1 /* 2 * Copyright (C) 2014 Imagination Technologies 3 * Author: Paul Burton <paul.burton@imgtec.com> 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License as published by the 7 * Free Software Foundation; either version 2 of the License, or (at your 8 * option) any later version. 9 */ 10 11 #include <linux/cpuhotplug.h> 12 #include <linux/init.h> 13 #include <linux/percpu.h> 14 #include <linux/slab.h> 15 16 #include <asm/asm-offsets.h> 17 #include <asm/cacheflush.h> 18 #include <asm/cacheops.h> 19 #include <asm/idle.h> 20 #include <asm/mips-cm.h> 21 #include <asm/mips-cpc.h> 22 #include <asm/mipsmtregs.h> 23 #include <asm/pm.h> 24 #include <asm/pm-cps.h> 25 #include <asm/smp-cps.h> 26 #include <asm/uasm.h> 27 28 /* 29 * cps_nc_entry_fn - type of a generated non-coherent state entry function 30 * @online: the count of online coupled VPEs 31 * @nc_ready_count: pointer to a non-coherent mapping of the core ready_count 32 * 33 * The code entering & exiting non-coherent states is generated at runtime 34 * using uasm, in order to ensure that the compiler cannot insert a stray 35 * memory access at an unfortunate time and to allow the generation of optimal 36 * core-specific code particularly for cache routines. If coupled_coherence 37 * is non-zero and this is the entry function for the CPS_PM_NC_WAIT state, 38 * returns the number of VPEs that were in the wait state at the point this 39 * VPE left it. Returns garbage if coupled_coherence is zero or this is not 40 * the entry function for CPS_PM_NC_WAIT. 41 */ 42 typedef unsigned (*cps_nc_entry_fn)(unsigned online, u32 *nc_ready_count); 43 44 /* 45 * The entry point of the generated non-coherent idle state entry/exit 46 * functions. Actually per-core rather than per-CPU. 47 */ 48 static DEFINE_PER_CPU_READ_MOSTLY(cps_nc_entry_fn[CPS_PM_STATE_COUNT], 49 nc_asm_enter); 50 51 /* Bitmap indicating which states are supported by the system */ 52 DECLARE_BITMAP(state_support, CPS_PM_STATE_COUNT); 53 54 /* 55 * Indicates the number of coupled VPEs ready to operate in a non-coherent 56 * state. Actually per-core rather than per-CPU. 57 */ 58 static DEFINE_PER_CPU_ALIGNED(u32*, ready_count); 59 60 /* Indicates online CPUs coupled with the current CPU */ 61 static DEFINE_PER_CPU_ALIGNED(cpumask_t, online_coupled); 62 63 /* 64 * Used to synchronize entry to deep idle states. Actually per-core rather 65 * than per-CPU. 66 */ 67 static DEFINE_PER_CPU_ALIGNED(atomic_t, pm_barrier); 68 69 /* Saved CPU state across the CPS_PM_POWER_GATED state */ 70 DEFINE_PER_CPU_ALIGNED(struct mips_static_suspend_state, cps_cpu_state); 71 72 /* A somewhat arbitrary number of labels & relocs for uasm */ 73 static struct uasm_label labels[32]; 74 static struct uasm_reloc relocs[32]; 75 76 enum mips_reg { 77 zero, at, v0, v1, a0, a1, a2, a3, 78 t0, t1, t2, t3, t4, t5, t6, t7, 79 s0, s1, s2, s3, s4, s5, s6, s7, 80 t8, t9, k0, k1, gp, sp, fp, ra, 81 }; 82 83 bool cps_pm_support_state(enum cps_pm_state state) 84 { 85 return test_bit(state, state_support); 86 } 87 88 static void coupled_barrier(atomic_t *a, unsigned online) 89 { 90 /* 91 * This function is effectively the same as 92 * cpuidle_coupled_parallel_barrier, which can't be used here since 93 * there's no cpuidle device. 94 */ 95 96 if (!coupled_coherence) 97 return; 98 99 smp_mb__before_atomic(); 100 atomic_inc(a); 101 102 while (atomic_read(a) < online) 103 cpu_relax(); 104 105 if (atomic_inc_return(a) == online * 2) { 106 atomic_set(a, 0); 107 return; 108 } 109 110 while (atomic_read(a) > online) 111 cpu_relax(); 112 } 113 114 int cps_pm_enter_state(enum cps_pm_state state) 115 { 116 unsigned cpu = smp_processor_id(); 117 unsigned core = current_cpu_data.core; 118 unsigned online, left; 119 cpumask_t *coupled_mask = this_cpu_ptr(&online_coupled); 120 u32 *core_ready_count, *nc_core_ready_count; 121 void *nc_addr; 122 cps_nc_entry_fn entry; 123 struct core_boot_config *core_cfg; 124 struct vpe_boot_config *vpe_cfg; 125 126 /* Check that there is an entry function for this state */ 127 entry = per_cpu(nc_asm_enter, core)[state]; 128 if (!entry) 129 return -EINVAL; 130 131 /* Calculate which coupled CPUs (VPEs) are online */ 132 #if defined(CONFIG_MIPS_MT) || defined(CONFIG_CPU_MIPSR6) 133 if (cpu_online(cpu)) { 134 cpumask_and(coupled_mask, cpu_online_mask, 135 &cpu_sibling_map[cpu]); 136 online = cpumask_weight(coupled_mask); 137 cpumask_clear_cpu(cpu, coupled_mask); 138 } else 139 #endif 140 { 141 cpumask_clear(coupled_mask); 142 online = 1; 143 } 144 145 /* Setup the VPE to run mips_cps_pm_restore when started again */ 146 if (IS_ENABLED(CONFIG_CPU_PM) && state == CPS_PM_POWER_GATED) { 147 /* Power gating relies upon CPS SMP */ 148 if (!mips_cps_smp_in_use()) 149 return -EINVAL; 150 151 core_cfg = &mips_cps_core_bootcfg[core]; 152 vpe_cfg = &core_cfg->vpe_config[cpu_vpe_id(¤t_cpu_data)]; 153 vpe_cfg->pc = (unsigned long)mips_cps_pm_restore; 154 vpe_cfg->gp = (unsigned long)current_thread_info(); 155 vpe_cfg->sp = 0; 156 } 157 158 /* Indicate that this CPU might not be coherent */ 159 cpumask_clear_cpu(cpu, &cpu_coherent_mask); 160 smp_mb__after_atomic(); 161 162 /* Create a non-coherent mapping of the core ready_count */ 163 core_ready_count = per_cpu(ready_count, core); 164 nc_addr = kmap_noncoherent(virt_to_page(core_ready_count), 165 (unsigned long)core_ready_count); 166 nc_addr += ((unsigned long)core_ready_count & ~PAGE_MASK); 167 nc_core_ready_count = nc_addr; 168 169 /* Ensure ready_count is zero-initialised before the assembly runs */ 170 ACCESS_ONCE(*nc_core_ready_count) = 0; 171 coupled_barrier(&per_cpu(pm_barrier, core), online); 172 173 /* Run the generated entry code */ 174 left = entry(online, nc_core_ready_count); 175 176 /* Remove the non-coherent mapping of ready_count */ 177 kunmap_noncoherent(); 178 179 /* Indicate that this CPU is definitely coherent */ 180 cpumask_set_cpu(cpu, &cpu_coherent_mask); 181 182 /* 183 * If this VPE is the first to leave the non-coherent wait state then 184 * it needs to wake up any coupled VPEs still running their wait 185 * instruction so that they return to cpuidle, which can then complete 186 * coordination between the coupled VPEs & provide the governor with 187 * a chance to reflect on the length of time the VPEs were in the 188 * idle state. 189 */ 190 if (coupled_coherence && (state == CPS_PM_NC_WAIT) && (left == online)) 191 arch_send_call_function_ipi_mask(coupled_mask); 192 193 return 0; 194 } 195 196 static void cps_gen_cache_routine(u32 **pp, struct uasm_label **pl, 197 struct uasm_reloc **pr, 198 const struct cache_desc *cache, 199 unsigned op, int lbl) 200 { 201 unsigned cache_size = cache->ways << cache->waybit; 202 unsigned i; 203 const unsigned unroll_lines = 32; 204 205 /* If the cache isn't present this function has it easy */ 206 if (cache->flags & MIPS_CACHE_NOT_PRESENT) 207 return; 208 209 /* Load base address */ 210 UASM_i_LA(pp, t0, (long)CKSEG0); 211 212 /* Calculate end address */ 213 if (cache_size < 0x8000) 214 uasm_i_addiu(pp, t1, t0, cache_size); 215 else 216 UASM_i_LA(pp, t1, (long)(CKSEG0 + cache_size)); 217 218 /* Start of cache op loop */ 219 uasm_build_label(pl, *pp, lbl); 220 221 /* Generate the cache ops */ 222 for (i = 0; i < unroll_lines; i++) { 223 if (cpu_has_mips_r6) { 224 uasm_i_cache(pp, op, 0, t0); 225 uasm_i_addiu(pp, t0, t0, cache->linesz); 226 } else { 227 uasm_i_cache(pp, op, i * cache->linesz, t0); 228 } 229 } 230 231 if (!cpu_has_mips_r6) 232 /* Update the base address */ 233 uasm_i_addiu(pp, t0, t0, unroll_lines * cache->linesz); 234 235 /* Loop if we haven't reached the end address yet */ 236 uasm_il_bne(pp, pr, t0, t1, lbl); 237 uasm_i_nop(pp); 238 } 239 240 static int cps_gen_flush_fsb(u32 **pp, struct uasm_label **pl, 241 struct uasm_reloc **pr, 242 const struct cpuinfo_mips *cpu_info, 243 int lbl) 244 { 245 unsigned i, fsb_size = 8; 246 unsigned num_loads = (fsb_size * 3) / 2; 247 unsigned line_stride = 2; 248 unsigned line_size = cpu_info->dcache.linesz; 249 unsigned perf_counter, perf_event; 250 unsigned revision = cpu_info->processor_id & PRID_REV_MASK; 251 252 /* 253 * Determine whether this CPU requires an FSB flush, and if so which 254 * performance counter/event reflect stalls due to a full FSB. 255 */ 256 switch (__get_cpu_type(cpu_info->cputype)) { 257 case CPU_INTERAPTIV: 258 perf_counter = 1; 259 perf_event = 51; 260 break; 261 262 case CPU_PROAPTIV: 263 /* Newer proAptiv cores don't require this workaround */ 264 if (revision >= PRID_REV_ENCODE_332(1, 1, 0)) 265 return 0; 266 267 /* On older ones it's unavailable */ 268 return -1; 269 270 default: 271 /* Assume that the CPU does not need this workaround */ 272 return 0; 273 } 274 275 /* 276 * Ensure that the fill/store buffer (FSB) is not holding the results 277 * of a prefetch, since if it is then the CPC sequencer may become 278 * stuck in the D3 (ClrBus) state whilst entering a low power state. 279 */ 280 281 /* Preserve perf counter setup */ 282 uasm_i_mfc0(pp, t2, 25, (perf_counter * 2) + 0); /* PerfCtlN */ 283 uasm_i_mfc0(pp, t3, 25, (perf_counter * 2) + 1); /* PerfCntN */ 284 285 /* Setup perf counter to count FSB full pipeline stalls */ 286 uasm_i_addiu(pp, t0, zero, (perf_event << 5) | 0xf); 287 uasm_i_mtc0(pp, t0, 25, (perf_counter * 2) + 0); /* PerfCtlN */ 288 uasm_i_ehb(pp); 289 uasm_i_mtc0(pp, zero, 25, (perf_counter * 2) + 1); /* PerfCntN */ 290 uasm_i_ehb(pp); 291 292 /* Base address for loads */ 293 UASM_i_LA(pp, t0, (long)CKSEG0); 294 295 /* Start of clear loop */ 296 uasm_build_label(pl, *pp, lbl); 297 298 /* Perform some loads to fill the FSB */ 299 for (i = 0; i < num_loads; i++) 300 uasm_i_lw(pp, zero, i * line_size * line_stride, t0); 301 302 /* 303 * Invalidate the new D-cache entries so that the cache will need 304 * refilling (via the FSB) if the loop is executed again. 305 */ 306 for (i = 0; i < num_loads; i++) { 307 uasm_i_cache(pp, Hit_Invalidate_D, 308 i * line_size * line_stride, t0); 309 uasm_i_cache(pp, Hit_Writeback_Inv_SD, 310 i * line_size * line_stride, t0); 311 } 312 313 /* Barrier ensuring previous cache invalidates are complete */ 314 uasm_i_sync(pp, STYPE_SYNC); 315 uasm_i_ehb(pp); 316 317 /* Check whether the pipeline stalled due to the FSB being full */ 318 uasm_i_mfc0(pp, t1, 25, (perf_counter * 2) + 1); /* PerfCntN */ 319 320 /* Loop if it didn't */ 321 uasm_il_beqz(pp, pr, t1, lbl); 322 uasm_i_nop(pp); 323 324 /* Restore perf counter 1. The count may well now be wrong... */ 325 uasm_i_mtc0(pp, t2, 25, (perf_counter * 2) + 0); /* PerfCtlN */ 326 uasm_i_ehb(pp); 327 uasm_i_mtc0(pp, t3, 25, (perf_counter * 2) + 1); /* PerfCntN */ 328 uasm_i_ehb(pp); 329 330 return 0; 331 } 332 333 static void cps_gen_set_top_bit(u32 **pp, struct uasm_label **pl, 334 struct uasm_reloc **pr, 335 unsigned r_addr, int lbl) 336 { 337 uasm_i_lui(pp, t0, uasm_rel_hi(0x80000000)); 338 uasm_build_label(pl, *pp, lbl); 339 uasm_i_ll(pp, t1, 0, r_addr); 340 uasm_i_or(pp, t1, t1, t0); 341 uasm_i_sc(pp, t1, 0, r_addr); 342 uasm_il_beqz(pp, pr, t1, lbl); 343 uasm_i_nop(pp); 344 } 345 346 static void *cps_gen_entry_code(unsigned cpu, enum cps_pm_state state) 347 { 348 struct uasm_label *l = labels; 349 struct uasm_reloc *r = relocs; 350 u32 *buf, *p; 351 const unsigned r_online = a0; 352 const unsigned r_nc_count = a1; 353 const unsigned r_pcohctl = t7; 354 const unsigned max_instrs = 256; 355 unsigned cpc_cmd; 356 int err; 357 enum { 358 lbl_incready = 1, 359 lbl_poll_cont, 360 lbl_secondary_hang, 361 lbl_disable_coherence, 362 lbl_flush_fsb, 363 lbl_invicache, 364 lbl_flushdcache, 365 lbl_hang, 366 lbl_set_cont, 367 lbl_secondary_cont, 368 lbl_decready, 369 }; 370 371 /* Allocate a buffer to hold the generated code */ 372 p = buf = kcalloc(max_instrs, sizeof(u32), GFP_KERNEL); 373 if (!buf) 374 return NULL; 375 376 /* Clear labels & relocs ready for (re)use */ 377 memset(labels, 0, sizeof(labels)); 378 memset(relocs, 0, sizeof(relocs)); 379 380 if (IS_ENABLED(CONFIG_CPU_PM) && state == CPS_PM_POWER_GATED) { 381 /* Power gating relies upon CPS SMP */ 382 if (!mips_cps_smp_in_use()) 383 goto out_err; 384 385 /* 386 * Save CPU state. Note the non-standard calling convention 387 * with the return address placed in v0 to avoid clobbering 388 * the ra register before it is saved. 389 */ 390 UASM_i_LA(&p, t0, (long)mips_cps_pm_save); 391 uasm_i_jalr(&p, v0, t0); 392 uasm_i_nop(&p); 393 } 394 395 /* 396 * Load addresses of required CM & CPC registers. This is done early 397 * because they're needed in both the enable & disable coherence steps 398 * but in the coupled case the enable step will only run on one VPE. 399 */ 400 UASM_i_LA(&p, r_pcohctl, (long)addr_gcr_cl_coherence()); 401 402 if (coupled_coherence) { 403 /* Increment ready_count */ 404 uasm_i_sync(&p, STYPE_SYNC_MB); 405 uasm_build_label(&l, p, lbl_incready); 406 uasm_i_ll(&p, t1, 0, r_nc_count); 407 uasm_i_addiu(&p, t2, t1, 1); 408 uasm_i_sc(&p, t2, 0, r_nc_count); 409 uasm_il_beqz(&p, &r, t2, lbl_incready); 410 uasm_i_addiu(&p, t1, t1, 1); 411 412 /* Barrier ensuring all CPUs see the updated r_nc_count value */ 413 uasm_i_sync(&p, STYPE_SYNC_MB); 414 415 /* 416 * If this is the last VPE to become ready for non-coherence 417 * then it should branch below. 418 */ 419 uasm_il_beq(&p, &r, t1, r_online, lbl_disable_coherence); 420 uasm_i_nop(&p); 421 422 if (state < CPS_PM_POWER_GATED) { 423 /* 424 * Otherwise this is not the last VPE to become ready 425 * for non-coherence. It needs to wait until coherence 426 * has been disabled before proceeding, which it will do 427 * by polling for the top bit of ready_count being set. 428 */ 429 uasm_i_addiu(&p, t1, zero, -1); 430 uasm_build_label(&l, p, lbl_poll_cont); 431 uasm_i_lw(&p, t0, 0, r_nc_count); 432 uasm_il_bltz(&p, &r, t0, lbl_secondary_cont); 433 uasm_i_ehb(&p); 434 if (cpu_has_mipsmt) 435 uasm_i_yield(&p, zero, t1); 436 uasm_il_b(&p, &r, lbl_poll_cont); 437 uasm_i_nop(&p); 438 } else { 439 /* 440 * The core will lose power & this VPE will not continue 441 * so it can simply halt here. 442 */ 443 if (cpu_has_mipsmt) { 444 /* Halt the VPE via C0 tchalt register */ 445 uasm_i_addiu(&p, t0, zero, TCHALT_H); 446 uasm_i_mtc0(&p, t0, 2, 4); 447 } else if (cpu_has_vp) { 448 /* Halt the VP via the CPC VP_STOP register */ 449 unsigned int vpe_id; 450 451 vpe_id = cpu_vpe_id(&cpu_data[cpu]); 452 uasm_i_addiu(&p, t0, zero, 1 << vpe_id); 453 UASM_i_LA(&p, t1, (long)addr_cpc_cl_vp_stop()); 454 uasm_i_sw(&p, t0, 0, t1); 455 } else { 456 BUG(); 457 } 458 uasm_build_label(&l, p, lbl_secondary_hang); 459 uasm_il_b(&p, &r, lbl_secondary_hang); 460 uasm_i_nop(&p); 461 } 462 } 463 464 /* 465 * This is the point of no return - this VPE will now proceed to 466 * disable coherence. At this point we *must* be sure that no other 467 * VPE within the core will interfere with the L1 dcache. 468 */ 469 uasm_build_label(&l, p, lbl_disable_coherence); 470 471 /* Invalidate the L1 icache */ 472 cps_gen_cache_routine(&p, &l, &r, &cpu_data[cpu].icache, 473 Index_Invalidate_I, lbl_invicache); 474 475 /* Writeback & invalidate the L1 dcache */ 476 cps_gen_cache_routine(&p, &l, &r, &cpu_data[cpu].dcache, 477 Index_Writeback_Inv_D, lbl_flushdcache); 478 479 /* Barrier ensuring previous cache invalidates are complete */ 480 uasm_i_sync(&p, STYPE_SYNC); 481 uasm_i_ehb(&p); 482 483 if (mips_cm_revision() < CM_REV_CM3) { 484 /* 485 * Disable all but self interventions. The load from COHCTL is 486 * defined by the interAptiv & proAptiv SUMs as ensuring that the 487 * operation resulting from the preceding store is complete. 488 */ 489 uasm_i_addiu(&p, t0, zero, 1 << cpu_data[cpu].core); 490 uasm_i_sw(&p, t0, 0, r_pcohctl); 491 uasm_i_lw(&p, t0, 0, r_pcohctl); 492 493 /* Barrier to ensure write to coherence control is complete */ 494 uasm_i_sync(&p, STYPE_SYNC); 495 uasm_i_ehb(&p); 496 } 497 498 /* Disable coherence */ 499 uasm_i_sw(&p, zero, 0, r_pcohctl); 500 uasm_i_lw(&p, t0, 0, r_pcohctl); 501 502 if (state >= CPS_PM_CLOCK_GATED) { 503 err = cps_gen_flush_fsb(&p, &l, &r, &cpu_data[cpu], 504 lbl_flush_fsb); 505 if (err) 506 goto out_err; 507 508 /* Determine the CPC command to issue */ 509 switch (state) { 510 case CPS_PM_CLOCK_GATED: 511 cpc_cmd = CPC_Cx_CMD_CLOCKOFF; 512 break; 513 case CPS_PM_POWER_GATED: 514 cpc_cmd = CPC_Cx_CMD_PWRDOWN; 515 break; 516 default: 517 BUG(); 518 goto out_err; 519 } 520 521 /* Issue the CPC command */ 522 UASM_i_LA(&p, t0, (long)addr_cpc_cl_cmd()); 523 uasm_i_addiu(&p, t1, zero, cpc_cmd); 524 uasm_i_sw(&p, t1, 0, t0); 525 526 if (state == CPS_PM_POWER_GATED) { 527 /* If anything goes wrong just hang */ 528 uasm_build_label(&l, p, lbl_hang); 529 uasm_il_b(&p, &r, lbl_hang); 530 uasm_i_nop(&p); 531 532 /* 533 * There's no point generating more code, the core is 534 * powered down & if powered back up will run from the 535 * reset vector not from here. 536 */ 537 goto gen_done; 538 } 539 540 /* Barrier to ensure write to CPC command is complete */ 541 uasm_i_sync(&p, STYPE_SYNC); 542 uasm_i_ehb(&p); 543 } 544 545 if (state == CPS_PM_NC_WAIT) { 546 /* 547 * At this point it is safe for all VPEs to proceed with 548 * execution. This VPE will set the top bit of ready_count 549 * to indicate to the other VPEs that they may continue. 550 */ 551 if (coupled_coherence) 552 cps_gen_set_top_bit(&p, &l, &r, r_nc_count, 553 lbl_set_cont); 554 555 /* 556 * VPEs which did not disable coherence will continue 557 * executing, after coherence has been disabled, from this 558 * point. 559 */ 560 uasm_build_label(&l, p, lbl_secondary_cont); 561 562 /* Now perform our wait */ 563 uasm_i_wait(&p, 0); 564 } 565 566 /* 567 * Re-enable coherence. Note that for CPS_PM_NC_WAIT all coupled VPEs 568 * will run this. The first will actually re-enable coherence & the 569 * rest will just be performing a rather unusual nop. 570 */ 571 uasm_i_addiu(&p, t0, zero, mips_cm_revision() < CM_REV_CM3 572 ? CM_GCR_Cx_COHERENCE_COHDOMAINEN_MSK 573 : CM3_GCR_Cx_COHERENCE_COHEN_MSK); 574 575 uasm_i_sw(&p, t0, 0, r_pcohctl); 576 uasm_i_lw(&p, t0, 0, r_pcohctl); 577 578 /* Barrier to ensure write to coherence control is complete */ 579 uasm_i_sync(&p, STYPE_SYNC); 580 uasm_i_ehb(&p); 581 582 if (coupled_coherence && (state == CPS_PM_NC_WAIT)) { 583 /* Decrement ready_count */ 584 uasm_build_label(&l, p, lbl_decready); 585 uasm_i_sync(&p, STYPE_SYNC_MB); 586 uasm_i_ll(&p, t1, 0, r_nc_count); 587 uasm_i_addiu(&p, t2, t1, -1); 588 uasm_i_sc(&p, t2, 0, r_nc_count); 589 uasm_il_beqz(&p, &r, t2, lbl_decready); 590 uasm_i_andi(&p, v0, t1, (1 << fls(smp_num_siblings)) - 1); 591 592 /* Barrier ensuring all CPUs see the updated r_nc_count value */ 593 uasm_i_sync(&p, STYPE_SYNC_MB); 594 } 595 596 if (coupled_coherence && (state == CPS_PM_CLOCK_GATED)) { 597 /* 598 * At this point it is safe for all VPEs to proceed with 599 * execution. This VPE will set the top bit of ready_count 600 * to indicate to the other VPEs that they may continue. 601 */ 602 cps_gen_set_top_bit(&p, &l, &r, r_nc_count, lbl_set_cont); 603 604 /* 605 * This core will be reliant upon another core sending a 606 * power-up command to the CPC in order to resume operation. 607 * Thus an arbitrary VPE can't trigger the core leaving the 608 * idle state and the one that disables coherence might as well 609 * be the one to re-enable it. The rest will continue from here 610 * after that has been done. 611 */ 612 uasm_build_label(&l, p, lbl_secondary_cont); 613 614 /* Barrier ensuring all CPUs see the updated r_nc_count value */ 615 uasm_i_sync(&p, STYPE_SYNC_MB); 616 } 617 618 /* The core is coherent, time to return to C code */ 619 uasm_i_jr(&p, ra); 620 uasm_i_nop(&p); 621 622 gen_done: 623 /* Ensure the code didn't exceed the resources allocated for it */ 624 BUG_ON((p - buf) > max_instrs); 625 BUG_ON((l - labels) > ARRAY_SIZE(labels)); 626 BUG_ON((r - relocs) > ARRAY_SIZE(relocs)); 627 628 /* Patch branch offsets */ 629 uasm_resolve_relocs(relocs, labels); 630 631 /* Flush the icache */ 632 local_flush_icache_range((unsigned long)buf, (unsigned long)p); 633 634 return buf; 635 out_err: 636 kfree(buf); 637 return NULL; 638 } 639 640 static int cps_pm_online_cpu(unsigned int cpu) 641 { 642 enum cps_pm_state state; 643 unsigned core = cpu_data[cpu].core; 644 void *entry_fn, *core_rc; 645 646 for (state = CPS_PM_NC_WAIT; state < CPS_PM_STATE_COUNT; state++) { 647 if (per_cpu(nc_asm_enter, core)[state]) 648 continue; 649 if (!test_bit(state, state_support)) 650 continue; 651 652 entry_fn = cps_gen_entry_code(cpu, state); 653 if (!entry_fn) { 654 pr_err("Failed to generate core %u state %u entry\n", 655 core, state); 656 clear_bit(state, state_support); 657 } 658 659 per_cpu(nc_asm_enter, core)[state] = entry_fn; 660 } 661 662 if (!per_cpu(ready_count, core)) { 663 core_rc = kmalloc(sizeof(u32), GFP_KERNEL); 664 if (!core_rc) { 665 pr_err("Failed allocate core %u ready_count\n", core); 666 return -ENOMEM; 667 } 668 per_cpu(ready_count, core) = core_rc; 669 } 670 671 return 0; 672 } 673 674 static int __init cps_pm_init(void) 675 { 676 /* A CM is required for all non-coherent states */ 677 if (!mips_cm_present()) { 678 pr_warn("pm-cps: no CM, non-coherent states unavailable\n"); 679 return 0; 680 } 681 682 /* 683 * If interrupts were enabled whilst running a wait instruction on a 684 * non-coherent core then the VPE may end up processing interrupts 685 * whilst non-coherent. That would be bad. 686 */ 687 if (cpu_wait == r4k_wait_irqoff) 688 set_bit(CPS_PM_NC_WAIT, state_support); 689 else 690 pr_warn("pm-cps: non-coherent wait unavailable\n"); 691 692 /* Detect whether a CPC is present */ 693 if (mips_cpc_present()) { 694 /* Detect whether clock gating is implemented */ 695 if (read_cpc_cl_stat_conf() & CPC_Cx_STAT_CONF_CLKGAT_IMPL_MSK) 696 set_bit(CPS_PM_CLOCK_GATED, state_support); 697 else 698 pr_warn("pm-cps: CPC does not support clock gating\n"); 699 700 /* Power gating is available with CPS SMP & any CPC */ 701 if (mips_cps_smp_in_use()) 702 set_bit(CPS_PM_POWER_GATED, state_support); 703 else 704 pr_warn("pm-cps: CPS SMP not in use, power gating unavailable\n"); 705 } else { 706 pr_warn("pm-cps: no CPC, clock & power gating unavailable\n"); 707 } 708 709 return cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mips/cps_pm:online", 710 cps_pm_online_cpu, NULL); 711 } 712 arch_initcall(cps_pm_init); 713