1 /* 2 * Copyright (C) 2014 Imagination Technologies 3 * Author: Paul Burton <paul.burton@imgtec.com> 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License as published by the 7 * Free Software Foundation; either version 2 of the License, or (at your 8 * option) any later version. 9 */ 10 11 #include <linux/init.h> 12 #include <linux/percpu.h> 13 #include <linux/slab.h> 14 15 #include <asm/asm-offsets.h> 16 #include <asm/cacheflush.h> 17 #include <asm/cacheops.h> 18 #include <asm/idle.h> 19 #include <asm/mips-cm.h> 20 #include <asm/mips-cpc.h> 21 #include <asm/mipsmtregs.h> 22 #include <asm/pm.h> 23 #include <asm/pm-cps.h> 24 #include <asm/smp-cps.h> 25 #include <asm/uasm.h> 26 27 /* 28 * cps_nc_entry_fn - type of a generated non-coherent state entry function 29 * @online: the count of online coupled VPEs 30 * @nc_ready_count: pointer to a non-coherent mapping of the core ready_count 31 * 32 * The code entering & exiting non-coherent states is generated at runtime 33 * using uasm, in order to ensure that the compiler cannot insert a stray 34 * memory access at an unfortunate time and to allow the generation of optimal 35 * core-specific code particularly for cache routines. If coupled_coherence 36 * is non-zero and this is the entry function for the CPS_PM_NC_WAIT state, 37 * returns the number of VPEs that were in the wait state at the point this 38 * VPE left it. Returns garbage if coupled_coherence is zero or this is not 39 * the entry function for CPS_PM_NC_WAIT. 40 */ 41 typedef unsigned (*cps_nc_entry_fn)(unsigned online, u32 *nc_ready_count); 42 43 /* 44 * The entry point of the generated non-coherent idle state entry/exit 45 * functions. Actually per-core rather than per-CPU. 46 */ 47 static DEFINE_PER_CPU_READ_MOSTLY(cps_nc_entry_fn[CPS_PM_STATE_COUNT], 48 nc_asm_enter); 49 50 /* Bitmap indicating which states are supported by the system */ 51 DECLARE_BITMAP(state_support, CPS_PM_STATE_COUNT); 52 53 /* 54 * Indicates the number of coupled VPEs ready to operate in a non-coherent 55 * state. Actually per-core rather than per-CPU. 56 */ 57 static DEFINE_PER_CPU_ALIGNED(u32*, ready_count); 58 static DEFINE_PER_CPU_ALIGNED(void*, ready_count_alloc); 59 60 /* Indicates online CPUs coupled with the current CPU */ 61 static DEFINE_PER_CPU_ALIGNED(cpumask_t, online_coupled); 62 63 /* 64 * Used to synchronize entry to deep idle states. Actually per-core rather 65 * than per-CPU. 66 */ 67 static DEFINE_PER_CPU_ALIGNED(atomic_t, pm_barrier); 68 69 /* Saved CPU state across the CPS_PM_POWER_GATED state */ 70 DEFINE_PER_CPU_ALIGNED(struct mips_static_suspend_state, cps_cpu_state); 71 72 /* A somewhat arbitrary number of labels & relocs for uasm */ 73 static struct uasm_label labels[32] __initdata; 74 static struct uasm_reloc relocs[32] __initdata; 75 76 /* CPU dependant sync types */ 77 static unsigned stype_intervention; 78 static unsigned stype_memory; 79 static unsigned stype_ordering; 80 81 enum mips_reg { 82 zero, at, v0, v1, a0, a1, a2, a3, 83 t0, t1, t2, t3, t4, t5, t6, t7, 84 s0, s1, s2, s3, s4, s5, s6, s7, 85 t8, t9, k0, k1, gp, sp, fp, ra, 86 }; 87 88 bool cps_pm_support_state(enum cps_pm_state state) 89 { 90 return test_bit(state, state_support); 91 } 92 93 static void coupled_barrier(atomic_t *a, unsigned online) 94 { 95 /* 96 * This function is effectively the same as 97 * cpuidle_coupled_parallel_barrier, which can't be used here since 98 * there's no cpuidle device. 99 */ 100 101 if (!coupled_coherence) 102 return; 103 104 smp_mb__before_atomic(); 105 atomic_inc(a); 106 107 while (atomic_read(a) < online) 108 cpu_relax(); 109 110 if (atomic_inc_return(a) == online * 2) { 111 atomic_set(a, 0); 112 return; 113 } 114 115 while (atomic_read(a) > online) 116 cpu_relax(); 117 } 118 119 int cps_pm_enter_state(enum cps_pm_state state) 120 { 121 unsigned cpu = smp_processor_id(); 122 unsigned core = current_cpu_data.core; 123 unsigned online, left; 124 cpumask_t *coupled_mask = this_cpu_ptr(&online_coupled); 125 u32 *core_ready_count, *nc_core_ready_count; 126 void *nc_addr; 127 cps_nc_entry_fn entry; 128 struct core_boot_config *core_cfg; 129 struct vpe_boot_config *vpe_cfg; 130 131 /* Check that there is an entry function for this state */ 132 entry = per_cpu(nc_asm_enter, core)[state]; 133 if (!entry) 134 return -EINVAL; 135 136 /* Calculate which coupled CPUs (VPEs) are online */ 137 #ifdef CONFIG_MIPS_MT 138 if (cpu_online(cpu)) { 139 cpumask_and(coupled_mask, cpu_online_mask, 140 &cpu_sibling_map[cpu]); 141 online = cpumask_weight(coupled_mask); 142 cpumask_clear_cpu(cpu, coupled_mask); 143 } else 144 #endif 145 { 146 cpumask_clear(coupled_mask); 147 online = 1; 148 } 149 150 /* Setup the VPE to run mips_cps_pm_restore when started again */ 151 if (config_enabled(CONFIG_CPU_PM) && state == CPS_PM_POWER_GATED) { 152 /* Power gating relies upon CPS SMP */ 153 if (!mips_cps_smp_in_use()) 154 return -EINVAL; 155 156 core_cfg = &mips_cps_core_bootcfg[core]; 157 vpe_cfg = &core_cfg->vpe_config[cpu_vpe_id(¤t_cpu_data)]; 158 vpe_cfg->pc = (unsigned long)mips_cps_pm_restore; 159 vpe_cfg->gp = (unsigned long)current_thread_info(); 160 vpe_cfg->sp = 0; 161 } 162 163 /* Indicate that this CPU might not be coherent */ 164 cpumask_clear_cpu(cpu, &cpu_coherent_mask); 165 smp_mb__after_atomic(); 166 167 /* Create a non-coherent mapping of the core ready_count */ 168 core_ready_count = per_cpu(ready_count, core); 169 nc_addr = kmap_noncoherent(virt_to_page(core_ready_count), 170 (unsigned long)core_ready_count); 171 nc_addr += ((unsigned long)core_ready_count & ~PAGE_MASK); 172 nc_core_ready_count = nc_addr; 173 174 /* Ensure ready_count is zero-initialised before the assembly runs */ 175 ACCESS_ONCE(*nc_core_ready_count) = 0; 176 coupled_barrier(&per_cpu(pm_barrier, core), online); 177 178 /* Run the generated entry code */ 179 left = entry(online, nc_core_ready_count); 180 181 /* Remove the non-coherent mapping of ready_count */ 182 kunmap_noncoherent(); 183 184 /* Indicate that this CPU is definitely coherent */ 185 cpumask_set_cpu(cpu, &cpu_coherent_mask); 186 187 /* 188 * If this VPE is the first to leave the non-coherent wait state then 189 * it needs to wake up any coupled VPEs still running their wait 190 * instruction so that they return to cpuidle, which can then complete 191 * coordination between the coupled VPEs & provide the governor with 192 * a chance to reflect on the length of time the VPEs were in the 193 * idle state. 194 */ 195 if (coupled_coherence && (state == CPS_PM_NC_WAIT) && (left == online)) 196 arch_send_call_function_ipi_mask(coupled_mask); 197 198 return 0; 199 } 200 201 static void __init cps_gen_cache_routine(u32 **pp, struct uasm_label **pl, 202 struct uasm_reloc **pr, 203 const struct cache_desc *cache, 204 unsigned op, int lbl) 205 { 206 unsigned cache_size = cache->ways << cache->waybit; 207 unsigned i; 208 const unsigned unroll_lines = 32; 209 210 /* If the cache isn't present this function has it easy */ 211 if (cache->flags & MIPS_CACHE_NOT_PRESENT) 212 return; 213 214 /* Load base address */ 215 UASM_i_LA(pp, t0, (long)CKSEG0); 216 217 /* Calculate end address */ 218 if (cache_size < 0x8000) 219 uasm_i_addiu(pp, t1, t0, cache_size); 220 else 221 UASM_i_LA(pp, t1, (long)(CKSEG0 + cache_size)); 222 223 /* Start of cache op loop */ 224 uasm_build_label(pl, *pp, lbl); 225 226 /* Generate the cache ops */ 227 for (i = 0; i < unroll_lines; i++) 228 uasm_i_cache(pp, op, i * cache->linesz, t0); 229 230 /* Update the base address */ 231 uasm_i_addiu(pp, t0, t0, unroll_lines * cache->linesz); 232 233 /* Loop if we haven't reached the end address yet */ 234 uasm_il_bne(pp, pr, t0, t1, lbl); 235 uasm_i_nop(pp); 236 } 237 238 static int __init cps_gen_flush_fsb(u32 **pp, struct uasm_label **pl, 239 struct uasm_reloc **pr, 240 const struct cpuinfo_mips *cpu_info, 241 int lbl) 242 { 243 unsigned i, fsb_size = 8; 244 unsigned num_loads = (fsb_size * 3) / 2; 245 unsigned line_stride = 2; 246 unsigned line_size = cpu_info->dcache.linesz; 247 unsigned perf_counter, perf_event; 248 unsigned revision = cpu_info->processor_id & PRID_REV_MASK; 249 250 /* 251 * Determine whether this CPU requires an FSB flush, and if so which 252 * performance counter/event reflect stalls due to a full FSB. 253 */ 254 switch (__get_cpu_type(cpu_info->cputype)) { 255 case CPU_INTERAPTIV: 256 perf_counter = 1; 257 perf_event = 51; 258 break; 259 260 case CPU_PROAPTIV: 261 /* Newer proAptiv cores don't require this workaround */ 262 if (revision >= PRID_REV_ENCODE_332(1, 1, 0)) 263 return 0; 264 265 /* On older ones it's unavailable */ 266 return -1; 267 268 /* CPUs which do not require the workaround */ 269 case CPU_P5600: 270 case CPU_I6400: 271 return 0; 272 273 default: 274 WARN_ONCE(1, "pm-cps: FSB flush unsupported for this CPU\n"); 275 return -1; 276 } 277 278 /* 279 * Ensure that the fill/store buffer (FSB) is not holding the results 280 * of a prefetch, since if it is then the CPC sequencer may become 281 * stuck in the D3 (ClrBus) state whilst entering a low power state. 282 */ 283 284 /* Preserve perf counter setup */ 285 uasm_i_mfc0(pp, t2, 25, (perf_counter * 2) + 0); /* PerfCtlN */ 286 uasm_i_mfc0(pp, t3, 25, (perf_counter * 2) + 1); /* PerfCntN */ 287 288 /* Setup perf counter to count FSB full pipeline stalls */ 289 uasm_i_addiu(pp, t0, zero, (perf_event << 5) | 0xf); 290 uasm_i_mtc0(pp, t0, 25, (perf_counter * 2) + 0); /* PerfCtlN */ 291 uasm_i_ehb(pp); 292 uasm_i_mtc0(pp, zero, 25, (perf_counter * 2) + 1); /* PerfCntN */ 293 uasm_i_ehb(pp); 294 295 /* Base address for loads */ 296 UASM_i_LA(pp, t0, (long)CKSEG0); 297 298 /* Start of clear loop */ 299 uasm_build_label(pl, *pp, lbl); 300 301 /* Perform some loads to fill the FSB */ 302 for (i = 0; i < num_loads; i++) 303 uasm_i_lw(pp, zero, i * line_size * line_stride, t0); 304 305 /* 306 * Invalidate the new D-cache entries so that the cache will need 307 * refilling (via the FSB) if the loop is executed again. 308 */ 309 for (i = 0; i < num_loads; i++) { 310 uasm_i_cache(pp, Hit_Invalidate_D, 311 i * line_size * line_stride, t0); 312 uasm_i_cache(pp, Hit_Writeback_Inv_SD, 313 i * line_size * line_stride, t0); 314 } 315 316 /* Completion barrier */ 317 uasm_i_sync(pp, stype_memory); 318 uasm_i_ehb(pp); 319 320 /* Check whether the pipeline stalled due to the FSB being full */ 321 uasm_i_mfc0(pp, t1, 25, (perf_counter * 2) + 1); /* PerfCntN */ 322 323 /* Loop if it didn't */ 324 uasm_il_beqz(pp, pr, t1, lbl); 325 uasm_i_nop(pp); 326 327 /* Restore perf counter 1. The count may well now be wrong... */ 328 uasm_i_mtc0(pp, t2, 25, (perf_counter * 2) + 0); /* PerfCtlN */ 329 uasm_i_ehb(pp); 330 uasm_i_mtc0(pp, t3, 25, (perf_counter * 2) + 1); /* PerfCntN */ 331 uasm_i_ehb(pp); 332 333 return 0; 334 } 335 336 static void __init cps_gen_set_top_bit(u32 **pp, struct uasm_label **pl, 337 struct uasm_reloc **pr, 338 unsigned r_addr, int lbl) 339 { 340 uasm_i_lui(pp, t0, uasm_rel_hi(0x80000000)); 341 uasm_build_label(pl, *pp, lbl); 342 uasm_i_ll(pp, t1, 0, r_addr); 343 uasm_i_or(pp, t1, t1, t0); 344 uasm_i_sc(pp, t1, 0, r_addr); 345 uasm_il_beqz(pp, pr, t1, lbl); 346 uasm_i_nop(pp); 347 } 348 349 static void * __init cps_gen_entry_code(unsigned cpu, enum cps_pm_state state) 350 { 351 struct uasm_label *l = labels; 352 struct uasm_reloc *r = relocs; 353 u32 *buf, *p; 354 const unsigned r_online = a0; 355 const unsigned r_nc_count = a1; 356 const unsigned r_pcohctl = t7; 357 const unsigned max_instrs = 256; 358 unsigned cpc_cmd; 359 int err; 360 enum { 361 lbl_incready = 1, 362 lbl_poll_cont, 363 lbl_secondary_hang, 364 lbl_disable_coherence, 365 lbl_flush_fsb, 366 lbl_invicache, 367 lbl_flushdcache, 368 lbl_hang, 369 lbl_set_cont, 370 lbl_secondary_cont, 371 lbl_decready, 372 }; 373 374 /* Allocate a buffer to hold the generated code */ 375 p = buf = kcalloc(max_instrs, sizeof(u32), GFP_KERNEL); 376 if (!buf) 377 return NULL; 378 379 /* Clear labels & relocs ready for (re)use */ 380 memset(labels, 0, sizeof(labels)); 381 memset(relocs, 0, sizeof(relocs)); 382 383 if (config_enabled(CONFIG_CPU_PM) && state == CPS_PM_POWER_GATED) { 384 /* Power gating relies upon CPS SMP */ 385 if (!mips_cps_smp_in_use()) 386 goto out_err; 387 388 /* 389 * Save CPU state. Note the non-standard calling convention 390 * with the return address placed in v0 to avoid clobbering 391 * the ra register before it is saved. 392 */ 393 UASM_i_LA(&p, t0, (long)mips_cps_pm_save); 394 uasm_i_jalr(&p, v0, t0); 395 uasm_i_nop(&p); 396 } 397 398 /* 399 * Load addresses of required CM & CPC registers. This is done early 400 * because they're needed in both the enable & disable coherence steps 401 * but in the coupled case the enable step will only run on one VPE. 402 */ 403 UASM_i_LA(&p, r_pcohctl, (long)addr_gcr_cl_coherence()); 404 405 if (coupled_coherence) { 406 /* Increment ready_count */ 407 uasm_i_sync(&p, stype_ordering); 408 uasm_build_label(&l, p, lbl_incready); 409 uasm_i_ll(&p, t1, 0, r_nc_count); 410 uasm_i_addiu(&p, t2, t1, 1); 411 uasm_i_sc(&p, t2, 0, r_nc_count); 412 uasm_il_beqz(&p, &r, t2, lbl_incready); 413 uasm_i_addiu(&p, t1, t1, 1); 414 415 /* Ordering barrier */ 416 uasm_i_sync(&p, stype_ordering); 417 418 /* 419 * If this is the last VPE to become ready for non-coherence 420 * then it should branch below. 421 */ 422 uasm_il_beq(&p, &r, t1, r_online, lbl_disable_coherence); 423 uasm_i_nop(&p); 424 425 if (state < CPS_PM_POWER_GATED) { 426 /* 427 * Otherwise this is not the last VPE to become ready 428 * for non-coherence. It needs to wait until coherence 429 * has been disabled before proceeding, which it will do 430 * by polling for the top bit of ready_count being set. 431 */ 432 uasm_i_addiu(&p, t1, zero, -1); 433 uasm_build_label(&l, p, lbl_poll_cont); 434 uasm_i_lw(&p, t0, 0, r_nc_count); 435 uasm_il_bltz(&p, &r, t0, lbl_secondary_cont); 436 uasm_i_ehb(&p); 437 uasm_i_yield(&p, zero, t1); 438 uasm_il_b(&p, &r, lbl_poll_cont); 439 uasm_i_nop(&p); 440 } else { 441 /* 442 * The core will lose power & this VPE will not continue 443 * so it can simply halt here. 444 */ 445 uasm_i_addiu(&p, t0, zero, TCHALT_H); 446 uasm_i_mtc0(&p, t0, 2, 4); 447 uasm_build_label(&l, p, lbl_secondary_hang); 448 uasm_il_b(&p, &r, lbl_secondary_hang); 449 uasm_i_nop(&p); 450 } 451 } 452 453 /* 454 * This is the point of no return - this VPE will now proceed to 455 * disable coherence. At this point we *must* be sure that no other 456 * VPE within the core will interfere with the L1 dcache. 457 */ 458 uasm_build_label(&l, p, lbl_disable_coherence); 459 460 /* Invalidate the L1 icache */ 461 cps_gen_cache_routine(&p, &l, &r, &cpu_data[cpu].icache, 462 Index_Invalidate_I, lbl_invicache); 463 464 /* Writeback & invalidate the L1 dcache */ 465 cps_gen_cache_routine(&p, &l, &r, &cpu_data[cpu].dcache, 466 Index_Writeback_Inv_D, lbl_flushdcache); 467 468 /* Completion barrier */ 469 uasm_i_sync(&p, stype_memory); 470 uasm_i_ehb(&p); 471 472 /* 473 * Disable all but self interventions. The load from COHCTL is defined 474 * by the interAptiv & proAptiv SUMs as ensuring that the operation 475 * resulting from the preceeding store is complete. 476 */ 477 uasm_i_addiu(&p, t0, zero, 1 << cpu_data[cpu].core); 478 uasm_i_sw(&p, t0, 0, r_pcohctl); 479 uasm_i_lw(&p, t0, 0, r_pcohctl); 480 481 /* Sync to ensure previous interventions are complete */ 482 uasm_i_sync(&p, stype_intervention); 483 uasm_i_ehb(&p); 484 485 /* Disable coherence */ 486 uasm_i_sw(&p, zero, 0, r_pcohctl); 487 uasm_i_lw(&p, t0, 0, r_pcohctl); 488 489 if (state >= CPS_PM_CLOCK_GATED) { 490 err = cps_gen_flush_fsb(&p, &l, &r, &cpu_data[cpu], 491 lbl_flush_fsb); 492 if (err) 493 goto out_err; 494 495 /* Determine the CPC command to issue */ 496 switch (state) { 497 case CPS_PM_CLOCK_GATED: 498 cpc_cmd = CPC_Cx_CMD_CLOCKOFF; 499 break; 500 case CPS_PM_POWER_GATED: 501 cpc_cmd = CPC_Cx_CMD_PWRDOWN; 502 break; 503 default: 504 BUG(); 505 goto out_err; 506 } 507 508 /* Issue the CPC command */ 509 UASM_i_LA(&p, t0, (long)addr_cpc_cl_cmd()); 510 uasm_i_addiu(&p, t1, zero, cpc_cmd); 511 uasm_i_sw(&p, t1, 0, t0); 512 513 if (state == CPS_PM_POWER_GATED) { 514 /* If anything goes wrong just hang */ 515 uasm_build_label(&l, p, lbl_hang); 516 uasm_il_b(&p, &r, lbl_hang); 517 uasm_i_nop(&p); 518 519 /* 520 * There's no point generating more code, the core is 521 * powered down & if powered back up will run from the 522 * reset vector not from here. 523 */ 524 goto gen_done; 525 } 526 527 /* Completion barrier */ 528 uasm_i_sync(&p, stype_memory); 529 uasm_i_ehb(&p); 530 } 531 532 if (state == CPS_PM_NC_WAIT) { 533 /* 534 * At this point it is safe for all VPEs to proceed with 535 * execution. This VPE will set the top bit of ready_count 536 * to indicate to the other VPEs that they may continue. 537 */ 538 if (coupled_coherence) 539 cps_gen_set_top_bit(&p, &l, &r, r_nc_count, 540 lbl_set_cont); 541 542 /* 543 * VPEs which did not disable coherence will continue 544 * executing, after coherence has been disabled, from this 545 * point. 546 */ 547 uasm_build_label(&l, p, lbl_secondary_cont); 548 549 /* Now perform our wait */ 550 uasm_i_wait(&p, 0); 551 } 552 553 /* 554 * Re-enable coherence. Note that for CPS_PM_NC_WAIT all coupled VPEs 555 * will run this. The first will actually re-enable coherence & the 556 * rest will just be performing a rather unusual nop. 557 */ 558 uasm_i_addiu(&p, t0, zero, CM_GCR_Cx_COHERENCE_COHDOMAINEN_MSK); 559 uasm_i_sw(&p, t0, 0, r_pcohctl); 560 uasm_i_lw(&p, t0, 0, r_pcohctl); 561 562 /* Completion barrier */ 563 uasm_i_sync(&p, stype_memory); 564 uasm_i_ehb(&p); 565 566 if (coupled_coherence && (state == CPS_PM_NC_WAIT)) { 567 /* Decrement ready_count */ 568 uasm_build_label(&l, p, lbl_decready); 569 uasm_i_sync(&p, stype_ordering); 570 uasm_i_ll(&p, t1, 0, r_nc_count); 571 uasm_i_addiu(&p, t2, t1, -1); 572 uasm_i_sc(&p, t2, 0, r_nc_count); 573 uasm_il_beqz(&p, &r, t2, lbl_decready); 574 uasm_i_andi(&p, v0, t1, (1 << fls(smp_num_siblings)) - 1); 575 576 /* Ordering barrier */ 577 uasm_i_sync(&p, stype_ordering); 578 } 579 580 if (coupled_coherence && (state == CPS_PM_CLOCK_GATED)) { 581 /* 582 * At this point it is safe for all VPEs to proceed with 583 * execution. This VPE will set the top bit of ready_count 584 * to indicate to the other VPEs that they may continue. 585 */ 586 cps_gen_set_top_bit(&p, &l, &r, r_nc_count, lbl_set_cont); 587 588 /* 589 * This core will be reliant upon another core sending a 590 * power-up command to the CPC in order to resume operation. 591 * Thus an arbitrary VPE can't trigger the core leaving the 592 * idle state and the one that disables coherence might as well 593 * be the one to re-enable it. The rest will continue from here 594 * after that has been done. 595 */ 596 uasm_build_label(&l, p, lbl_secondary_cont); 597 598 /* Ordering barrier */ 599 uasm_i_sync(&p, stype_ordering); 600 } 601 602 /* The core is coherent, time to return to C code */ 603 uasm_i_jr(&p, ra); 604 uasm_i_nop(&p); 605 606 gen_done: 607 /* Ensure the code didn't exceed the resources allocated for it */ 608 BUG_ON((p - buf) > max_instrs); 609 BUG_ON((l - labels) > ARRAY_SIZE(labels)); 610 BUG_ON((r - relocs) > ARRAY_SIZE(relocs)); 611 612 /* Patch branch offsets */ 613 uasm_resolve_relocs(relocs, labels); 614 615 /* Flush the icache */ 616 local_flush_icache_range((unsigned long)buf, (unsigned long)p); 617 618 return buf; 619 out_err: 620 kfree(buf); 621 return NULL; 622 } 623 624 static int __init cps_gen_core_entries(unsigned cpu) 625 { 626 enum cps_pm_state state; 627 unsigned core = cpu_data[cpu].core; 628 unsigned dlinesz = cpu_data[cpu].dcache.linesz; 629 void *entry_fn, *core_rc; 630 631 for (state = CPS_PM_NC_WAIT; state < CPS_PM_STATE_COUNT; state++) { 632 if (per_cpu(nc_asm_enter, core)[state]) 633 continue; 634 if (!test_bit(state, state_support)) 635 continue; 636 637 entry_fn = cps_gen_entry_code(cpu, state); 638 if (!entry_fn) { 639 pr_err("Failed to generate core %u state %u entry\n", 640 core, state); 641 clear_bit(state, state_support); 642 } 643 644 per_cpu(nc_asm_enter, core)[state] = entry_fn; 645 } 646 647 if (!per_cpu(ready_count, core)) { 648 core_rc = kmalloc(dlinesz * 2, GFP_KERNEL); 649 if (!core_rc) { 650 pr_err("Failed allocate core %u ready_count\n", core); 651 return -ENOMEM; 652 } 653 per_cpu(ready_count_alloc, core) = core_rc; 654 655 /* Ensure ready_count is aligned to a cacheline boundary */ 656 core_rc += dlinesz - 1; 657 core_rc = (void *)((unsigned long)core_rc & ~(dlinesz - 1)); 658 per_cpu(ready_count, core) = core_rc; 659 } 660 661 return 0; 662 } 663 664 static int __init cps_pm_init(void) 665 { 666 unsigned cpu; 667 int err; 668 669 /* Detect appropriate sync types for the system */ 670 switch (current_cpu_data.cputype) { 671 case CPU_INTERAPTIV: 672 case CPU_PROAPTIV: 673 case CPU_M5150: 674 case CPU_P5600: 675 case CPU_I6400: 676 stype_intervention = 0x2; 677 stype_memory = 0x3; 678 stype_ordering = 0x10; 679 break; 680 681 default: 682 pr_warn("Power management is using heavyweight sync 0\n"); 683 } 684 685 /* A CM is required for all non-coherent states */ 686 if (!mips_cm_present()) { 687 pr_warn("pm-cps: no CM, non-coherent states unavailable\n"); 688 goto out; 689 } 690 691 /* 692 * If interrupts were enabled whilst running a wait instruction on a 693 * non-coherent core then the VPE may end up processing interrupts 694 * whilst non-coherent. That would be bad. 695 */ 696 if (cpu_wait == r4k_wait_irqoff) 697 set_bit(CPS_PM_NC_WAIT, state_support); 698 else 699 pr_warn("pm-cps: non-coherent wait unavailable\n"); 700 701 /* Detect whether a CPC is present */ 702 if (mips_cpc_present()) { 703 /* Detect whether clock gating is implemented */ 704 if (read_cpc_cl_stat_conf() & CPC_Cx_STAT_CONF_CLKGAT_IMPL_MSK) 705 set_bit(CPS_PM_CLOCK_GATED, state_support); 706 else 707 pr_warn("pm-cps: CPC does not support clock gating\n"); 708 709 /* Power gating is available with CPS SMP & any CPC */ 710 if (mips_cps_smp_in_use()) 711 set_bit(CPS_PM_POWER_GATED, state_support); 712 else 713 pr_warn("pm-cps: CPS SMP not in use, power gating unavailable\n"); 714 } else { 715 pr_warn("pm-cps: no CPC, clock & power gating unavailable\n"); 716 } 717 718 for_each_present_cpu(cpu) { 719 err = cps_gen_core_entries(cpu); 720 if (err) 721 return err; 722 } 723 out: 724 return 0; 725 } 726 arch_initcall(cps_pm_init); 727