xref: /linux/arch/mips/kernel/pm-cps.c (revision 9cfc5c90ad38c8fc11bfd39de42a107da00871ba)
1 /*
2  * Copyright (C) 2014 Imagination Technologies
3  * Author: Paul Burton <paul.burton@imgtec.com>
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License as published by the
7  * Free Software Foundation;  either version 2 of the  License, or (at your
8  * option) any later version.
9  */
10 
11 #include <linux/init.h>
12 #include <linux/percpu.h>
13 #include <linux/slab.h>
14 
15 #include <asm/asm-offsets.h>
16 #include <asm/cacheflush.h>
17 #include <asm/cacheops.h>
18 #include <asm/idle.h>
19 #include <asm/mips-cm.h>
20 #include <asm/mips-cpc.h>
21 #include <asm/mipsmtregs.h>
22 #include <asm/pm.h>
23 #include <asm/pm-cps.h>
24 #include <asm/smp-cps.h>
25 #include <asm/uasm.h>
26 
27 /*
28  * cps_nc_entry_fn - type of a generated non-coherent state entry function
29  * @online: the count of online coupled VPEs
30  * @nc_ready_count: pointer to a non-coherent mapping of the core ready_count
31  *
32  * The code entering & exiting non-coherent states is generated at runtime
33  * using uasm, in order to ensure that the compiler cannot insert a stray
34  * memory access at an unfortunate time and to allow the generation of optimal
35  * core-specific code particularly for cache routines. If coupled_coherence
36  * is non-zero and this is the entry function for the CPS_PM_NC_WAIT state,
37  * returns the number of VPEs that were in the wait state at the point this
38  * VPE left it. Returns garbage if coupled_coherence is zero or this is not
39  * the entry function for CPS_PM_NC_WAIT.
40  */
41 typedef unsigned (*cps_nc_entry_fn)(unsigned online, u32 *nc_ready_count);
42 
43 /*
44  * The entry point of the generated non-coherent idle state entry/exit
45  * functions. Actually per-core rather than per-CPU.
46  */
47 static DEFINE_PER_CPU_READ_MOSTLY(cps_nc_entry_fn[CPS_PM_STATE_COUNT],
48 				  nc_asm_enter);
49 
50 /* Bitmap indicating which states are supported by the system */
51 DECLARE_BITMAP(state_support, CPS_PM_STATE_COUNT);
52 
53 /*
54  * Indicates the number of coupled VPEs ready to operate in a non-coherent
55  * state. Actually per-core rather than per-CPU.
56  */
57 static DEFINE_PER_CPU_ALIGNED(u32*, ready_count);
58 static DEFINE_PER_CPU_ALIGNED(void*, ready_count_alloc);
59 
60 /* Indicates online CPUs coupled with the current CPU */
61 static DEFINE_PER_CPU_ALIGNED(cpumask_t, online_coupled);
62 
63 /*
64  * Used to synchronize entry to deep idle states. Actually per-core rather
65  * than per-CPU.
66  */
67 static DEFINE_PER_CPU_ALIGNED(atomic_t, pm_barrier);
68 
69 /* Saved CPU state across the CPS_PM_POWER_GATED state */
70 DEFINE_PER_CPU_ALIGNED(struct mips_static_suspend_state, cps_cpu_state);
71 
72 /* A somewhat arbitrary number of labels & relocs for uasm */
73 static struct uasm_label labels[32] __initdata;
74 static struct uasm_reloc relocs[32] __initdata;
75 
76 /* CPU dependant sync types */
77 static unsigned stype_intervention;
78 static unsigned stype_memory;
79 static unsigned stype_ordering;
80 
81 enum mips_reg {
82 	zero, at, v0, v1, a0, a1, a2, a3,
83 	t0, t1, t2, t3, t4, t5, t6, t7,
84 	s0, s1, s2, s3, s4, s5, s6, s7,
85 	t8, t9, k0, k1, gp, sp, fp, ra,
86 };
87 
88 bool cps_pm_support_state(enum cps_pm_state state)
89 {
90 	return test_bit(state, state_support);
91 }
92 
93 static void coupled_barrier(atomic_t *a, unsigned online)
94 {
95 	/*
96 	 * This function is effectively the same as
97 	 * cpuidle_coupled_parallel_barrier, which can't be used here since
98 	 * there's no cpuidle device.
99 	 */
100 
101 	if (!coupled_coherence)
102 		return;
103 
104 	smp_mb__before_atomic();
105 	atomic_inc(a);
106 
107 	while (atomic_read(a) < online)
108 		cpu_relax();
109 
110 	if (atomic_inc_return(a) == online * 2) {
111 		atomic_set(a, 0);
112 		return;
113 	}
114 
115 	while (atomic_read(a) > online)
116 		cpu_relax();
117 }
118 
119 int cps_pm_enter_state(enum cps_pm_state state)
120 {
121 	unsigned cpu = smp_processor_id();
122 	unsigned core = current_cpu_data.core;
123 	unsigned online, left;
124 	cpumask_t *coupled_mask = this_cpu_ptr(&online_coupled);
125 	u32 *core_ready_count, *nc_core_ready_count;
126 	void *nc_addr;
127 	cps_nc_entry_fn entry;
128 	struct core_boot_config *core_cfg;
129 	struct vpe_boot_config *vpe_cfg;
130 
131 	/* Check that there is an entry function for this state */
132 	entry = per_cpu(nc_asm_enter, core)[state];
133 	if (!entry)
134 		return -EINVAL;
135 
136 	/* Calculate which coupled CPUs (VPEs) are online */
137 #ifdef CONFIG_MIPS_MT
138 	if (cpu_online(cpu)) {
139 		cpumask_and(coupled_mask, cpu_online_mask,
140 			    &cpu_sibling_map[cpu]);
141 		online = cpumask_weight(coupled_mask);
142 		cpumask_clear_cpu(cpu, coupled_mask);
143 	} else
144 #endif
145 	{
146 		cpumask_clear(coupled_mask);
147 		online = 1;
148 	}
149 
150 	/* Setup the VPE to run mips_cps_pm_restore when started again */
151 	if (config_enabled(CONFIG_CPU_PM) && state == CPS_PM_POWER_GATED) {
152 		/* Power gating relies upon CPS SMP */
153 		if (!mips_cps_smp_in_use())
154 			return -EINVAL;
155 
156 		core_cfg = &mips_cps_core_bootcfg[core];
157 		vpe_cfg = &core_cfg->vpe_config[cpu_vpe_id(&current_cpu_data)];
158 		vpe_cfg->pc = (unsigned long)mips_cps_pm_restore;
159 		vpe_cfg->gp = (unsigned long)current_thread_info();
160 		vpe_cfg->sp = 0;
161 	}
162 
163 	/* Indicate that this CPU might not be coherent */
164 	cpumask_clear_cpu(cpu, &cpu_coherent_mask);
165 	smp_mb__after_atomic();
166 
167 	/* Create a non-coherent mapping of the core ready_count */
168 	core_ready_count = per_cpu(ready_count, core);
169 	nc_addr = kmap_noncoherent(virt_to_page(core_ready_count),
170 				   (unsigned long)core_ready_count);
171 	nc_addr += ((unsigned long)core_ready_count & ~PAGE_MASK);
172 	nc_core_ready_count = nc_addr;
173 
174 	/* Ensure ready_count is zero-initialised before the assembly runs */
175 	ACCESS_ONCE(*nc_core_ready_count) = 0;
176 	coupled_barrier(&per_cpu(pm_barrier, core), online);
177 
178 	/* Run the generated entry code */
179 	left = entry(online, nc_core_ready_count);
180 
181 	/* Remove the non-coherent mapping of ready_count */
182 	kunmap_noncoherent();
183 
184 	/* Indicate that this CPU is definitely coherent */
185 	cpumask_set_cpu(cpu, &cpu_coherent_mask);
186 
187 	/*
188 	 * If this VPE is the first to leave the non-coherent wait state then
189 	 * it needs to wake up any coupled VPEs still running their wait
190 	 * instruction so that they return to cpuidle, which can then complete
191 	 * coordination between the coupled VPEs & provide the governor with
192 	 * a chance to reflect on the length of time the VPEs were in the
193 	 * idle state.
194 	 */
195 	if (coupled_coherence && (state == CPS_PM_NC_WAIT) && (left == online))
196 		arch_send_call_function_ipi_mask(coupled_mask);
197 
198 	return 0;
199 }
200 
201 static void __init cps_gen_cache_routine(u32 **pp, struct uasm_label **pl,
202 					 struct uasm_reloc **pr,
203 					 const struct cache_desc *cache,
204 					 unsigned op, int lbl)
205 {
206 	unsigned cache_size = cache->ways << cache->waybit;
207 	unsigned i;
208 	const unsigned unroll_lines = 32;
209 
210 	/* If the cache isn't present this function has it easy */
211 	if (cache->flags & MIPS_CACHE_NOT_PRESENT)
212 		return;
213 
214 	/* Load base address */
215 	UASM_i_LA(pp, t0, (long)CKSEG0);
216 
217 	/* Calculate end address */
218 	if (cache_size < 0x8000)
219 		uasm_i_addiu(pp, t1, t0, cache_size);
220 	else
221 		UASM_i_LA(pp, t1, (long)(CKSEG0 + cache_size));
222 
223 	/* Start of cache op loop */
224 	uasm_build_label(pl, *pp, lbl);
225 
226 	/* Generate the cache ops */
227 	for (i = 0; i < unroll_lines; i++)
228 		uasm_i_cache(pp, op, i * cache->linesz, t0);
229 
230 	/* Update the base address */
231 	uasm_i_addiu(pp, t0, t0, unroll_lines * cache->linesz);
232 
233 	/* Loop if we haven't reached the end address yet */
234 	uasm_il_bne(pp, pr, t0, t1, lbl);
235 	uasm_i_nop(pp);
236 }
237 
238 static int __init cps_gen_flush_fsb(u32 **pp, struct uasm_label **pl,
239 				    struct uasm_reloc **pr,
240 				    const struct cpuinfo_mips *cpu_info,
241 				    int lbl)
242 {
243 	unsigned i, fsb_size = 8;
244 	unsigned num_loads = (fsb_size * 3) / 2;
245 	unsigned line_stride = 2;
246 	unsigned line_size = cpu_info->dcache.linesz;
247 	unsigned perf_counter, perf_event;
248 	unsigned revision = cpu_info->processor_id & PRID_REV_MASK;
249 
250 	/*
251 	 * Determine whether this CPU requires an FSB flush, and if so which
252 	 * performance counter/event reflect stalls due to a full FSB.
253 	 */
254 	switch (__get_cpu_type(cpu_info->cputype)) {
255 	case CPU_INTERAPTIV:
256 		perf_counter = 1;
257 		perf_event = 51;
258 		break;
259 
260 	case CPU_PROAPTIV:
261 		/* Newer proAptiv cores don't require this workaround */
262 		if (revision >= PRID_REV_ENCODE_332(1, 1, 0))
263 			return 0;
264 
265 		/* On older ones it's unavailable */
266 		return -1;
267 
268 	/* CPUs which do not require the workaround */
269 	case CPU_P5600:
270 	case CPU_I6400:
271 		return 0;
272 
273 	default:
274 		WARN_ONCE(1, "pm-cps: FSB flush unsupported for this CPU\n");
275 		return -1;
276 	}
277 
278 	/*
279 	 * Ensure that the fill/store buffer (FSB) is not holding the results
280 	 * of a prefetch, since if it is then the CPC sequencer may become
281 	 * stuck in the D3 (ClrBus) state whilst entering a low power state.
282 	 */
283 
284 	/* Preserve perf counter setup */
285 	uasm_i_mfc0(pp, t2, 25, (perf_counter * 2) + 0); /* PerfCtlN */
286 	uasm_i_mfc0(pp, t3, 25, (perf_counter * 2) + 1); /* PerfCntN */
287 
288 	/* Setup perf counter to count FSB full pipeline stalls */
289 	uasm_i_addiu(pp, t0, zero, (perf_event << 5) | 0xf);
290 	uasm_i_mtc0(pp, t0, 25, (perf_counter * 2) + 0); /* PerfCtlN */
291 	uasm_i_ehb(pp);
292 	uasm_i_mtc0(pp, zero, 25, (perf_counter * 2) + 1); /* PerfCntN */
293 	uasm_i_ehb(pp);
294 
295 	/* Base address for loads */
296 	UASM_i_LA(pp, t0, (long)CKSEG0);
297 
298 	/* Start of clear loop */
299 	uasm_build_label(pl, *pp, lbl);
300 
301 	/* Perform some loads to fill the FSB */
302 	for (i = 0; i < num_loads; i++)
303 		uasm_i_lw(pp, zero, i * line_size * line_stride, t0);
304 
305 	/*
306 	 * Invalidate the new D-cache entries so that the cache will need
307 	 * refilling (via the FSB) if the loop is executed again.
308 	 */
309 	for (i = 0; i < num_loads; i++) {
310 		uasm_i_cache(pp, Hit_Invalidate_D,
311 			     i * line_size * line_stride, t0);
312 		uasm_i_cache(pp, Hit_Writeback_Inv_SD,
313 			     i * line_size * line_stride, t0);
314 	}
315 
316 	/* Completion barrier */
317 	uasm_i_sync(pp, stype_memory);
318 	uasm_i_ehb(pp);
319 
320 	/* Check whether the pipeline stalled due to the FSB being full */
321 	uasm_i_mfc0(pp, t1, 25, (perf_counter * 2) + 1); /* PerfCntN */
322 
323 	/* Loop if it didn't */
324 	uasm_il_beqz(pp, pr, t1, lbl);
325 	uasm_i_nop(pp);
326 
327 	/* Restore perf counter 1. The count may well now be wrong... */
328 	uasm_i_mtc0(pp, t2, 25, (perf_counter * 2) + 0); /* PerfCtlN */
329 	uasm_i_ehb(pp);
330 	uasm_i_mtc0(pp, t3, 25, (perf_counter * 2) + 1); /* PerfCntN */
331 	uasm_i_ehb(pp);
332 
333 	return 0;
334 }
335 
336 static void __init cps_gen_set_top_bit(u32 **pp, struct uasm_label **pl,
337 				       struct uasm_reloc **pr,
338 				       unsigned r_addr, int lbl)
339 {
340 	uasm_i_lui(pp, t0, uasm_rel_hi(0x80000000));
341 	uasm_build_label(pl, *pp, lbl);
342 	uasm_i_ll(pp, t1, 0, r_addr);
343 	uasm_i_or(pp, t1, t1, t0);
344 	uasm_i_sc(pp, t1, 0, r_addr);
345 	uasm_il_beqz(pp, pr, t1, lbl);
346 	uasm_i_nop(pp);
347 }
348 
349 static void * __init cps_gen_entry_code(unsigned cpu, enum cps_pm_state state)
350 {
351 	struct uasm_label *l = labels;
352 	struct uasm_reloc *r = relocs;
353 	u32 *buf, *p;
354 	const unsigned r_online = a0;
355 	const unsigned r_nc_count = a1;
356 	const unsigned r_pcohctl = t7;
357 	const unsigned max_instrs = 256;
358 	unsigned cpc_cmd;
359 	int err;
360 	enum {
361 		lbl_incready = 1,
362 		lbl_poll_cont,
363 		lbl_secondary_hang,
364 		lbl_disable_coherence,
365 		lbl_flush_fsb,
366 		lbl_invicache,
367 		lbl_flushdcache,
368 		lbl_hang,
369 		lbl_set_cont,
370 		lbl_secondary_cont,
371 		lbl_decready,
372 	};
373 
374 	/* Allocate a buffer to hold the generated code */
375 	p = buf = kcalloc(max_instrs, sizeof(u32), GFP_KERNEL);
376 	if (!buf)
377 		return NULL;
378 
379 	/* Clear labels & relocs ready for (re)use */
380 	memset(labels, 0, sizeof(labels));
381 	memset(relocs, 0, sizeof(relocs));
382 
383 	if (config_enabled(CONFIG_CPU_PM) && state == CPS_PM_POWER_GATED) {
384 		/* Power gating relies upon CPS SMP */
385 		if (!mips_cps_smp_in_use())
386 			goto out_err;
387 
388 		/*
389 		 * Save CPU state. Note the non-standard calling convention
390 		 * with the return address placed in v0 to avoid clobbering
391 		 * the ra register before it is saved.
392 		 */
393 		UASM_i_LA(&p, t0, (long)mips_cps_pm_save);
394 		uasm_i_jalr(&p, v0, t0);
395 		uasm_i_nop(&p);
396 	}
397 
398 	/*
399 	 * Load addresses of required CM & CPC registers. This is done early
400 	 * because they're needed in both the enable & disable coherence steps
401 	 * but in the coupled case the enable step will only run on one VPE.
402 	 */
403 	UASM_i_LA(&p, r_pcohctl, (long)addr_gcr_cl_coherence());
404 
405 	if (coupled_coherence) {
406 		/* Increment ready_count */
407 		uasm_i_sync(&p, stype_ordering);
408 		uasm_build_label(&l, p, lbl_incready);
409 		uasm_i_ll(&p, t1, 0, r_nc_count);
410 		uasm_i_addiu(&p, t2, t1, 1);
411 		uasm_i_sc(&p, t2, 0, r_nc_count);
412 		uasm_il_beqz(&p, &r, t2, lbl_incready);
413 		uasm_i_addiu(&p, t1, t1, 1);
414 
415 		/* Ordering barrier */
416 		uasm_i_sync(&p, stype_ordering);
417 
418 		/*
419 		 * If this is the last VPE to become ready for non-coherence
420 		 * then it should branch below.
421 		 */
422 		uasm_il_beq(&p, &r, t1, r_online, lbl_disable_coherence);
423 		uasm_i_nop(&p);
424 
425 		if (state < CPS_PM_POWER_GATED) {
426 			/*
427 			 * Otherwise this is not the last VPE to become ready
428 			 * for non-coherence. It needs to wait until coherence
429 			 * has been disabled before proceeding, which it will do
430 			 * by polling for the top bit of ready_count being set.
431 			 */
432 			uasm_i_addiu(&p, t1, zero, -1);
433 			uasm_build_label(&l, p, lbl_poll_cont);
434 			uasm_i_lw(&p, t0, 0, r_nc_count);
435 			uasm_il_bltz(&p, &r, t0, lbl_secondary_cont);
436 			uasm_i_ehb(&p);
437 			uasm_i_yield(&p, zero, t1);
438 			uasm_il_b(&p, &r, lbl_poll_cont);
439 			uasm_i_nop(&p);
440 		} else {
441 			/*
442 			 * The core will lose power & this VPE will not continue
443 			 * so it can simply halt here.
444 			 */
445 			uasm_i_addiu(&p, t0, zero, TCHALT_H);
446 			uasm_i_mtc0(&p, t0, 2, 4);
447 			uasm_build_label(&l, p, lbl_secondary_hang);
448 			uasm_il_b(&p, &r, lbl_secondary_hang);
449 			uasm_i_nop(&p);
450 		}
451 	}
452 
453 	/*
454 	 * This is the point of no return - this VPE will now proceed to
455 	 * disable coherence. At this point we *must* be sure that no other
456 	 * VPE within the core will interfere with the L1 dcache.
457 	 */
458 	uasm_build_label(&l, p, lbl_disable_coherence);
459 
460 	/* Invalidate the L1 icache */
461 	cps_gen_cache_routine(&p, &l, &r, &cpu_data[cpu].icache,
462 			      Index_Invalidate_I, lbl_invicache);
463 
464 	/* Writeback & invalidate the L1 dcache */
465 	cps_gen_cache_routine(&p, &l, &r, &cpu_data[cpu].dcache,
466 			      Index_Writeback_Inv_D, lbl_flushdcache);
467 
468 	/* Completion barrier */
469 	uasm_i_sync(&p, stype_memory);
470 	uasm_i_ehb(&p);
471 
472 	/*
473 	 * Disable all but self interventions. The load from COHCTL is defined
474 	 * by the interAptiv & proAptiv SUMs as ensuring that the operation
475 	 * resulting from the preceeding store is complete.
476 	 */
477 	uasm_i_addiu(&p, t0, zero, 1 << cpu_data[cpu].core);
478 	uasm_i_sw(&p, t0, 0, r_pcohctl);
479 	uasm_i_lw(&p, t0, 0, r_pcohctl);
480 
481 	/* Sync to ensure previous interventions are complete */
482 	uasm_i_sync(&p, stype_intervention);
483 	uasm_i_ehb(&p);
484 
485 	/* Disable coherence */
486 	uasm_i_sw(&p, zero, 0, r_pcohctl);
487 	uasm_i_lw(&p, t0, 0, r_pcohctl);
488 
489 	if (state >= CPS_PM_CLOCK_GATED) {
490 		err = cps_gen_flush_fsb(&p, &l, &r, &cpu_data[cpu],
491 					lbl_flush_fsb);
492 		if (err)
493 			goto out_err;
494 
495 		/* Determine the CPC command to issue */
496 		switch (state) {
497 		case CPS_PM_CLOCK_GATED:
498 			cpc_cmd = CPC_Cx_CMD_CLOCKOFF;
499 			break;
500 		case CPS_PM_POWER_GATED:
501 			cpc_cmd = CPC_Cx_CMD_PWRDOWN;
502 			break;
503 		default:
504 			BUG();
505 			goto out_err;
506 		}
507 
508 		/* Issue the CPC command */
509 		UASM_i_LA(&p, t0, (long)addr_cpc_cl_cmd());
510 		uasm_i_addiu(&p, t1, zero, cpc_cmd);
511 		uasm_i_sw(&p, t1, 0, t0);
512 
513 		if (state == CPS_PM_POWER_GATED) {
514 			/* If anything goes wrong just hang */
515 			uasm_build_label(&l, p, lbl_hang);
516 			uasm_il_b(&p, &r, lbl_hang);
517 			uasm_i_nop(&p);
518 
519 			/*
520 			 * There's no point generating more code, the core is
521 			 * powered down & if powered back up will run from the
522 			 * reset vector not from here.
523 			 */
524 			goto gen_done;
525 		}
526 
527 		/* Completion barrier */
528 		uasm_i_sync(&p, stype_memory);
529 		uasm_i_ehb(&p);
530 	}
531 
532 	if (state == CPS_PM_NC_WAIT) {
533 		/*
534 		 * At this point it is safe for all VPEs to proceed with
535 		 * execution. This VPE will set the top bit of ready_count
536 		 * to indicate to the other VPEs that they may continue.
537 		 */
538 		if (coupled_coherence)
539 			cps_gen_set_top_bit(&p, &l, &r, r_nc_count,
540 					    lbl_set_cont);
541 
542 		/*
543 		 * VPEs which did not disable coherence will continue
544 		 * executing, after coherence has been disabled, from this
545 		 * point.
546 		 */
547 		uasm_build_label(&l, p, lbl_secondary_cont);
548 
549 		/* Now perform our wait */
550 		uasm_i_wait(&p, 0);
551 	}
552 
553 	/*
554 	 * Re-enable coherence. Note that for CPS_PM_NC_WAIT all coupled VPEs
555 	 * will run this. The first will actually re-enable coherence & the
556 	 * rest will just be performing a rather unusual nop.
557 	 */
558 	uasm_i_addiu(&p, t0, zero, CM_GCR_Cx_COHERENCE_COHDOMAINEN_MSK);
559 	uasm_i_sw(&p, t0, 0, r_pcohctl);
560 	uasm_i_lw(&p, t0, 0, r_pcohctl);
561 
562 	/* Completion barrier */
563 	uasm_i_sync(&p, stype_memory);
564 	uasm_i_ehb(&p);
565 
566 	if (coupled_coherence && (state == CPS_PM_NC_WAIT)) {
567 		/* Decrement ready_count */
568 		uasm_build_label(&l, p, lbl_decready);
569 		uasm_i_sync(&p, stype_ordering);
570 		uasm_i_ll(&p, t1, 0, r_nc_count);
571 		uasm_i_addiu(&p, t2, t1, -1);
572 		uasm_i_sc(&p, t2, 0, r_nc_count);
573 		uasm_il_beqz(&p, &r, t2, lbl_decready);
574 		uasm_i_andi(&p, v0, t1, (1 << fls(smp_num_siblings)) - 1);
575 
576 		/* Ordering barrier */
577 		uasm_i_sync(&p, stype_ordering);
578 	}
579 
580 	if (coupled_coherence && (state == CPS_PM_CLOCK_GATED)) {
581 		/*
582 		 * At this point it is safe for all VPEs to proceed with
583 		 * execution. This VPE will set the top bit of ready_count
584 		 * to indicate to the other VPEs that they may continue.
585 		 */
586 		cps_gen_set_top_bit(&p, &l, &r, r_nc_count, lbl_set_cont);
587 
588 		/*
589 		 * This core will be reliant upon another core sending a
590 		 * power-up command to the CPC in order to resume operation.
591 		 * Thus an arbitrary VPE can't trigger the core leaving the
592 		 * idle state and the one that disables coherence might as well
593 		 * be the one to re-enable it. The rest will continue from here
594 		 * after that has been done.
595 		 */
596 		uasm_build_label(&l, p, lbl_secondary_cont);
597 
598 		/* Ordering barrier */
599 		uasm_i_sync(&p, stype_ordering);
600 	}
601 
602 	/* The core is coherent, time to return to C code */
603 	uasm_i_jr(&p, ra);
604 	uasm_i_nop(&p);
605 
606 gen_done:
607 	/* Ensure the code didn't exceed the resources allocated for it */
608 	BUG_ON((p - buf) > max_instrs);
609 	BUG_ON((l - labels) > ARRAY_SIZE(labels));
610 	BUG_ON((r - relocs) > ARRAY_SIZE(relocs));
611 
612 	/* Patch branch offsets */
613 	uasm_resolve_relocs(relocs, labels);
614 
615 	/* Flush the icache */
616 	local_flush_icache_range((unsigned long)buf, (unsigned long)p);
617 
618 	return buf;
619 out_err:
620 	kfree(buf);
621 	return NULL;
622 }
623 
624 static int __init cps_gen_core_entries(unsigned cpu)
625 {
626 	enum cps_pm_state state;
627 	unsigned core = cpu_data[cpu].core;
628 	unsigned dlinesz = cpu_data[cpu].dcache.linesz;
629 	void *entry_fn, *core_rc;
630 
631 	for (state = CPS_PM_NC_WAIT; state < CPS_PM_STATE_COUNT; state++) {
632 		if (per_cpu(nc_asm_enter, core)[state])
633 			continue;
634 		if (!test_bit(state, state_support))
635 			continue;
636 
637 		entry_fn = cps_gen_entry_code(cpu, state);
638 		if (!entry_fn) {
639 			pr_err("Failed to generate core %u state %u entry\n",
640 			       core, state);
641 			clear_bit(state, state_support);
642 		}
643 
644 		per_cpu(nc_asm_enter, core)[state] = entry_fn;
645 	}
646 
647 	if (!per_cpu(ready_count, core)) {
648 		core_rc = kmalloc(dlinesz * 2, GFP_KERNEL);
649 		if (!core_rc) {
650 			pr_err("Failed allocate core %u ready_count\n", core);
651 			return -ENOMEM;
652 		}
653 		per_cpu(ready_count_alloc, core) = core_rc;
654 
655 		/* Ensure ready_count is aligned to a cacheline boundary */
656 		core_rc += dlinesz - 1;
657 		core_rc = (void *)((unsigned long)core_rc & ~(dlinesz - 1));
658 		per_cpu(ready_count, core) = core_rc;
659 	}
660 
661 	return 0;
662 }
663 
664 static int __init cps_pm_init(void)
665 {
666 	unsigned cpu;
667 	int err;
668 
669 	/* Detect appropriate sync types for the system */
670 	switch (current_cpu_data.cputype) {
671 	case CPU_INTERAPTIV:
672 	case CPU_PROAPTIV:
673 	case CPU_M5150:
674 	case CPU_P5600:
675 	case CPU_I6400:
676 		stype_intervention = 0x2;
677 		stype_memory = 0x3;
678 		stype_ordering = 0x10;
679 		break;
680 
681 	default:
682 		pr_warn("Power management is using heavyweight sync 0\n");
683 	}
684 
685 	/* A CM is required for all non-coherent states */
686 	if (!mips_cm_present()) {
687 		pr_warn("pm-cps: no CM, non-coherent states unavailable\n");
688 		goto out;
689 	}
690 
691 	/*
692 	 * If interrupts were enabled whilst running a wait instruction on a
693 	 * non-coherent core then the VPE may end up processing interrupts
694 	 * whilst non-coherent. That would be bad.
695 	 */
696 	if (cpu_wait == r4k_wait_irqoff)
697 		set_bit(CPS_PM_NC_WAIT, state_support);
698 	else
699 		pr_warn("pm-cps: non-coherent wait unavailable\n");
700 
701 	/* Detect whether a CPC is present */
702 	if (mips_cpc_present()) {
703 		/* Detect whether clock gating is implemented */
704 		if (read_cpc_cl_stat_conf() & CPC_Cx_STAT_CONF_CLKGAT_IMPL_MSK)
705 			set_bit(CPS_PM_CLOCK_GATED, state_support);
706 		else
707 			pr_warn("pm-cps: CPC does not support clock gating\n");
708 
709 		/* Power gating is available with CPS SMP & any CPC */
710 		if (mips_cps_smp_in_use())
711 			set_bit(CPS_PM_POWER_GATED, state_support);
712 		else
713 			pr_warn("pm-cps: CPS SMP not in use, power gating unavailable\n");
714 	} else {
715 		pr_warn("pm-cps: no CPC, clock & power gating unavailable\n");
716 	}
717 
718 	for_each_present_cpu(cpu) {
719 		err = cps_gen_core_entries(cpu);
720 		if (err)
721 			return err;
722 	}
723 out:
724 	return 0;
725 }
726 arch_initcall(cps_pm_init);
727