	if (coupled_coherence && (state == CPS_PM_CLOCK_GATED)) {
572 		/*
573 		 * At this point it is safe for all VPEs to proceed with
574 		 * execution. This VPE will set the top bit of ready_count
575 		 * to indicate to the other VPEs that they may continue.
576 		 */
577 		cps_gen_set_top_bit(&p, &l, &r, r_nc_count, lbl_set_cont);
578 
579 		/*
580 		 * This core will be reliant upon another core sending a
581 		 * power-up command to the CPC in order to resume operation.
582 		 * Thus an arbitrary VPE can't trigger the core leaving the
583 		 * idle state and the one that disables coherence might as well
584 		 * be the one to re-enable it. The rest will continue from here
585 		 * after that has been done.
586 		 */
587 		uasm_build_label(&l, p, lbl_secondary_cont);
588 
589 		/* Ordering barrier */
590 		uasm_i_sync(&p, stype_ordering);
591 	}
592 
593 	/* The core is coherent, time to return to C code */
594 	uasm_i_jr(&p, ra);
595 	uasm_i_nop(&p);
596 
597 gen_done:
598 	/* Ensure the code didn't exceed the resources allocated for it */
599 	BUG_ON((p - buf) > max_instrs);
600 	BUG_ON((l - labels) > ARRAY_SIZE(labels));
601 	BUG_ON((r - relocs) > ARRAY_SIZE(relocs));
602 
603 	/* Patch branch offsets */
604 	uasm_resolve_relocs(relocs, labels);
605 
606 	/* Flush the icache */
607 	local_flush_icache_range((unsigned long)buf, (unsigned long)p);
608 
609 	return buf;
610 out_err:
611 	kfree(buf);
612 	return NULL;
613 }
614 
615 static int __init cps_gen_core_entries(unsigned cpu)
616 {
617 	enum cps_pm_state state;
618 	unsigned core = cpu_data[cpu].core;
619 	unsigned dlinesz = cpu_data[cpu].dcache.linesz;
620 	void *entry_fn, *core_rc;
621 
622 	for (state = CPS_PM_NC_WAIT; state < CPS_PM_STATE_COUNT; state++) {
623 		if (per_cpu(nc_asm_enter, core)[state])
624 			continue;
625 		if (!test_bit(state, state_support))
626 			continue;
627 
628 		entry_fn = cps_gen_entry_code(cpu, state);
629 		if (!entry_fn) {
630 			pr_err("Failed to generate core %u state %u entry\n",
631 			       core, state);
632 			clear_bit(state, state_support);
633 		}
634 
635 		per_cpu(nc_asm_enter, core)[state] = entry_fn;
636 	}
637 
638 	if (!per_cpu(ready_count, core)) {
639 		core_rc = kmalloc(dlinesz * 2, GFP_KERNEL);
640 		if (!core_rc) {
641 			pr_err("Failed allocate core %u ready_count\n", core);
642 			return -ENOMEM;
643 		}
644 		per_cpu(ready_count_alloc, core) = core_rc;
645 
646 		/* Ensure ready_count is aligned to a cacheline boundary */
647 		core_rc += dlinesz - 1;
648 		core_rc = (void *)((unsigned long)core_rc & ~(dlinesz - 1));
649 		per_cpu(ready_count, core) = core_rc;
650 	}
651 
652 	return 0;
653 }
654 
655 static int __init cps_pm_init(void)
656 {
657 	unsigned cpu;
658 	int err;
659 
660 	/* Detect appropriate sync types for the system */
661 	switch (current_cpu_data.cputype) {
662 	case CPU_INTERAPTIV:
663 	case CPU_PROAPTIV:
664 	case CPU_M5150:
665 	case CPU_P5600:
666 		stype_intervention = 0x2;
667 		stype_memory = 0x3;
668 		stype_ordering = 0x10;
669 		break;
670 
671 	default:
672 		pr_warn("Power management is using heavyweight sync 0\n");
673 	}
674 
675 	/* A CM is required for all non-coherent states */
676 	if (!mips_cm_present()) {
677 		pr_warn("pm-cps: no CM, non-coherent states unavailable\n");
678 		goto out;
679 	}
680 
681 	/*
682 	 * If interrupts were enabled whilst running a wait instruction on a
683 	 * non-coherent core then the VPE may end up processing interrupts
684 	 * whilst non-coherent. That would be bad.
685 	 */
686 	if (cpu_wait == r4k_wait_irqoff)
687 		set_bit(CPS_PM_NC_WAIT, state_support);
688 	else
689 		pr_warn("pm-cps: non-coherent wait unavailable\n");
690 
691 	/* Detect whether a CPC is present */
692 	if (mips_cpc_present()) {
693 		/* Detect whether clock gating is implemented */
694 		if (read_cpc_cl_stat_conf() & CPC_Cx_STAT_CONF_CLKGAT_IMPL_MSK)
695 			set_bit(CPS_PM_CLOCK_GATED, state_support);
696 		else
697 			pr_warn("pm-cps: CPC does not support clock gating\n");
698 
699 		/* Power gating is available with CPS SMP & any CPC */
700 		if (mips_cps_smp_in_use())
701 			set_bit(CPS_PM_POWER_GATED, state_support);
702 		else
703 			pr_warn("pm-cps: CPS SMP not in use, power gating unavailable\n");
704 	} else {
705 		pr_warn("pm-cps: no CPC, clock & power gating unavailable\n");
706 	}
707 
708 	for_each_present_cpu(cpu) {
709 		err = cps_gen_core_entries(cpu);
710 		if (err)
711 			return err;
712 	}
713 out:
714 	return 0;
715 }
716 arch_initcall(cps_pm_init);
717