1 /* 2 * Copyright (C) 2014 Imagination Technologies 3 * Author: Paul Burton <paul.burton@imgtec.com> 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License as published by the 7 * Free Software Foundation; either version 2 of the License, or (at your 8 * option) any later version. 9 */ 10 11 #include <linux/init.h> 12 #include <linux/percpu.h> 13 #include <linux/slab.h> 14 15 #include <asm/asm-offsets.h> 16 #include <asm/cacheflush.h> 17 #include <asm/cacheops.h> 18 #include <asm/idle.h> 19 #include <asm/mips-cm.h> 20 #include <asm/mips-cpc.h> 21 #include <asm/mipsmtregs.h> 22 #include <asm/pm.h> 23 #include <asm/pm-cps.h> 24 #include <asm/smp-cps.h> 25 #include <asm/uasm.h> 26 27 /* 28 * cps_nc_entry_fn - type of a generated non-coherent state entry function 29 * @online: the count of online coupled VPEs 30 * @nc_ready_count: pointer to a non-coherent mapping of the core ready_count 31 * 32 * The code entering & exiting non-coherent states is generated at runtime 33 * using uasm, in order to ensure that the compiler cannot insert a stray 34 * memory access at an unfortunate time and to allow the generation of optimal 35 * core-specific code particularly for cache routines. If coupled_coherence 36 * is non-zero and this is the entry function for the CPS_PM_NC_WAIT state, 37 * returns the number of VPEs that were in the wait state at the point this 38 * VPE left it. Returns garbage if coupled_coherence is zero or this is not 39 * the entry function for CPS_PM_NC_WAIT. 40 */ 41 typedef unsigned (*cps_nc_entry_fn)(unsigned online, u32 *nc_ready_count); 42 43 /* 44 * The entry point of the generated non-coherent idle state entry/exit 45 * functions. Actually per-core rather than per-CPU. 46 */ 47 static DEFINE_PER_CPU_READ_MOSTLY(cps_nc_entry_fn[CPS_PM_STATE_COUNT], 48 nc_asm_enter); 49 50 /* Bitmap indicating which states are supported by the system */ 51 DECLARE_BITMAP(state_support, CPS_PM_STATE_COUNT); 52 53 /* 54 * Indicates the number of coupled VPEs ready to operate in a non-coherent 55 * state. Actually per-core rather than per-CPU. 56 */ 57 static DEFINE_PER_CPU_ALIGNED(u32*, ready_count); 58 static DEFINE_PER_CPU_ALIGNED(void*, ready_count_alloc); 59 60 /* Indicates online CPUs coupled with the current CPU */ 61 static DEFINE_PER_CPU_ALIGNED(cpumask_t, online_coupled); 62 63 /* 64 * Used to synchronize entry to deep idle states. Actually per-core rather 65 * than per-CPU. 66 */ 67 static DEFINE_PER_CPU_ALIGNED(atomic_t, pm_barrier); 68 69 /* Saved CPU state across the CPS_PM_POWER_GATED state */ 70 DEFINE_PER_CPU_ALIGNED(struct mips_static_suspend_state, cps_cpu_state); 71 72 /* A somewhat arbitrary number of labels & relocs for uasm */ 73 static struct uasm_label labels[32] __initdata; 74 static struct uasm_reloc relocs[32] __initdata; 75 76 /* CPU dependant sync types */ 77 static unsigned stype_intervention; 78 static unsigned stype_memory; 79 static unsigned stype_ordering; 80 81 enum mips_reg { 82 zero, at, v0, v1, a0, a1, a2, a3, 83 t0, t1, t2, t3, t4, t5, t6, t7, 84 s0, s1, s2, s3, s4, s5, s6, s7, 85 t8, t9, k0, k1, gp, sp, fp, ra, 86 }; 87 88 bool cps_pm_support_state(enum cps_pm_state state) 89 { 90 return test_bit(state, state_support); 91 } 92 93 static void coupled_barrier(atomic_t *a, unsigned online) 94 { 95 /* 96 * This function is effectively the same as 97 * cpuidle_coupled_parallel_barrier, which can't be used here since 98 * there's no cpuidle device. 99 */ 100 101 if (!coupled_coherence) 102 return; 103 104 smp_mb__before_atomic_inc(); 105 atomic_inc(a); 106 107 while (atomic_read(a) < online) 108 cpu_relax(); 109 110 if (atomic_inc_return(a) == online * 2) { 111 atomic_set(a, 0); 112 return; 113 } 114 115 while (atomic_read(a) > online) 116 cpu_relax(); 117 } 118 119 int cps_pm_enter_state(enum cps_pm_state state) 120 { 121 unsigned cpu = smp_processor_id(); 122 unsigned core = current_cpu_data.core; 123 unsigned online, left; 124 cpumask_t *coupled_mask = this_cpu_ptr(&online_coupled); 125 u32 *core_ready_count, *nc_core_ready_count; 126 void *nc_addr; 127 cps_nc_entry_fn entry; 128 struct core_boot_config *core_cfg; 129 struct vpe_boot_config *vpe_cfg; 130 131 /* Check that there is an entry function for this state */ 132 entry = per_cpu(nc_asm_enter, core)[state]; 133 if (!entry) 134 return -EINVAL; 135 136 /* Calculate which coupled CPUs (VPEs) are online */ 137 #ifdef CONFIG_MIPS_MT 138 if (cpu_online(cpu)) { 139 cpumask_and(coupled_mask, cpu_online_mask, 140 &cpu_sibling_map[cpu]); 141 online = cpumask_weight(coupled_mask); 142 cpumask_clear_cpu(cpu, coupled_mask); 143 } else 144 #endif 145 { 146 cpumask_clear(coupled_mask); 147 online = 1; 148 } 149 150 /* Setup the VPE to run mips_cps_pm_restore when started again */ 151 if (config_enabled(CONFIG_CPU_PM) && state == CPS_PM_POWER_GATED) { 152 core_cfg = &mips_cps_core_bootcfg[core]; 153 vpe_cfg = &core_cfg->vpe_config[current_cpu_data.vpe_id]; 154 vpe_cfg->pc = (unsigned long)mips_cps_pm_restore; 155 vpe_cfg->gp = (unsigned long)current_thread_info(); 156 vpe_cfg->sp = 0; 157 } 158 159 /* Indicate that this CPU might not be coherent */ 160 cpumask_clear_cpu(cpu, &cpu_coherent_mask); 161 smp_mb__after_clear_bit(); 162 163 /* Create a non-coherent mapping of the core ready_count */ 164 core_ready_count = per_cpu(ready_count, core); 165 nc_addr = kmap_noncoherent(virt_to_page(core_ready_count), 166 (unsigned long)core_ready_count); 167 nc_addr += ((unsigned long)core_ready_count & ~PAGE_MASK); 168 nc_core_ready_count = nc_addr; 169 170 /* Ensure ready_count is zero-initialised before the assembly runs */ 171 ACCESS_ONCE(*nc_core_ready_count) = 0; 172 coupled_barrier(&per_cpu(pm_barrier, core), online); 173 174 /* Run the generated entry code */ 175 left = entry(online, nc_core_ready_count); 176 177 /* Remove the non-coherent mapping of ready_count */ 178 kunmap_noncoherent(); 179 180 /* Indicate that this CPU is definitely coherent */ 181 cpumask_set_cpu(cpu, &cpu_coherent_mask); 182 183 /* 184 * If this VPE is the first to leave the non-coherent wait state then 185 * it needs to wake up any coupled VPEs still running their wait 186 * instruction so that they return to cpuidle, which can then complete 187 * coordination between the coupled VPEs & provide the governor with 188 * a chance to reflect on the length of time the VPEs were in the 189 * idle state. 190 */ 191 if (coupled_coherence && (state == CPS_PM_NC_WAIT) && (left == online)) 192 arch_send_call_function_ipi_mask(coupled_mask); 193 194 return 0; 195 } 196 197 static void __init cps_gen_cache_routine(u32 **pp, struct uasm_label **pl, 198 struct uasm_reloc **pr, 199 const struct cache_desc *cache, 200 unsigned op, int lbl) 201 { 202 unsigned cache_size = cache->ways << cache->waybit; 203 unsigned i; 204 const unsigned unroll_lines = 32; 205 206 /* If the cache isn't present this function has it easy */ 207 if (cache->flags & MIPS_CACHE_NOT_PRESENT) 208 return; 209 210 /* Load base address */ 211 UASM_i_LA(pp, t0, (long)CKSEG0); 212 213 /* Calculate end address */ 214 if (cache_size < 0x8000) 215 uasm_i_addiu(pp, t1, t0, cache_size); 216 else 217 UASM_i_LA(pp, t1, (long)(CKSEG0 + cache_size)); 218 219 /* Start of cache op loop */ 220 uasm_build_label(pl, *pp, lbl); 221 222 /* Generate the cache ops */ 223 for (i = 0; i < unroll_lines; i++) 224 uasm_i_cache(pp, op, i * cache->linesz, t0); 225 226 /* Update the base address */ 227 uasm_i_addiu(pp, t0, t0, unroll_lines * cache->linesz); 228 229 /* Loop if we haven't reached the end address yet */ 230 uasm_il_bne(pp, pr, t0, t1, lbl); 231 uasm_i_nop(pp); 232 } 233 234 static int __init cps_gen_flush_fsb(u32 **pp, struct uasm_label **pl, 235 struct uasm_reloc **pr, 236 const struct cpuinfo_mips *cpu_info, 237 int lbl) 238 { 239 unsigned i, fsb_size = 8; 240 unsigned num_loads = (fsb_size * 3) / 2; 241 unsigned line_stride = 2; 242 unsigned line_size = cpu_info->dcache.linesz; 243 unsigned perf_counter, perf_event; 244 unsigned revision = cpu_info->processor_id & PRID_REV_MASK; 245 246 /* 247 * Determine whether this CPU requires an FSB flush, and if so which 248 * performance counter/event reflect stalls due to a full FSB. 249 */ 250 switch (__get_cpu_type(cpu_info->cputype)) { 251 case CPU_INTERAPTIV: 252 perf_counter = 1; 253 perf_event = 51; 254 break; 255 256 case CPU_PROAPTIV: 257 /* Newer proAptiv cores don't require this workaround */ 258 if (revision >= PRID_REV_ENCODE_332(1, 1, 0)) 259 return 0; 260 261 /* On older ones it's unavailable */ 262 return -1; 263 264 /* CPUs which do not require the workaround */ 265 case CPU_P5600: 266 return 0; 267 268 default: 269 WARN_ONCE(1, "pm-cps: FSB flush unsupported for this CPU\n"); 270 return -1; 271 } 272 273 /* 274 * Ensure that the fill/store buffer (FSB) is not holding the results 275 * of a prefetch, since if it is then the CPC sequencer may become 276 * stuck in the D3 (ClrBus) state whilst entering a low power state. 277 */ 278 279 /* Preserve perf counter setup */ 280 uasm_i_mfc0(pp, t2, 25, (perf_counter * 2) + 0); /* PerfCtlN */ 281 uasm_i_mfc0(pp, t3, 25, (perf_counter * 2) + 1); /* PerfCntN */ 282 283 /* Setup perf counter to count FSB full pipeline stalls */ 284 uasm_i_addiu(pp, t0, zero, (perf_event << 5) | 0xf); 285 uasm_i_mtc0(pp, t0, 25, (perf_counter * 2) + 0); /* PerfCtlN */ 286 uasm_i_ehb(pp); 287 uasm_i_mtc0(pp, zero, 25, (perf_counter * 2) + 1); /* PerfCntN */ 288 uasm_i_ehb(pp); 289 290 /* Base address for loads */ 291 UASM_i_LA(pp, t0, (long)CKSEG0); 292 293 /* Start of clear loop */ 294 uasm_build_label(pl, *pp, lbl); 295 296 /* Perform some loads to fill the FSB */ 297 for (i = 0; i < num_loads; i++) 298 uasm_i_lw(pp, zero, i * line_size * line_stride, t0); 299 300 /* 301 * Invalidate the new D-cache entries so that the cache will need 302 * refilling (via the FSB) if the loop is executed again. 303 */ 304 for (i = 0; i < num_loads; i++) { 305 uasm_i_cache(pp, Hit_Invalidate_D, 306 i * line_size * line_stride, t0); 307 uasm_i_cache(pp, Hit_Writeback_Inv_SD, 308 i * line_size * line_stride, t0); 309 } 310 311 /* Completion barrier */ 312 uasm_i_sync(pp, stype_memory); 313 uasm_i_ehb(pp); 314 315 /* Check whether the pipeline stalled due to the FSB being full */ 316 uasm_i_mfc0(pp, t1, 25, (perf_counter * 2) + 1); /* PerfCntN */ 317 318 /* Loop if it didn't */ 319 uasm_il_beqz(pp, pr, t1, lbl); 320 uasm_i_nop(pp); 321 322 /* Restore perf counter 1. The count may well now be wrong... */ 323 uasm_i_mtc0(pp, t2, 25, (perf_counter * 2) + 0); /* PerfCtlN */ 324 uasm_i_ehb(pp); 325 uasm_i_mtc0(pp, t3, 25, (perf_counter * 2) + 1); /* PerfCntN */ 326 uasm_i_ehb(pp); 327 328 return 0; 329 } 330 331 static void __init cps_gen_set_top_bit(u32 **pp, struct uasm_label **pl, 332 struct uasm_reloc **pr, 333 unsigned r_addr, int lbl) 334 { 335 uasm_i_lui(pp, t0, uasm_rel_hi(0x80000000)); 336 uasm_build_label(pl, *pp, lbl); 337 uasm_i_ll(pp, t1, 0, r_addr); 338 uasm_i_or(pp, t1, t1, t0); 339 uasm_i_sc(pp, t1, 0, r_addr); 340 uasm_il_beqz(pp, pr, t1, lbl); 341 uasm_i_nop(pp); 342 } 343 344 static void * __init cps_gen_entry_code(unsigned cpu, enum cps_pm_state state) 345 { 346 struct uasm_label *l = labels; 347 struct uasm_reloc *r = relocs; 348 u32 *buf, *p; 349 const unsigned r_online = a0; 350 const unsigned r_nc_count = a1; 351 const unsigned r_pcohctl = t7; 352 const unsigned max_instrs = 256; 353 unsigned cpc_cmd; 354 int err; 355 enum { 356 lbl_incready = 1, 357 lbl_poll_cont, 358 lbl_secondary_hang, 359 lbl_disable_coherence, 360 lbl_flush_fsb, 361 lbl_invicache, 362 lbl_flushdcache, 363 lbl_hang, 364 lbl_set_cont, 365 lbl_secondary_cont, 366 lbl_decready, 367 }; 368 369 /* Allocate a buffer to hold the generated code */ 370 p = buf = kcalloc(max_instrs, sizeof(u32), GFP_KERNEL); 371 if (!buf) 372 return NULL; 373 374 /* Clear labels & relocs ready for (re)use */ 375 memset(labels, 0, sizeof(labels)); 376 memset(relocs, 0, sizeof(relocs)); 377 378 if (config_enabled(CONFIG_CPU_PM) && state == CPS_PM_POWER_GATED) { 379 /* 380 * Save CPU state. Note the non-standard calling convention 381 * with the return address placed in v0 to avoid clobbering 382 * the ra register before it is saved. 383 */ 384 UASM_i_LA(&p, t0, (long)mips_cps_pm_save); 385 uasm_i_jalr(&p, v0, t0); 386 uasm_i_nop(&p); 387 } 388 389 /* 390 * Load addresses of required CM & CPC registers. This is done early 391 * because they're needed in both the enable & disable coherence steps 392 * but in the coupled case the enable step will only run on one VPE. 393 */ 394 UASM_i_LA(&p, r_pcohctl, (long)addr_gcr_cl_coherence()); 395 396 if (coupled_coherence) { 397 /* Increment ready_count */ 398 uasm_i_sync(&p, stype_ordering); 399 uasm_build_label(&l, p, lbl_incready); 400 uasm_i_ll(&p, t1, 0, r_nc_count); 401 uasm_i_addiu(&p, t2, t1, 1); 402 uasm_i_sc(&p, t2, 0, r_nc_count); 403 uasm_il_beqz(&p, &r, t2, lbl_incready); 404 uasm_i_addiu(&p, t1, t1, 1); 405 406 /* Ordering barrier */ 407 uasm_i_sync(&p, stype_ordering); 408 409 /* 410 * If this is the last VPE to become ready for non-coherence 411 * then it should branch below. 412 */ 413 uasm_il_beq(&p, &r, t1, r_online, lbl_disable_coherence); 414 uasm_i_nop(&p); 415 416 if (state < CPS_PM_POWER_GATED) { 417 /* 418 * Otherwise this is not the last VPE to become ready 419 * for non-coherence. It needs to wait until coherence 420 * has been disabled before proceeding, which it will do 421 * by polling for the top bit of ready_count being set. 422 */ 423 uasm_i_addiu(&p, t1, zero, -1); 424 uasm_build_label(&l, p, lbl_poll_cont); 425 uasm_i_lw(&p, t0, 0, r_nc_count); 426 uasm_il_bltz(&p, &r, t0, lbl_secondary_cont); 427 uasm_i_ehb(&p); 428 uasm_i_yield(&p, zero, t1); 429 uasm_il_b(&p, &r, lbl_poll_cont); 430 uasm_i_nop(&p); 431 } else { 432 /* 433 * The core will lose power & this VPE will not continue 434 * so it can simply halt here. 435 */ 436 uasm_i_addiu(&p, t0, zero, TCHALT_H); 437 uasm_i_mtc0(&p, t0, 2, 4); 438 uasm_build_label(&l, p, lbl_secondary_hang); 439 uasm_il_b(&p, &r, lbl_secondary_hang); 440 uasm_i_nop(&p); 441 } 442 } 443 444 /* 445 * This is the point of no return - this VPE will now proceed to 446 * disable coherence. At this point we *must* be sure that no other 447 * VPE within the core will interfere with the L1 dcache. 448 */ 449 uasm_build_label(&l, p, lbl_disable_coherence); 450 451 /* Invalidate the L1 icache */ 452 cps_gen_cache_routine(&p, &l, &r, &cpu_data[cpu].icache, 453 Index_Invalidate_I, lbl_invicache); 454 455 /* Writeback & invalidate the L1 dcache */ 456 cps_gen_cache_routine(&p, &l, &r, &cpu_data[cpu].dcache, 457 Index_Writeback_Inv_D, lbl_flushdcache); 458 459 /* Completion barrier */ 460 uasm_i_sync(&p, stype_memory); 461 uasm_i_ehb(&p); 462 463 /* 464 * Disable all but self interventions. The load from COHCTL is defined 465 * by the interAptiv & proAptiv SUMs as ensuring that the operation 466 * resulting from the preceeding store is complete. 467 */ 468 uasm_i_addiu(&p, t0, zero, 1 << cpu_data[cpu].core); 469 uasm_i_sw(&p, t0, 0, r_pcohctl); 470 uasm_i_lw(&p, t0, 0, r_pcohctl); 471 472 /* Sync to ensure previous interventions are complete */ 473 uasm_i_sync(&p, stype_intervention); 474 uasm_i_ehb(&p); 475 476 /* Disable coherence */ 477 uasm_i_sw(&p, zero, 0, r_pcohctl); 478 uasm_i_lw(&p, t0, 0, r_pcohctl); 479 480 if (state >= CPS_PM_CLOCK_GATED) { 481 err = cps_gen_flush_fsb(&p, &l, &r, &cpu_data[cpu], 482 lbl_flush_fsb); 483 if (err) 484 goto out_err; 485 486 /* Determine the CPC command to issue */ 487 switch (state) { 488 case CPS_PM_CLOCK_GATED: 489 cpc_cmd = CPC_Cx_CMD_CLOCKOFF; 490 break; 491 case CPS_PM_POWER_GATED: 492 cpc_cmd = CPC_Cx_CMD_PWRDOWN; 493 break; 494 default: 495 BUG(); 496 goto out_err; 497 } 498 499 /* Issue the CPC command */ 500 UASM_i_LA(&p, t0, (long)addr_cpc_cl_cmd()); 501 uasm_i_addiu(&p, t1, zero, cpc_cmd); 502 uasm_i_sw(&p, t1, 0, t0); 503 504 if (state == CPS_PM_POWER_GATED) { 505 /* If anything goes wrong just hang */ 506 uasm_build_label(&l, p, lbl_hang); 507 uasm_il_b(&p, &r, lbl_hang); 508 uasm_i_nop(&p); 509 510 /* 511 * There's no point generating more code, the core is 512 * powered down & if powered back up will run from the 513 * reset vector not from here. 514 */ 515 goto gen_done; 516 } 517 518 /* Completion barrier */ 519 uasm_i_sync(&p, stype_memory); 520 uasm_i_ehb(&p); 521 } 522 523 if (state == CPS_PM_NC_WAIT) { 524 /* 525 * At this point it is safe for all VPEs to proceed with 526 * execution. This VPE will set the top bit of ready_count 527 * to indicate to the other VPEs that they may continue. 528 */ 529 if (coupled_coherence) 530 cps_gen_set_top_bit(&p, &l, &r, r_nc_count, 531 lbl_set_cont); 532 533 /* 534 * VPEs which did not disable coherence will continue 535 * executing, after coherence has been disabled, from this 536 * point. 537 */ 538 uasm_build_label(&l, p, lbl_secondary_cont); 539 540 /* Now perform our wait */ 541 uasm_i_wait(&p, 0); 542 } 543 544 /* 545 * Re-enable coherence. Note that for CPS_PM_NC_WAIT all coupled VPEs 546 * will run this. The first will actually re-enable coherence & the 547 * rest will just be performing a rather unusual nop. 548 */ 549 uasm_i_addiu(&p, t0, zero, CM_GCR_Cx_COHERENCE_COHDOMAINEN_MSK); 550 uasm_i_sw(&p, t0, 0, r_pcohctl); 551 uasm_i_lw(&p, t0, 0, r_pcohctl); 552 553 /* Completion barrier */ 554 uasm_i_sync(&p, stype_memory); 555 uasm_i_ehb(&p); 556 557 if (coupled_coherence && (state == CPS_PM_NC_WAIT)) { 558 /* Decrement ready_count */ 559 uasm_build_label(&l, p, lbl_decready); 560 uasm_i_sync(&p, stype_ordering); 561 uasm_i_ll(&p, t1, 0, r_nc_count); 562 uasm_i_addiu(&p, t2, t1, -1); 563 uasm_i_sc(&p, t2, 0, r_nc_count); 564 uasm_il_beqz(&p, &r, t2, lbl_decready); 565 uasm_i_andi(&p, v0, t1, (1 << fls(smp_num_siblings)) - 1); 566 567 /* Ordering barrier */ 568 uasm_i_sync(&p, stype_ordering); 569 } 570 571 if (coupled_coherence && (state == CPS_PM_CLOCK_GATED)) { 572 /* 573 * At this point it is safe for all VPEs to proceed with 574 * execution. This VPE will set the top bit of ready_count 575 * to indicate to the other VPEs that they may continue. 576 */ 577 cps_gen_set_top_bit(&p, &l, &r, r_nc_count, lbl_set_cont); 578 579 /* 580 * This core will be reliant upon another core sending a 581 * power-up command to the CPC in order to resume operation. 582 * Thus an arbitrary VPE can't trigger the core leaving the 583 * idle state and the one that disables coherence might as well 584 * be the one to re-enable it. The rest will continue from here 585 * after that has been done. 586 */ 587 uasm_build_label(&l, p, lbl_secondary_cont); 588 589 /* Ordering barrier */ 590 uasm_i_sync(&p, stype_ordering); 591 } 592 593 /* The core is coherent, time to return to C code */ 594 uasm_i_jr(&p, ra); 595 uasm_i_nop(&p); 596 597 gen_done: 598 /* Ensure the code didn't exceed the resources allocated for it */ 599 BUG_ON((p - buf) > max_instrs); 600 BUG_ON((l - labels) > ARRAY_SIZE(labels)); 601 BUG_ON((r - relocs) > ARRAY_SIZE(relocs)); 602 603 /* Patch branch offsets */ 604 uasm_resolve_relocs(relocs, labels); 605 606 /* Flush the icache */ 607 local_flush_icache_range((unsigned long)buf, (unsigned long)p); 608 609 return buf; 610 out_err: 611 kfree(buf); 612 return NULL; 613 } 614 615 static int __init cps_gen_core_entries(unsigned cpu) 616 { 617 enum cps_pm_state state; 618 unsigned core = cpu_data[cpu].core; 619 unsigned dlinesz = cpu_data[cpu].dcache.linesz; 620 void *entry_fn, *core_rc; 621 622 for (state = CPS_PM_NC_WAIT; state < CPS_PM_STATE_COUNT; state++) { 623 if (per_cpu(nc_asm_enter, core)[state]) 624 continue; 625 if (!test_bit(state, state_support)) 626 continue; 627 628 entry_fn = cps_gen_entry_code(cpu, state); 629 if (!entry_fn) { 630 pr_err("Failed to generate core %u state %u entry\n", 631 core, state); 632 clear_bit(state, state_support); 633 } 634 635 per_cpu(nc_asm_enter, core)[state] = entry_fn; 636 } 637 638 if (!per_cpu(ready_count, core)) { 639 core_rc = kmalloc(dlinesz * 2, GFP_KERNEL); 640 if (!core_rc) { 641 pr_err("Failed allocate core %u ready_count\n", core); 642 return -ENOMEM; 643 } 644 per_cpu(ready_count_alloc, core) = core_rc; 645 646 /* Ensure ready_count is aligned to a cacheline boundary */ 647 core_rc += dlinesz - 1; 648 core_rc = (void *)((unsigned long)core_rc & ~(dlinesz - 1)); 649 per_cpu(ready_count, core) = core_rc; 650 } 651 652 return 0; 653 } 654 655 static int __init cps_pm_init(void) 656 { 657 unsigned cpu; 658 int err; 659 660 /* Detect appropriate sync types for the system */ 661 switch (current_cpu_data.cputype) { 662 case CPU_INTERAPTIV: 663 case CPU_PROAPTIV: 664 case CPU_M5150: 665 case CPU_P5600: 666 stype_intervention = 0x2; 667 stype_memory = 0x3; 668 stype_ordering = 0x10; 669 break; 670 671 default: 672 pr_warn("Power management is using heavyweight sync 0\n"); 673 } 674 675 /* A CM is required for all non-coherent states */ 676 if (!mips_cm_present()) { 677 pr_warn("pm-cps: no CM, non-coherent states unavailable\n"); 678 goto out; 679 } 680 681 /* 682 * If interrupts were enabled whilst running a wait instruction on a 683 * non-coherent core then the VPE may end up processing interrupts 684 * whilst non-coherent. That would be bad. 685 */ 686 if (cpu_wait == r4k_wait_irqoff) 687 set_bit(CPS_PM_NC_WAIT, state_support); 688 else 689 pr_warn("pm-cps: non-coherent wait unavailable\n"); 690 691 /* Detect whether a CPC is present */ 692 if (mips_cpc_present()) { 693 /* Detect whether clock gating is implemented */ 694 if (read_cpc_cl_stat_conf() & CPC_Cx_STAT_CONF_CLKGAT_IMPL_MSK) 695 set_bit(CPS_PM_CLOCK_GATED, state_support); 696 else 697 pr_warn("pm-cps: CPC does not support clock gating\n"); 698 699 /* Power gating is available with CPS SMP & any CPC */ 700 if (mips_cps_smp_in_use()) 701 set_bit(CPS_PM_POWER_GATED, state_support); 702 else 703 pr_warn("pm-cps: CPS SMP not in use, power gating unavailable\n"); 704 } else { 705 pr_warn("pm-cps: no CPC, clock & power gating unavailable\n"); 706 } 707 708 for_each_present_cpu(cpu) { 709 err = cps_gen_core_entries(cpu); 710 if (err) 711 return err; 712 } 713 out: 714 return 0; 715 } 716 arch_initcall(cps_pm_init); 717