1 /* 2 * Copyright (C) 2014 Imagination Technologies 3 * Author: Paul Burton <paul.burton@mips.com> 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License as published by the 7 * Free Software Foundation; either version 2 of the License, or (at your 8 * option) any later version. 9 */ 10 11 #include <linux/cpuhotplug.h> 12 #include <linux/init.h> 13 #include <linux/percpu.h> 14 #include <linux/slab.h> 15 16 #include <asm/asm-offsets.h> 17 #include <asm/cacheflush.h> 18 #include <asm/cacheops.h> 19 #include <asm/idle.h> 20 #include <asm/mips-cps.h> 21 #include <asm/mipsmtregs.h> 22 #include <asm/pm.h> 23 #include <asm/pm-cps.h> 24 #include <asm/smp-cps.h> 25 #include <asm/uasm.h> 26 27 /* 28 * cps_nc_entry_fn - type of a generated non-coherent state entry function 29 * @online: the count of online coupled VPEs 30 * @nc_ready_count: pointer to a non-coherent mapping of the core ready_count 31 * 32 * The code entering & exiting non-coherent states is generated at runtime 33 * using uasm, in order to ensure that the compiler cannot insert a stray 34 * memory access at an unfortunate time and to allow the generation of optimal 35 * core-specific code particularly for cache routines. If coupled_coherence 36 * is non-zero and this is the entry function for the CPS_PM_NC_WAIT state, 37 * returns the number of VPEs that were in the wait state at the point this 38 * VPE left it. Returns garbage if coupled_coherence is zero or this is not 39 * the entry function for CPS_PM_NC_WAIT. 40 */ 41 typedef unsigned (*cps_nc_entry_fn)(unsigned online, u32 *nc_ready_count); 42 43 /* 44 * The entry point of the generated non-coherent idle state entry/exit 45 * functions. Actually per-core rather than per-CPU. 46 */ 47 static DEFINE_PER_CPU_READ_MOSTLY(cps_nc_entry_fn[CPS_PM_STATE_COUNT], 48 nc_asm_enter); 49 50 /* Bitmap indicating which states are supported by the system */ 51 static DECLARE_BITMAP(state_support, CPS_PM_STATE_COUNT); 52 53 /* 54 * Indicates the number of coupled VPEs ready to operate in a non-coherent 55 * state. Actually per-core rather than per-CPU. 56 */ 57 static DEFINE_PER_CPU_ALIGNED(u32*, ready_count); 58 59 /* Indicates online CPUs coupled with the current CPU */ 60 static DEFINE_PER_CPU_ALIGNED(cpumask_t, online_coupled); 61 62 /* 63 * Used to synchronize entry to deep idle states. Actually per-core rather 64 * than per-CPU. 65 */ 66 static DEFINE_PER_CPU_ALIGNED(atomic_t, pm_barrier); 67 68 /* Saved CPU state across the CPS_PM_POWER_GATED state */ 69 DEFINE_PER_CPU_ALIGNED(struct mips_static_suspend_state, cps_cpu_state); 70 71 /* A somewhat arbitrary number of labels & relocs for uasm */ 72 static struct uasm_label labels[32]; 73 static struct uasm_reloc relocs[32]; 74 75 enum mips_reg { 76 zero, at, v0, v1, a0, a1, a2, a3, 77 t0, t1, t2, t3, t4, t5, t6, t7, 78 s0, s1, s2, s3, s4, s5, s6, s7, 79 t8, t9, k0, k1, gp, sp, fp, ra, 80 }; 81 82 bool cps_pm_support_state(enum cps_pm_state state) 83 { 84 return test_bit(state, state_support); 85 } 86 87 static void coupled_barrier(atomic_t *a, unsigned online) 88 { 89 /* 90 * This function is effectively the same as 91 * cpuidle_coupled_parallel_barrier, which can't be used here since 92 * there's no cpuidle device. 93 */ 94 95 if (!coupled_coherence) 96 return; 97 98 smp_mb__before_atomic(); 99 atomic_inc(a); 100 101 while (atomic_read(a) < online) 102 cpu_relax(); 103 104 if (atomic_inc_return(a) == online * 2) { 105 atomic_set(a, 0); 106 return; 107 } 108 109 while (atomic_read(a) > online) 110 cpu_relax(); 111 } 112 113 int cps_pm_enter_state(enum cps_pm_state state) 114 { 115 unsigned cpu = smp_processor_id(); 116 unsigned core = cpu_core(¤t_cpu_data); 117 unsigned online, left; 118 cpumask_t *coupled_mask = this_cpu_ptr(&online_coupled); 119 u32 *core_ready_count, *nc_core_ready_count; 120 void *nc_addr; 121 cps_nc_entry_fn entry; 122 struct core_boot_config *core_cfg; 123 struct vpe_boot_config *vpe_cfg; 124 125 /* Check that there is an entry function for this state */ 126 entry = per_cpu(nc_asm_enter, core)[state]; 127 if (!entry) 128 return -EINVAL; 129 130 /* Calculate which coupled CPUs (VPEs) are online */ 131 #if defined(CONFIG_MIPS_MT) || defined(CONFIG_CPU_MIPSR6) 132 if (cpu_online(cpu)) { 133 cpumask_and(coupled_mask, cpu_online_mask, 134 &cpu_sibling_map[cpu]); 135 online = cpumask_weight(coupled_mask); 136 cpumask_clear_cpu(cpu, coupled_mask); 137 } else 138 #endif 139 { 140 cpumask_clear(coupled_mask); 141 online = 1; 142 } 143 144 /* Setup the VPE to run mips_cps_pm_restore when started again */ 145 if (IS_ENABLED(CONFIG_CPU_PM) && state == CPS_PM_POWER_GATED) { 146 /* Power gating relies upon CPS SMP */ 147 if (!mips_cps_smp_in_use()) 148 return -EINVAL; 149 150 core_cfg = &mips_cps_core_bootcfg[core]; 151 vpe_cfg = &core_cfg->vpe_config[cpu_vpe_id(¤t_cpu_data)]; 152 vpe_cfg->pc = (unsigned long)mips_cps_pm_restore; 153 vpe_cfg->gp = (unsigned long)current_thread_info(); 154 vpe_cfg->sp = 0; 155 } 156 157 /* Indicate that this CPU might not be coherent */ 158 cpumask_clear_cpu(cpu, &cpu_coherent_mask); 159 smp_mb__after_atomic(); 160 161 /* Create a non-coherent mapping of the core ready_count */ 162 core_ready_count = per_cpu(ready_count, core); 163 nc_addr = kmap_noncoherent(virt_to_page(core_ready_count), 164 (unsigned long)core_ready_count); 165 nc_addr += ((unsigned long)core_ready_count & ~PAGE_MASK); 166 nc_core_ready_count = nc_addr; 167 168 /* Ensure ready_count is zero-initialised before the assembly runs */ 169 WRITE_ONCE(*nc_core_ready_count, 0); 170 coupled_barrier(&per_cpu(pm_barrier, core), online); 171 172 /* Run the generated entry code */ 173 left = entry(online, nc_core_ready_count); 174 175 /* Remove the non-coherent mapping of ready_count */ 176 kunmap_noncoherent(); 177 178 /* Indicate that this CPU is definitely coherent */ 179 cpumask_set_cpu(cpu, &cpu_coherent_mask); 180 181 /* 182 * If this VPE is the first to leave the non-coherent wait state then 183 * it needs to wake up any coupled VPEs still running their wait 184 * instruction so that they return to cpuidle, which can then complete 185 * coordination between the coupled VPEs & provide the governor with 186 * a chance to reflect on the length of time the VPEs were in the 187 * idle state. 188 */ 189 if (coupled_coherence && (state == CPS_PM_NC_WAIT) && (left == online)) 190 arch_send_call_function_ipi_mask(coupled_mask); 191 192 return 0; 193 } 194 195 static void cps_gen_cache_routine(u32 **pp, struct uasm_label **pl, 196 struct uasm_reloc **pr, 197 const struct cache_desc *cache, 198 unsigned op, int lbl) 199 { 200 unsigned cache_size = cache->ways << cache->waybit; 201 unsigned i; 202 const unsigned unroll_lines = 32; 203 204 /* If the cache isn't present this function has it easy */ 205 if (cache->flags & MIPS_CACHE_NOT_PRESENT) 206 return; 207 208 /* Load base address */ 209 UASM_i_LA(pp, t0, (long)CKSEG0); 210 211 /* Calculate end address */ 212 if (cache_size < 0x8000) 213 uasm_i_addiu(pp, t1, t0, cache_size); 214 else 215 UASM_i_LA(pp, t1, (long)(CKSEG0 + cache_size)); 216 217 /* Start of cache op loop */ 218 uasm_build_label(pl, *pp, lbl); 219 220 /* Generate the cache ops */ 221 for (i = 0; i < unroll_lines; i++) { 222 if (cpu_has_mips_r6) { 223 uasm_i_cache(pp, op, 0, t0); 224 uasm_i_addiu(pp, t0, t0, cache->linesz); 225 } else { 226 uasm_i_cache(pp, op, i * cache->linesz, t0); 227 } 228 } 229 230 if (!cpu_has_mips_r6) 231 /* Update the base address */ 232 uasm_i_addiu(pp, t0, t0, unroll_lines * cache->linesz); 233 234 /* Loop if we haven't reached the end address yet */ 235 uasm_il_bne(pp, pr, t0, t1, lbl); 236 uasm_i_nop(pp); 237 } 238 239 static int cps_gen_flush_fsb(u32 **pp, struct uasm_label **pl, 240 struct uasm_reloc **pr, 241 const struct cpuinfo_mips *cpu_info, 242 int lbl) 243 { 244 unsigned i, fsb_size = 8; 245 unsigned num_loads = (fsb_size * 3) / 2; 246 unsigned line_stride = 2; 247 unsigned line_size = cpu_info->dcache.linesz; 248 unsigned perf_counter, perf_event; 249 unsigned revision = cpu_info->processor_id & PRID_REV_MASK; 250 251 /* 252 * Determine whether this CPU requires an FSB flush, and if so which 253 * performance counter/event reflect stalls due to a full FSB. 254 */ 255 switch (__get_cpu_type(cpu_info->cputype)) { 256 case CPU_INTERAPTIV: 257 perf_counter = 1; 258 perf_event = 51; 259 break; 260 261 case CPU_PROAPTIV: 262 /* Newer proAptiv cores don't require this workaround */ 263 if (revision >= PRID_REV_ENCODE_332(1, 1, 0)) 264 return 0; 265 266 /* On older ones it's unavailable */ 267 return -1; 268 269 default: 270 /* Assume that the CPU does not need this workaround */ 271 return 0; 272 } 273 274 /* 275 * Ensure that the fill/store buffer (FSB) is not holding the results 276 * of a prefetch, since if it is then the CPC sequencer may become 277 * stuck in the D3 (ClrBus) state whilst entering a low power state. 278 */ 279 280 /* Preserve perf counter setup */ 281 uasm_i_mfc0(pp, t2, 25, (perf_counter * 2) + 0); /* PerfCtlN */ 282 uasm_i_mfc0(pp, t3, 25, (perf_counter * 2) + 1); /* PerfCntN */ 283 284 /* Setup perf counter to count FSB full pipeline stalls */ 285 uasm_i_addiu(pp, t0, zero, (perf_event << 5) | 0xf); 286 uasm_i_mtc0(pp, t0, 25, (perf_counter * 2) + 0); /* PerfCtlN */ 287 uasm_i_ehb(pp); 288 uasm_i_mtc0(pp, zero, 25, (perf_counter * 2) + 1); /* PerfCntN */ 289 uasm_i_ehb(pp); 290 291 /* Base address for loads */ 292 UASM_i_LA(pp, t0, (long)CKSEG0); 293 294 /* Start of clear loop */ 295 uasm_build_label(pl, *pp, lbl); 296 297 /* Perform some loads to fill the FSB */ 298 for (i = 0; i < num_loads; i++) 299 uasm_i_lw(pp, zero, i * line_size * line_stride, t0); 300 301 /* 302 * Invalidate the new D-cache entries so that the cache will need 303 * refilling (via the FSB) if the loop is executed again. 304 */ 305 for (i = 0; i < num_loads; i++) { 306 uasm_i_cache(pp, Hit_Invalidate_D, 307 i * line_size * line_stride, t0); 308 uasm_i_cache(pp, Hit_Writeback_Inv_SD, 309 i * line_size * line_stride, t0); 310 } 311 312 /* Barrier ensuring previous cache invalidates are complete */ 313 uasm_i_sync(pp, STYPE_SYNC); 314 uasm_i_ehb(pp); 315 316 /* Check whether the pipeline stalled due to the FSB being full */ 317 uasm_i_mfc0(pp, t1, 25, (perf_counter * 2) + 1); /* PerfCntN */ 318 319 /* Loop if it didn't */ 320 uasm_il_beqz(pp, pr, t1, lbl); 321 uasm_i_nop(pp); 322 323 /* Restore perf counter 1. The count may well now be wrong... */ 324 uasm_i_mtc0(pp, t2, 25, (perf_counter * 2) + 0); /* PerfCtlN */ 325 uasm_i_ehb(pp); 326 uasm_i_mtc0(pp, t3, 25, (perf_counter * 2) + 1); /* PerfCntN */ 327 uasm_i_ehb(pp); 328 329 return 0; 330 } 331 332 static void cps_gen_set_top_bit(u32 **pp, struct uasm_label **pl, 333 struct uasm_reloc **pr, 334 unsigned r_addr, int lbl) 335 { 336 uasm_i_lui(pp, t0, uasm_rel_hi(0x80000000)); 337 uasm_build_label(pl, *pp, lbl); 338 uasm_i_ll(pp, t1, 0, r_addr); 339 uasm_i_or(pp, t1, t1, t0); 340 uasm_i_sc(pp, t1, 0, r_addr); 341 uasm_il_beqz(pp, pr, t1, lbl); 342 uasm_i_nop(pp); 343 } 344 345 static void *cps_gen_entry_code(unsigned cpu, enum cps_pm_state state) 346 { 347 struct uasm_label *l = labels; 348 struct uasm_reloc *r = relocs; 349 u32 *buf, *p; 350 const unsigned r_online = a0; 351 const unsigned r_nc_count = a1; 352 const unsigned r_pcohctl = t7; 353 const unsigned max_instrs = 256; 354 unsigned cpc_cmd; 355 int err; 356 enum { 357 lbl_incready = 1, 358 lbl_poll_cont, 359 lbl_secondary_hang, 360 lbl_disable_coherence, 361 lbl_flush_fsb, 362 lbl_invicache, 363 lbl_flushdcache, 364 lbl_hang, 365 lbl_set_cont, 366 lbl_secondary_cont, 367 lbl_decready, 368 }; 369 370 /* Allocate a buffer to hold the generated code */ 371 p = buf = kcalloc(max_instrs, sizeof(u32), GFP_KERNEL); 372 if (!buf) 373 return NULL; 374 375 /* Clear labels & relocs ready for (re)use */ 376 memset(labels, 0, sizeof(labels)); 377 memset(relocs, 0, sizeof(relocs)); 378 379 if (IS_ENABLED(CONFIG_CPU_PM) && state == CPS_PM_POWER_GATED) { 380 /* Power gating relies upon CPS SMP */ 381 if (!mips_cps_smp_in_use()) 382 goto out_err; 383 384 /* 385 * Save CPU state. Note the non-standard calling convention 386 * with the return address placed in v0 to avoid clobbering 387 * the ra register before it is saved. 388 */ 389 UASM_i_LA(&p, t0, (long)mips_cps_pm_save); 390 uasm_i_jalr(&p, v0, t0); 391 uasm_i_nop(&p); 392 } 393 394 /* 395 * Load addresses of required CM & CPC registers. This is done early 396 * because they're needed in both the enable & disable coherence steps 397 * but in the coupled case the enable step will only run on one VPE. 398 */ 399 UASM_i_LA(&p, r_pcohctl, (long)addr_gcr_cl_coherence()); 400 401 if (coupled_coherence) { 402 /* Increment ready_count */ 403 uasm_i_sync(&p, STYPE_SYNC_MB); 404 uasm_build_label(&l, p, lbl_incready); 405 uasm_i_ll(&p, t1, 0, r_nc_count); 406 uasm_i_addiu(&p, t2, t1, 1); 407 uasm_i_sc(&p, t2, 0, r_nc_count); 408 uasm_il_beqz(&p, &r, t2, lbl_incready); 409 uasm_i_addiu(&p, t1, t1, 1); 410 411 /* Barrier ensuring all CPUs see the updated r_nc_count value */ 412 uasm_i_sync(&p, STYPE_SYNC_MB); 413 414 /* 415 * If this is the last VPE to become ready for non-coherence 416 * then it should branch below. 417 */ 418 uasm_il_beq(&p, &r, t1, r_online, lbl_disable_coherence); 419 uasm_i_nop(&p); 420 421 if (state < CPS_PM_POWER_GATED) { 422 /* 423 * Otherwise this is not the last VPE to become ready 424 * for non-coherence. It needs to wait until coherence 425 * has been disabled before proceeding, which it will do 426 * by polling for the top bit of ready_count being set. 427 */ 428 uasm_i_addiu(&p, t1, zero, -1); 429 uasm_build_label(&l, p, lbl_poll_cont); 430 uasm_i_lw(&p, t0, 0, r_nc_count); 431 uasm_il_bltz(&p, &r, t0, lbl_secondary_cont); 432 uasm_i_ehb(&p); 433 if (cpu_has_mipsmt) 434 uasm_i_yield(&p, zero, t1); 435 uasm_il_b(&p, &r, lbl_poll_cont); 436 uasm_i_nop(&p); 437 } else { 438 /* 439 * The core will lose power & this VPE will not continue 440 * so it can simply halt here. 441 */ 442 if (cpu_has_mipsmt) { 443 /* Halt the VPE via C0 tchalt register */ 444 uasm_i_addiu(&p, t0, zero, TCHALT_H); 445 uasm_i_mtc0(&p, t0, 2, 4); 446 } else if (cpu_has_vp) { 447 /* Halt the VP via the CPC VP_STOP register */ 448 unsigned int vpe_id; 449 450 vpe_id = cpu_vpe_id(&cpu_data[cpu]); 451 uasm_i_addiu(&p, t0, zero, 1 << vpe_id); 452 UASM_i_LA(&p, t1, (long)addr_cpc_cl_vp_stop()); 453 uasm_i_sw(&p, t0, 0, t1); 454 } else { 455 BUG(); 456 } 457 uasm_build_label(&l, p, lbl_secondary_hang); 458 uasm_il_b(&p, &r, lbl_secondary_hang); 459 uasm_i_nop(&p); 460 } 461 } 462 463 /* 464 * This is the point of no return - this VPE will now proceed to 465 * disable coherence. At this point we *must* be sure that no other 466 * VPE within the core will interfere with the L1 dcache. 467 */ 468 uasm_build_label(&l, p, lbl_disable_coherence); 469 470 /* Invalidate the L1 icache */ 471 cps_gen_cache_routine(&p, &l, &r, &cpu_data[cpu].icache, 472 Index_Invalidate_I, lbl_invicache); 473 474 /* Writeback & invalidate the L1 dcache */ 475 cps_gen_cache_routine(&p, &l, &r, &cpu_data[cpu].dcache, 476 Index_Writeback_Inv_D, lbl_flushdcache); 477 478 /* Barrier ensuring previous cache invalidates are complete */ 479 uasm_i_sync(&p, STYPE_SYNC); 480 uasm_i_ehb(&p); 481 482 if (mips_cm_revision() < CM_REV_CM3) { 483 /* 484 * Disable all but self interventions. The load from COHCTL is 485 * defined by the interAptiv & proAptiv SUMs as ensuring that the 486 * operation resulting from the preceding store is complete. 487 */ 488 uasm_i_addiu(&p, t0, zero, 1 << cpu_core(&cpu_data[cpu])); 489 uasm_i_sw(&p, t0, 0, r_pcohctl); 490 uasm_i_lw(&p, t0, 0, r_pcohctl); 491 492 /* Barrier to ensure write to coherence control is complete */ 493 uasm_i_sync(&p, STYPE_SYNC); 494 uasm_i_ehb(&p); 495 } 496 497 /* Disable coherence */ 498 uasm_i_sw(&p, zero, 0, r_pcohctl); 499 uasm_i_lw(&p, t0, 0, r_pcohctl); 500 501 if (state >= CPS_PM_CLOCK_GATED) { 502 err = cps_gen_flush_fsb(&p, &l, &r, &cpu_data[cpu], 503 lbl_flush_fsb); 504 if (err) 505 goto out_err; 506 507 /* Determine the CPC command to issue */ 508 switch (state) { 509 case CPS_PM_CLOCK_GATED: 510 cpc_cmd = CPC_Cx_CMD_CLOCKOFF; 511 break; 512 case CPS_PM_POWER_GATED: 513 cpc_cmd = CPC_Cx_CMD_PWRDOWN; 514 break; 515 default: 516 BUG(); 517 goto out_err; 518 } 519 520 /* Issue the CPC command */ 521 UASM_i_LA(&p, t0, (long)addr_cpc_cl_cmd()); 522 uasm_i_addiu(&p, t1, zero, cpc_cmd); 523 uasm_i_sw(&p, t1, 0, t0); 524 525 if (state == CPS_PM_POWER_GATED) { 526 /* If anything goes wrong just hang */ 527 uasm_build_label(&l, p, lbl_hang); 528 uasm_il_b(&p, &r, lbl_hang); 529 uasm_i_nop(&p); 530 531 /* 532 * There's no point generating more code, the core is 533 * powered down & if powered back up will run from the 534 * reset vector not from here. 535 */ 536 goto gen_done; 537 } 538 539 /* Barrier to ensure write to CPC command is complete */ 540 uasm_i_sync(&p, STYPE_SYNC); 541 uasm_i_ehb(&p); 542 } 543 544 if (state == CPS_PM_NC_WAIT) { 545 /* 546 * At this point it is safe for all VPEs to proceed with 547 * execution. This VPE will set the top bit of ready_count 548 * to indicate to the other VPEs that they may continue. 549 */ 550 if (coupled_coherence) 551 cps_gen_set_top_bit(&p, &l, &r, r_nc_count, 552 lbl_set_cont); 553 554 /* 555 * VPEs which did not disable coherence will continue 556 * executing, after coherence has been disabled, from this 557 * point. 558 */ 559 uasm_build_label(&l, p, lbl_secondary_cont); 560 561 /* Now perform our wait */ 562 uasm_i_wait(&p, 0); 563 } 564 565 /* 566 * Re-enable coherence. Note that for CPS_PM_NC_WAIT all coupled VPEs 567 * will run this. The first will actually re-enable coherence & the 568 * rest will just be performing a rather unusual nop. 569 */ 570 uasm_i_addiu(&p, t0, zero, mips_cm_revision() < CM_REV_CM3 571 ? CM_GCR_Cx_COHERENCE_COHDOMAINEN 572 : CM3_GCR_Cx_COHERENCE_COHEN); 573 574 uasm_i_sw(&p, t0, 0, r_pcohctl); 575 uasm_i_lw(&p, t0, 0, r_pcohctl); 576 577 /* Barrier to ensure write to coherence control is complete */ 578 uasm_i_sync(&p, STYPE_SYNC); 579 uasm_i_ehb(&p); 580 581 if (coupled_coherence && (state == CPS_PM_NC_WAIT)) { 582 /* Decrement ready_count */ 583 uasm_build_label(&l, p, lbl_decready); 584 uasm_i_sync(&p, STYPE_SYNC_MB); 585 uasm_i_ll(&p, t1, 0, r_nc_count); 586 uasm_i_addiu(&p, t2, t1, -1); 587 uasm_i_sc(&p, t2, 0, r_nc_count); 588 uasm_il_beqz(&p, &r, t2, lbl_decready); 589 uasm_i_andi(&p, v0, t1, (1 << fls(smp_num_siblings)) - 1); 590 591 /* Barrier ensuring all CPUs see the updated r_nc_count value */ 592 uasm_i_sync(&p, STYPE_SYNC_MB); 593 } 594 595 if (coupled_coherence && (state == CPS_PM_CLOCK_GATED)) { 596 /* 597 * At this point it is safe for all VPEs to proceed with 598 * execution. This VPE will set the top bit of ready_count 599 * to indicate to the other VPEs that they may continue. 600 */ 601 cps_gen_set_top_bit(&p, &l, &r, r_nc_count, lbl_set_cont); 602 603 /* 604 * This core will be reliant upon another core sending a 605 * power-up command to the CPC in order to resume operation. 606 * Thus an arbitrary VPE can't trigger the core leaving the 607 * idle state and the one that disables coherence might as well 608 * be the one to re-enable it. The rest will continue from here 609 * after that has been done. 610 */ 611 uasm_build_label(&l, p, lbl_secondary_cont); 612 613 /* Barrier ensuring all CPUs see the updated r_nc_count value */ 614 uasm_i_sync(&p, STYPE_SYNC_MB); 615 } 616 617 /* The core is coherent, time to return to C code */ 618 uasm_i_jr(&p, ra); 619 uasm_i_nop(&p); 620 621 gen_done: 622 /* Ensure the code didn't exceed the resources allocated for it */ 623 BUG_ON((p - buf) > max_instrs); 624 BUG_ON((l - labels) > ARRAY_SIZE(labels)); 625 BUG_ON((r - relocs) > ARRAY_SIZE(relocs)); 626 627 /* Patch branch offsets */ 628 uasm_resolve_relocs(relocs, labels); 629 630 /* Flush the icache */ 631 local_flush_icache_range((unsigned long)buf, (unsigned long)p); 632 633 return buf; 634 out_err: 635 kfree(buf); 636 return NULL; 637 } 638 639 static int cps_pm_online_cpu(unsigned int cpu) 640 { 641 enum cps_pm_state state; 642 unsigned core = cpu_core(&cpu_data[cpu]); 643 void *entry_fn, *core_rc; 644 645 for (state = CPS_PM_NC_WAIT; state < CPS_PM_STATE_COUNT; state++) { 646 if (per_cpu(nc_asm_enter, core)[state]) 647 continue; 648 if (!test_bit(state, state_support)) 649 continue; 650 651 entry_fn = cps_gen_entry_code(cpu, state); 652 if (!entry_fn) { 653 pr_err("Failed to generate core %u state %u entry\n", 654 core, state); 655 clear_bit(state, state_support); 656 } 657 658 per_cpu(nc_asm_enter, core)[state] = entry_fn; 659 } 660 661 if (!per_cpu(ready_count, core)) { 662 core_rc = kmalloc(sizeof(u32), GFP_KERNEL); 663 if (!core_rc) { 664 pr_err("Failed allocate core %u ready_count\n", core); 665 return -ENOMEM; 666 } 667 per_cpu(ready_count, core) = core_rc; 668 } 669 670 return 0; 671 } 672 673 static int __init cps_pm_init(void) 674 { 675 /* A CM is required for all non-coherent states */ 676 if (!mips_cm_present()) { 677 pr_warn("pm-cps: no CM, non-coherent states unavailable\n"); 678 return 0; 679 } 680 681 /* 682 * If interrupts were enabled whilst running a wait instruction on a 683 * non-coherent core then the VPE may end up processing interrupts 684 * whilst non-coherent. That would be bad. 685 */ 686 if (cpu_wait == r4k_wait_irqoff) 687 set_bit(CPS_PM_NC_WAIT, state_support); 688 else 689 pr_warn("pm-cps: non-coherent wait unavailable\n"); 690 691 /* Detect whether a CPC is present */ 692 if (mips_cpc_present()) { 693 /* Detect whether clock gating is implemented */ 694 if (read_cpc_cl_stat_conf() & CPC_Cx_STAT_CONF_CLKGAT_IMPL) 695 set_bit(CPS_PM_CLOCK_GATED, state_support); 696 else 697 pr_warn("pm-cps: CPC does not support clock gating\n"); 698 699 /* Power gating is available with CPS SMP & any CPC */ 700 if (mips_cps_smp_in_use()) 701 set_bit(CPS_PM_POWER_GATED, state_support); 702 else 703 pr_warn("pm-cps: CPS SMP not in use, power gating unavailable\n"); 704 } else { 705 pr_warn("pm-cps: no CPC, clock & power gating unavailable\n"); 706 } 707 708 return cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mips/cps_pm:online", 709 cps_pm_online_cpu, NULL); 710 } 711 arch_initcall(cps_pm_init); 712