xref: /linux/arch/mips/kernel/perf_event_mipsxx.c (revision f2ee442115c9b6219083c019939a9cc0c9abb2f8)
1 /*
2  * Linux performance counter support for MIPS.
3  *
4  * Copyright (C) 2010 MIPS Technologies, Inc.
5  * Copyright (C) 2011 Cavium Networks, Inc.
6  * Author: Deng-Cheng Zhu
7  *
8  * This code is based on the implementation for ARM, which is in turn
9  * based on the sparc64 perf event code and the x86 code. Performance
10  * counter access is based on the MIPS Oprofile code. And the callchain
11  * support references the code of MIPS stacktrace.c.
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License version 2 as
15  * published by the Free Software Foundation.
16  */
17 
18 #include <linux/cpumask.h>
19 #include <linux/interrupt.h>
20 #include <linux/smp.h>
21 #include <linux/kernel.h>
22 #include <linux/perf_event.h>
23 #include <linux/uaccess.h>
24 
25 #include <asm/irq.h>
26 #include <asm/irq_regs.h>
27 #include <asm/stacktrace.h>
28 #include <asm/time.h> /* For perf_irq */
29 
30 #define MIPS_MAX_HWEVENTS 4
31 
32 struct cpu_hw_events {
33 	/* Array of events on this cpu. */
34 	struct perf_event	*events[MIPS_MAX_HWEVENTS];
35 
36 	/*
37 	 * Set the bit (indexed by the counter number) when the counter
38 	 * is used for an event.
39 	 */
40 	unsigned long		used_mask[BITS_TO_LONGS(MIPS_MAX_HWEVENTS)];
41 
42 	/*
43 	 * Software copy of the control register for each performance counter.
44 	 * MIPS CPUs vary in performance counters. They use this differently,
45 	 * and even may not use it.
46 	 */
47 	unsigned int		saved_ctrl[MIPS_MAX_HWEVENTS];
48 };
49 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
50 	.saved_ctrl = {0},
51 };
52 
53 /* The description of MIPS performance events. */
54 struct mips_perf_event {
55 	unsigned int event_id;
56 	/*
57 	 * MIPS performance counters are indexed starting from 0.
58 	 * CNTR_EVEN indicates the indexes of the counters to be used are
59 	 * even numbers.
60 	 */
61 	unsigned int cntr_mask;
62 	#define CNTR_EVEN	0x55555555
63 	#define CNTR_ODD	0xaaaaaaaa
64 	#define CNTR_ALL	0xffffffff
65 #ifdef CONFIG_MIPS_MT_SMP
66 	enum {
67 		T  = 0,
68 		V  = 1,
69 		P  = 2,
70 	} range;
71 #else
72 	#define T
73 	#define V
74 	#define P
75 #endif
76 };
77 
78 static struct mips_perf_event raw_event;
79 static DEFINE_MUTEX(raw_event_mutex);
80 
81 #define UNSUPPORTED_PERF_EVENT_ID 0xffffffff
82 #define C(x) PERF_COUNT_HW_CACHE_##x
83 
84 struct mips_pmu {
85 	u64		max_period;
86 	u64		valid_count;
87 	u64		overflow;
88 	const char	*name;
89 	int		irq;
90 	u64		(*read_counter)(unsigned int idx);
91 	void		(*write_counter)(unsigned int idx, u64 val);
92 	const struct mips_perf_event *(*map_raw_event)(u64 config);
93 	const struct mips_perf_event (*general_event_map)[PERF_COUNT_HW_MAX];
94 	const struct mips_perf_event (*cache_event_map)
95 				[PERF_COUNT_HW_CACHE_MAX]
96 				[PERF_COUNT_HW_CACHE_OP_MAX]
97 				[PERF_COUNT_HW_CACHE_RESULT_MAX];
98 	unsigned int	num_counters;
99 };
100 
101 static struct mips_pmu mipspmu;
102 
103 #define M_CONFIG1_PC	(1 << 4)
104 
105 #define M_PERFCTL_EXL			(1      <<  0)
106 #define M_PERFCTL_KERNEL		(1      <<  1)
107 #define M_PERFCTL_SUPERVISOR		(1      <<  2)
108 #define M_PERFCTL_USER			(1      <<  3)
109 #define M_PERFCTL_INTERRUPT_ENABLE	(1      <<  4)
110 #define M_PERFCTL_EVENT(event)		(((event) & 0x3ff)  << 5)
111 #define M_PERFCTL_VPEID(vpe)		((vpe)    << 16)
112 #define M_PERFCTL_MT_EN(filter)		((filter) << 20)
113 #define    M_TC_EN_ALL			M_PERFCTL_MT_EN(0)
114 #define    M_TC_EN_VPE			M_PERFCTL_MT_EN(1)
115 #define    M_TC_EN_TC			M_PERFCTL_MT_EN(2)
116 #define M_PERFCTL_TCID(tcid)		((tcid)   << 22)
117 #define M_PERFCTL_WIDE			(1      << 30)
118 #define M_PERFCTL_MORE			(1      << 31)
119 
120 #define M_PERFCTL_COUNT_EVENT_WHENEVER	(M_PERFCTL_EXL |		\
121 					M_PERFCTL_KERNEL |		\
122 					M_PERFCTL_USER |		\
123 					M_PERFCTL_SUPERVISOR |		\
124 					M_PERFCTL_INTERRUPT_ENABLE)
125 
126 #ifdef CONFIG_MIPS_MT_SMP
127 #define M_PERFCTL_CONFIG_MASK		0x3fff801f
128 #else
129 #define M_PERFCTL_CONFIG_MASK		0x1f
130 #endif
131 #define M_PERFCTL_EVENT_MASK		0xfe0
132 
133 
134 #ifdef CONFIG_MIPS_MT_SMP
135 static int cpu_has_mipsmt_pertccounters;
136 
137 static DEFINE_RWLOCK(pmuint_rwlock);
138 
139 /*
140  * FIXME: For VSMP, vpe_id() is redefined for Perf-events, because
141  * cpu_data[cpuid].vpe_id reports 0 for _both_ CPUs.
142  */
143 #if defined(CONFIG_HW_PERF_EVENTS)
144 #define vpe_id()	(cpu_has_mipsmt_pertccounters ? \
145 			0 : smp_processor_id())
146 #else
147 #define vpe_id()	(cpu_has_mipsmt_pertccounters ? \
148 			0 : cpu_data[smp_processor_id()].vpe_id)
149 #endif
150 
151 /* Copied from op_model_mipsxx.c */
152 static unsigned int vpe_shift(void)
153 {
154 	if (num_possible_cpus() > 1)
155 		return 1;
156 
157 	return 0;
158 }
159 
160 static unsigned int counters_total_to_per_cpu(unsigned int counters)
161 {
162 	return counters >> vpe_shift();
163 }
164 
165 static unsigned int counters_per_cpu_to_total(unsigned int counters)
166 {
167 	return counters << vpe_shift();
168 }
169 
170 #else /* !CONFIG_MIPS_MT_SMP */
171 #define vpe_id()	0
172 
173 #endif /* CONFIG_MIPS_MT_SMP */
174 
175 static void resume_local_counters(void);
176 static void pause_local_counters(void);
177 static irqreturn_t mipsxx_pmu_handle_irq(int, void *);
178 static int mipsxx_pmu_handle_shared_irq(void);
179 
180 static unsigned int mipsxx_pmu_swizzle_perf_idx(unsigned int idx)
181 {
182 	if (vpe_id() == 1)
183 		idx = (idx + 2) & 3;
184 	return idx;
185 }
186 
187 static u64 mipsxx_pmu_read_counter(unsigned int idx)
188 {
189 	idx = mipsxx_pmu_swizzle_perf_idx(idx);
190 
191 	switch (idx) {
192 	case 0:
193 		/*
194 		 * The counters are unsigned, we must cast to truncate
195 		 * off the high bits.
196 		 */
197 		return (u32)read_c0_perfcntr0();
198 	case 1:
199 		return (u32)read_c0_perfcntr1();
200 	case 2:
201 		return (u32)read_c0_perfcntr2();
202 	case 3:
203 		return (u32)read_c0_perfcntr3();
204 	default:
205 		WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
206 		return 0;
207 	}
208 }
209 
210 static u64 mipsxx_pmu_read_counter_64(unsigned int idx)
211 {
212 	idx = mipsxx_pmu_swizzle_perf_idx(idx);
213 
214 	switch (idx) {
215 	case 0:
216 		return read_c0_perfcntr0_64();
217 	case 1:
218 		return read_c0_perfcntr1_64();
219 	case 2:
220 		return read_c0_perfcntr2_64();
221 	case 3:
222 		return read_c0_perfcntr3_64();
223 	default:
224 		WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
225 		return 0;
226 	}
227 }
228 
229 static void mipsxx_pmu_write_counter(unsigned int idx, u64 val)
230 {
231 	idx = mipsxx_pmu_swizzle_perf_idx(idx);
232 
233 	switch (idx) {
234 	case 0:
235 		write_c0_perfcntr0(val);
236 		return;
237 	case 1:
238 		write_c0_perfcntr1(val);
239 		return;
240 	case 2:
241 		write_c0_perfcntr2(val);
242 		return;
243 	case 3:
244 		write_c0_perfcntr3(val);
245 		return;
246 	}
247 }
248 
249 static void mipsxx_pmu_write_counter_64(unsigned int idx, u64 val)
250 {
251 	idx = mipsxx_pmu_swizzle_perf_idx(idx);
252 
253 	switch (idx) {
254 	case 0:
255 		write_c0_perfcntr0_64(val);
256 		return;
257 	case 1:
258 		write_c0_perfcntr1_64(val);
259 		return;
260 	case 2:
261 		write_c0_perfcntr2_64(val);
262 		return;
263 	case 3:
264 		write_c0_perfcntr3_64(val);
265 		return;
266 	}
267 }
268 
269 static unsigned int mipsxx_pmu_read_control(unsigned int idx)
270 {
271 	idx = mipsxx_pmu_swizzle_perf_idx(idx);
272 
273 	switch (idx) {
274 	case 0:
275 		return read_c0_perfctrl0();
276 	case 1:
277 		return read_c0_perfctrl1();
278 	case 2:
279 		return read_c0_perfctrl2();
280 	case 3:
281 		return read_c0_perfctrl3();
282 	default:
283 		WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
284 		return 0;
285 	}
286 }
287 
288 static void mipsxx_pmu_write_control(unsigned int idx, unsigned int val)
289 {
290 	idx = mipsxx_pmu_swizzle_perf_idx(idx);
291 
292 	switch (idx) {
293 	case 0:
294 		write_c0_perfctrl0(val);
295 		return;
296 	case 1:
297 		write_c0_perfctrl1(val);
298 		return;
299 	case 2:
300 		write_c0_perfctrl2(val);
301 		return;
302 	case 3:
303 		write_c0_perfctrl3(val);
304 		return;
305 	}
306 }
307 
308 static int mipsxx_pmu_alloc_counter(struct cpu_hw_events *cpuc,
309 				    struct hw_perf_event *hwc)
310 {
311 	int i;
312 
313 	/*
314 	 * We only need to care the counter mask. The range has been
315 	 * checked definitely.
316 	 */
317 	unsigned long cntr_mask = (hwc->event_base >> 8) & 0xffff;
318 
319 	for (i = mipspmu.num_counters - 1; i >= 0; i--) {
320 		/*
321 		 * Note that some MIPS perf events can be counted by both
322 		 * even and odd counters, wheresas many other are only by
323 		 * even _or_ odd counters. This introduces an issue that
324 		 * when the former kind of event takes the counter the
325 		 * latter kind of event wants to use, then the "counter
326 		 * allocation" for the latter event will fail. In fact if
327 		 * they can be dynamically swapped, they both feel happy.
328 		 * But here we leave this issue alone for now.
329 		 */
330 		if (test_bit(i, &cntr_mask) &&
331 			!test_and_set_bit(i, cpuc->used_mask))
332 			return i;
333 	}
334 
335 	return -EAGAIN;
336 }
337 
338 static void mipsxx_pmu_enable_event(struct hw_perf_event *evt, int idx)
339 {
340 	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
341 
342 	WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
343 
344 	cpuc->saved_ctrl[idx] = M_PERFCTL_EVENT(evt->event_base & 0xff) |
345 		(evt->config_base & M_PERFCTL_CONFIG_MASK) |
346 		/* Make sure interrupt enabled. */
347 		M_PERFCTL_INTERRUPT_ENABLE;
348 	/*
349 	 * We do not actually let the counter run. Leave it until start().
350 	 */
351 }
352 
353 static void mipsxx_pmu_disable_event(int idx)
354 {
355 	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
356 	unsigned long flags;
357 
358 	WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
359 
360 	local_irq_save(flags);
361 	cpuc->saved_ctrl[idx] = mipsxx_pmu_read_control(idx) &
362 		~M_PERFCTL_COUNT_EVENT_WHENEVER;
363 	mipsxx_pmu_write_control(idx, cpuc->saved_ctrl[idx]);
364 	local_irq_restore(flags);
365 }
366 
367 static int mipspmu_event_set_period(struct perf_event *event,
368 				    struct hw_perf_event *hwc,
369 				    int idx)
370 {
371 	u64 left = local64_read(&hwc->period_left);
372 	u64 period = hwc->sample_period;
373 	int ret = 0;
374 
375 	if (unlikely((left + period) & (1ULL << 63))) {
376 		/* left underflowed by more than period. */
377 		left = period;
378 		local64_set(&hwc->period_left, left);
379 		hwc->last_period = period;
380 		ret = 1;
381 	} else	if (unlikely((left + period) <= period)) {
382 		/* left underflowed by less than period. */
383 		left += period;
384 		local64_set(&hwc->period_left, left);
385 		hwc->last_period = period;
386 		ret = 1;
387 	}
388 
389 	if (left > mipspmu.max_period) {
390 		left = mipspmu.max_period;
391 		local64_set(&hwc->period_left, left);
392 	}
393 
394 	local64_set(&hwc->prev_count, mipspmu.overflow - left);
395 
396 	mipspmu.write_counter(idx, mipspmu.overflow - left);
397 
398 	perf_event_update_userpage(event);
399 
400 	return ret;
401 }
402 
403 static void mipspmu_event_update(struct perf_event *event,
404 				 struct hw_perf_event *hwc,
405 				 int idx)
406 {
407 	u64 prev_raw_count, new_raw_count;
408 	u64 delta;
409 
410 again:
411 	prev_raw_count = local64_read(&hwc->prev_count);
412 	new_raw_count = mipspmu.read_counter(idx);
413 
414 	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
415 				new_raw_count) != prev_raw_count)
416 		goto again;
417 
418 	delta = new_raw_count - prev_raw_count;
419 
420 	local64_add(delta, &event->count);
421 	local64_sub(delta, &hwc->period_left);
422 }
423 
424 static void mipspmu_start(struct perf_event *event, int flags)
425 {
426 	struct hw_perf_event *hwc = &event->hw;
427 
428 	if (flags & PERF_EF_RELOAD)
429 		WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
430 
431 	hwc->state = 0;
432 
433 	/* Set the period for the event. */
434 	mipspmu_event_set_period(event, hwc, hwc->idx);
435 
436 	/* Enable the event. */
437 	mipsxx_pmu_enable_event(hwc, hwc->idx);
438 }
439 
440 static void mipspmu_stop(struct perf_event *event, int flags)
441 {
442 	struct hw_perf_event *hwc = &event->hw;
443 
444 	if (!(hwc->state & PERF_HES_STOPPED)) {
445 		/* We are working on a local event. */
446 		mipsxx_pmu_disable_event(hwc->idx);
447 		barrier();
448 		mipspmu_event_update(event, hwc, hwc->idx);
449 		hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
450 	}
451 }
452 
453 static int mipspmu_add(struct perf_event *event, int flags)
454 {
455 	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
456 	struct hw_perf_event *hwc = &event->hw;
457 	int idx;
458 	int err = 0;
459 
460 	perf_pmu_disable(event->pmu);
461 
462 	/* To look for a free counter for this event. */
463 	idx = mipsxx_pmu_alloc_counter(cpuc, hwc);
464 	if (idx < 0) {
465 		err = idx;
466 		goto out;
467 	}
468 
469 	/*
470 	 * If there is an event in the counter we are going to use then
471 	 * make sure it is disabled.
472 	 */
473 	event->hw.idx = idx;
474 	mipsxx_pmu_disable_event(idx);
475 	cpuc->events[idx] = event;
476 
477 	hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
478 	if (flags & PERF_EF_START)
479 		mipspmu_start(event, PERF_EF_RELOAD);
480 
481 	/* Propagate our changes to the userspace mapping. */
482 	perf_event_update_userpage(event);
483 
484 out:
485 	perf_pmu_enable(event->pmu);
486 	return err;
487 }
488 
489 static void mipspmu_del(struct perf_event *event, int flags)
490 {
491 	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
492 	struct hw_perf_event *hwc = &event->hw;
493 	int idx = hwc->idx;
494 
495 	WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
496 
497 	mipspmu_stop(event, PERF_EF_UPDATE);
498 	cpuc->events[idx] = NULL;
499 	clear_bit(idx, cpuc->used_mask);
500 
501 	perf_event_update_userpage(event);
502 }
503 
504 static void mipspmu_read(struct perf_event *event)
505 {
506 	struct hw_perf_event *hwc = &event->hw;
507 
508 	/* Don't read disabled counters! */
509 	if (hwc->idx < 0)
510 		return;
511 
512 	mipspmu_event_update(event, hwc, hwc->idx);
513 }
514 
515 static void mipspmu_enable(struct pmu *pmu)
516 {
517 #ifdef CONFIG_MIPS_MT_SMP
518 	write_unlock(&pmuint_rwlock);
519 #endif
520 	resume_local_counters();
521 }
522 
523 /*
524  * MIPS performance counters can be per-TC. The control registers can
525  * not be directly accessed accross CPUs. Hence if we want to do global
526  * control, we need cross CPU calls. on_each_cpu() can help us, but we
527  * can not make sure this function is called with interrupts enabled. So
528  * here we pause local counters and then grab a rwlock and leave the
529  * counters on other CPUs alone. If any counter interrupt raises while
530  * we own the write lock, simply pause local counters on that CPU and
531  * spin in the handler. Also we know we won't be switched to another
532  * CPU after pausing local counters and before grabbing the lock.
533  */
534 static void mipspmu_disable(struct pmu *pmu)
535 {
536 	pause_local_counters();
537 #ifdef CONFIG_MIPS_MT_SMP
538 	write_lock(&pmuint_rwlock);
539 #endif
540 }
541 
542 static atomic_t active_events = ATOMIC_INIT(0);
543 static DEFINE_MUTEX(pmu_reserve_mutex);
544 static int (*save_perf_irq)(void);
545 
546 static int mipspmu_get_irq(void)
547 {
548 	int err;
549 
550 	if (mipspmu.irq >= 0) {
551 		/* Request my own irq handler. */
552 		err = request_irq(mipspmu.irq, mipsxx_pmu_handle_irq,
553 			IRQF_PERCPU | IRQF_NOBALANCING,
554 			"mips_perf_pmu", NULL);
555 		if (err) {
556 			pr_warning("Unable to request IRQ%d for MIPS "
557 			   "performance counters!\n", mipspmu.irq);
558 		}
559 	} else if (cp0_perfcount_irq < 0) {
560 		/*
561 		 * We are sharing the irq number with the timer interrupt.
562 		 */
563 		save_perf_irq = perf_irq;
564 		perf_irq = mipsxx_pmu_handle_shared_irq;
565 		err = 0;
566 	} else {
567 		pr_warning("The platform hasn't properly defined its "
568 			"interrupt controller.\n");
569 		err = -ENOENT;
570 	}
571 
572 	return err;
573 }
574 
575 static void mipspmu_free_irq(void)
576 {
577 	if (mipspmu.irq >= 0)
578 		free_irq(mipspmu.irq, NULL);
579 	else if (cp0_perfcount_irq < 0)
580 		perf_irq = save_perf_irq;
581 }
582 
583 /*
584  * mipsxx/rm9000/loongson2 have different performance counters, they have
585  * specific low-level init routines.
586  */
587 static void reset_counters(void *arg);
588 static int __hw_perf_event_init(struct perf_event *event);
589 
590 static void hw_perf_event_destroy(struct perf_event *event)
591 {
592 	if (atomic_dec_and_mutex_lock(&active_events,
593 				&pmu_reserve_mutex)) {
594 		/*
595 		 * We must not call the destroy function with interrupts
596 		 * disabled.
597 		 */
598 		on_each_cpu(reset_counters,
599 			(void *)(long)mipspmu.num_counters, 1);
600 		mipspmu_free_irq();
601 		mutex_unlock(&pmu_reserve_mutex);
602 	}
603 }
604 
605 static int mipspmu_event_init(struct perf_event *event)
606 {
607 	int err = 0;
608 
609 	switch (event->attr.type) {
610 	case PERF_TYPE_RAW:
611 	case PERF_TYPE_HARDWARE:
612 	case PERF_TYPE_HW_CACHE:
613 		break;
614 
615 	default:
616 		return -ENOENT;
617 	}
618 
619 	if (event->cpu >= nr_cpumask_bits ||
620 	    (event->cpu >= 0 && !cpu_online(event->cpu)))
621 		return -ENODEV;
622 
623 	if (!atomic_inc_not_zero(&active_events)) {
624 		if (atomic_read(&active_events) > MIPS_MAX_HWEVENTS) {
625 			atomic_dec(&active_events);
626 			return -ENOSPC;
627 		}
628 
629 		mutex_lock(&pmu_reserve_mutex);
630 		if (atomic_read(&active_events) == 0)
631 			err = mipspmu_get_irq();
632 
633 		if (!err)
634 			atomic_inc(&active_events);
635 		mutex_unlock(&pmu_reserve_mutex);
636 	}
637 
638 	if (err)
639 		return err;
640 
641 	err = __hw_perf_event_init(event);
642 	if (err)
643 		hw_perf_event_destroy(event);
644 
645 	return err;
646 }
647 
648 static struct pmu pmu = {
649 	.pmu_enable	= mipspmu_enable,
650 	.pmu_disable	= mipspmu_disable,
651 	.event_init	= mipspmu_event_init,
652 	.add		= mipspmu_add,
653 	.del		= mipspmu_del,
654 	.start		= mipspmu_start,
655 	.stop		= mipspmu_stop,
656 	.read		= mipspmu_read,
657 };
658 
659 static unsigned int mipspmu_perf_event_encode(const struct mips_perf_event *pev)
660 {
661 /*
662  * Top 8 bits for range, next 16 bits for cntr_mask, lowest 8 bits for
663  * event_id.
664  */
665 #ifdef CONFIG_MIPS_MT_SMP
666 	return ((unsigned int)pev->range << 24) |
667 		(pev->cntr_mask & 0xffff00) |
668 		(pev->event_id & 0xff);
669 #else
670 	return (pev->cntr_mask & 0xffff00) |
671 		(pev->event_id & 0xff);
672 #endif
673 }
674 
675 static const struct mips_perf_event *mipspmu_map_general_event(int idx)
676 {
677 	const struct mips_perf_event *pev;
678 
679 	pev = ((*mipspmu.general_event_map)[idx].event_id ==
680 		UNSUPPORTED_PERF_EVENT_ID ? ERR_PTR(-EOPNOTSUPP) :
681 		&(*mipspmu.general_event_map)[idx]);
682 
683 	return pev;
684 }
685 
686 static const struct mips_perf_event *mipspmu_map_cache_event(u64 config)
687 {
688 	unsigned int cache_type, cache_op, cache_result;
689 	const struct mips_perf_event *pev;
690 
691 	cache_type = (config >> 0) & 0xff;
692 	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
693 		return ERR_PTR(-EINVAL);
694 
695 	cache_op = (config >> 8) & 0xff;
696 	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
697 		return ERR_PTR(-EINVAL);
698 
699 	cache_result = (config >> 16) & 0xff;
700 	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
701 		return ERR_PTR(-EINVAL);
702 
703 	pev = &((*mipspmu.cache_event_map)
704 					[cache_type]
705 					[cache_op]
706 					[cache_result]);
707 
708 	if (pev->event_id == UNSUPPORTED_PERF_EVENT_ID)
709 		return ERR_PTR(-EOPNOTSUPP);
710 
711 	return pev;
712 
713 }
714 
715 static int validate_event(struct cpu_hw_events *cpuc,
716 	       struct perf_event *event)
717 {
718 	struct hw_perf_event fake_hwc = event->hw;
719 
720 	/* Allow mixed event group. So return 1 to pass validation. */
721 	if (event->pmu != &pmu || event->state <= PERF_EVENT_STATE_OFF)
722 		return 1;
723 
724 	return mipsxx_pmu_alloc_counter(cpuc, &fake_hwc) >= 0;
725 }
726 
727 static int validate_group(struct perf_event *event)
728 {
729 	struct perf_event *sibling, *leader = event->group_leader;
730 	struct cpu_hw_events fake_cpuc;
731 
732 	memset(&fake_cpuc, 0, sizeof(fake_cpuc));
733 
734 	if (!validate_event(&fake_cpuc, leader))
735 		return -ENOSPC;
736 
737 	list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
738 		if (!validate_event(&fake_cpuc, sibling))
739 			return -ENOSPC;
740 	}
741 
742 	if (!validate_event(&fake_cpuc, event))
743 		return -ENOSPC;
744 
745 	return 0;
746 }
747 
748 /* This is needed by specific irq handlers in perf_event_*.c */
749 static void handle_associated_event(struct cpu_hw_events *cpuc,
750 				    int idx, struct perf_sample_data *data,
751 				    struct pt_regs *regs)
752 {
753 	struct perf_event *event = cpuc->events[idx];
754 	struct hw_perf_event *hwc = &event->hw;
755 
756 	mipspmu_event_update(event, hwc, idx);
757 	data->period = event->hw.last_period;
758 	if (!mipspmu_event_set_period(event, hwc, idx))
759 		return;
760 
761 	if (perf_event_overflow(event, data, regs))
762 		mipsxx_pmu_disable_event(idx);
763 }
764 
765 
766 static int __n_counters(void)
767 {
768 	if (!(read_c0_config1() & M_CONFIG1_PC))
769 		return 0;
770 	if (!(read_c0_perfctrl0() & M_PERFCTL_MORE))
771 		return 1;
772 	if (!(read_c0_perfctrl1() & M_PERFCTL_MORE))
773 		return 2;
774 	if (!(read_c0_perfctrl2() & M_PERFCTL_MORE))
775 		return 3;
776 
777 	return 4;
778 }
779 
780 static int n_counters(void)
781 {
782 	int counters;
783 
784 	switch (current_cpu_type()) {
785 	case CPU_R10000:
786 		counters = 2;
787 		break;
788 
789 	case CPU_R12000:
790 	case CPU_R14000:
791 		counters = 4;
792 		break;
793 
794 	default:
795 		counters = __n_counters();
796 	}
797 
798 	return counters;
799 }
800 
801 static void reset_counters(void *arg)
802 {
803 	int counters = (int)(long)arg;
804 	switch (counters) {
805 	case 4:
806 		mipsxx_pmu_write_control(3, 0);
807 		mipspmu.write_counter(3, 0);
808 	case 3:
809 		mipsxx_pmu_write_control(2, 0);
810 		mipspmu.write_counter(2, 0);
811 	case 2:
812 		mipsxx_pmu_write_control(1, 0);
813 		mipspmu.write_counter(1, 0);
814 	case 1:
815 		mipsxx_pmu_write_control(0, 0);
816 		mipspmu.write_counter(0, 0);
817 	}
818 }
819 
820 /* 24K/34K/1004K cores can share the same event map. */
821 static const struct mips_perf_event mipsxxcore_event_map
822 				[PERF_COUNT_HW_MAX] = {
823 	[PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P },
824 	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
825 	[PERF_COUNT_HW_CACHE_REFERENCES] = { UNSUPPORTED_PERF_EVENT_ID },
826 	[PERF_COUNT_HW_CACHE_MISSES] = { UNSUPPORTED_PERF_EVENT_ID },
827 	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x02, CNTR_EVEN, T },
828 	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x02, CNTR_ODD, T },
829 	[PERF_COUNT_HW_BUS_CYCLES] = { UNSUPPORTED_PERF_EVENT_ID },
830 };
831 
832 /* 74K core has different branch event code. */
833 static const struct mips_perf_event mipsxx74Kcore_event_map
834 				[PERF_COUNT_HW_MAX] = {
835 	[PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P },
836 	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
837 	[PERF_COUNT_HW_CACHE_REFERENCES] = { UNSUPPORTED_PERF_EVENT_ID },
838 	[PERF_COUNT_HW_CACHE_MISSES] = { UNSUPPORTED_PERF_EVENT_ID },
839 	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x27, CNTR_EVEN, T },
840 	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x27, CNTR_ODD, T },
841 	[PERF_COUNT_HW_BUS_CYCLES] = { UNSUPPORTED_PERF_EVENT_ID },
842 };
843 
844 static const struct mips_perf_event octeon_event_map[PERF_COUNT_HW_MAX] = {
845 	[PERF_COUNT_HW_CPU_CYCLES] = { 0x01, CNTR_ALL },
846 	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x03, CNTR_ALL },
847 	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0x2b, CNTR_ALL },
848 	[PERF_COUNT_HW_CACHE_MISSES] = { 0x2e, CNTR_ALL  },
849 	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x08, CNTR_ALL },
850 	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x09, CNTR_ALL },
851 	[PERF_COUNT_HW_BUS_CYCLES] = { 0x25, CNTR_ALL },
852 };
853 
854 /* 24K/34K/1004K cores can share the same cache event map. */
855 static const struct mips_perf_event mipsxxcore_cache_map
856 				[PERF_COUNT_HW_CACHE_MAX]
857 				[PERF_COUNT_HW_CACHE_OP_MAX]
858 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
859 [C(L1D)] = {
860 	/*
861 	 * Like some other architectures (e.g. ARM), the performance
862 	 * counters don't differentiate between read and write
863 	 * accesses/misses, so this isn't strictly correct, but it's the
864 	 * best we can do. Writes and reads get combined.
865 	 */
866 	[C(OP_READ)] = {
867 		[C(RESULT_ACCESS)]	= { 0x0a, CNTR_EVEN, T },
868 		[C(RESULT_MISS)]	= { 0x0b, CNTR_EVEN | CNTR_ODD, T },
869 	},
870 	[C(OP_WRITE)] = {
871 		[C(RESULT_ACCESS)]	= { 0x0a, CNTR_EVEN, T },
872 		[C(RESULT_MISS)]	= { 0x0b, CNTR_EVEN | CNTR_ODD, T },
873 	},
874 	[C(OP_PREFETCH)] = {
875 		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
876 		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
877 	},
878 },
879 [C(L1I)] = {
880 	[C(OP_READ)] = {
881 		[C(RESULT_ACCESS)]	= { 0x09, CNTR_EVEN, T },
882 		[C(RESULT_MISS)]	= { 0x09, CNTR_ODD, T },
883 	},
884 	[C(OP_WRITE)] = {
885 		[C(RESULT_ACCESS)]	= { 0x09, CNTR_EVEN, T },
886 		[C(RESULT_MISS)]	= { 0x09, CNTR_ODD, T },
887 	},
888 	[C(OP_PREFETCH)] = {
889 		[C(RESULT_ACCESS)]	= { 0x14, CNTR_EVEN, T },
890 		/*
891 		 * Note that MIPS has only "hit" events countable for
892 		 * the prefetch operation.
893 		 */
894 		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
895 	},
896 },
897 [C(LL)] = {
898 	[C(OP_READ)] = {
899 		[C(RESULT_ACCESS)]	= { 0x15, CNTR_ODD, P },
900 		[C(RESULT_MISS)]	= { 0x16, CNTR_EVEN, P },
901 	},
902 	[C(OP_WRITE)] = {
903 		[C(RESULT_ACCESS)]	= { 0x15, CNTR_ODD, P },
904 		[C(RESULT_MISS)]	= { 0x16, CNTR_EVEN, P },
905 	},
906 	[C(OP_PREFETCH)] = {
907 		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
908 		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
909 	},
910 },
911 [C(DTLB)] = {
912 	[C(OP_READ)] = {
913 		[C(RESULT_ACCESS)]	= { 0x06, CNTR_EVEN, T },
914 		[C(RESULT_MISS)]	= { 0x06, CNTR_ODD, T },
915 	},
916 	[C(OP_WRITE)] = {
917 		[C(RESULT_ACCESS)]	= { 0x06, CNTR_EVEN, T },
918 		[C(RESULT_MISS)]	= { 0x06, CNTR_ODD, T },
919 	},
920 	[C(OP_PREFETCH)] = {
921 		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
922 		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
923 	},
924 },
925 [C(ITLB)] = {
926 	[C(OP_READ)] = {
927 		[C(RESULT_ACCESS)]	= { 0x05, CNTR_EVEN, T },
928 		[C(RESULT_MISS)]	= { 0x05, CNTR_ODD, T },
929 	},
930 	[C(OP_WRITE)] = {
931 		[C(RESULT_ACCESS)]	= { 0x05, CNTR_EVEN, T },
932 		[C(RESULT_MISS)]	= { 0x05, CNTR_ODD, T },
933 	},
934 	[C(OP_PREFETCH)] = {
935 		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
936 		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
937 	},
938 },
939 [C(BPU)] = {
940 	/* Using the same code for *HW_BRANCH* */
941 	[C(OP_READ)] = {
942 		[C(RESULT_ACCESS)]	= { 0x02, CNTR_EVEN, T },
943 		[C(RESULT_MISS)]	= { 0x02, CNTR_ODD, T },
944 	},
945 	[C(OP_WRITE)] = {
946 		[C(RESULT_ACCESS)]	= { 0x02, CNTR_EVEN, T },
947 		[C(RESULT_MISS)]	= { 0x02, CNTR_ODD, T },
948 	},
949 	[C(OP_PREFETCH)] = {
950 		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
951 		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
952 	},
953 },
954 [C(NODE)] = {
955 	[C(OP_READ)] = {
956 		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
957 		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
958 	},
959 	[C(OP_WRITE)] = {
960 		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
961 		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
962 	},
963 	[C(OP_PREFETCH)] = {
964 		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
965 		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
966 	},
967 },
968 };
969 
970 /* 74K core has completely different cache event map. */
971 static const struct mips_perf_event mipsxx74Kcore_cache_map
972 				[PERF_COUNT_HW_CACHE_MAX]
973 				[PERF_COUNT_HW_CACHE_OP_MAX]
974 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
975 [C(L1D)] = {
976 	/*
977 	 * Like some other architectures (e.g. ARM), the performance
978 	 * counters don't differentiate between read and write
979 	 * accesses/misses, so this isn't strictly correct, but it's the
980 	 * best we can do. Writes and reads get combined.
981 	 */
982 	[C(OP_READ)] = {
983 		[C(RESULT_ACCESS)]	= { 0x17, CNTR_ODD, T },
984 		[C(RESULT_MISS)]	= { 0x18, CNTR_ODD, T },
985 	},
986 	[C(OP_WRITE)] = {
987 		[C(RESULT_ACCESS)]	= { 0x17, CNTR_ODD, T },
988 		[C(RESULT_MISS)]	= { 0x18, CNTR_ODD, T },
989 	},
990 	[C(OP_PREFETCH)] = {
991 		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
992 		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
993 	},
994 },
995 [C(L1I)] = {
996 	[C(OP_READ)] = {
997 		[C(RESULT_ACCESS)]	= { 0x06, CNTR_EVEN, T },
998 		[C(RESULT_MISS)]	= { 0x06, CNTR_ODD, T },
999 	},
1000 	[C(OP_WRITE)] = {
1001 		[C(RESULT_ACCESS)]	= { 0x06, CNTR_EVEN, T },
1002 		[C(RESULT_MISS)]	= { 0x06, CNTR_ODD, T },
1003 	},
1004 	[C(OP_PREFETCH)] = {
1005 		[C(RESULT_ACCESS)]	= { 0x34, CNTR_EVEN, T },
1006 		/*
1007 		 * Note that MIPS has only "hit" events countable for
1008 		 * the prefetch operation.
1009 		 */
1010 		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1011 	},
1012 },
1013 [C(LL)] = {
1014 	[C(OP_READ)] = {
1015 		[C(RESULT_ACCESS)]	= { 0x1c, CNTR_ODD, P },
1016 		[C(RESULT_MISS)]	= { 0x1d, CNTR_EVEN | CNTR_ODD, P },
1017 	},
1018 	[C(OP_WRITE)] = {
1019 		[C(RESULT_ACCESS)]	= { 0x1c, CNTR_ODD, P },
1020 		[C(RESULT_MISS)]	= { 0x1d, CNTR_EVEN | CNTR_ODD, P },
1021 	},
1022 	[C(OP_PREFETCH)] = {
1023 		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1024 		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1025 	},
1026 },
1027 [C(DTLB)] = {
1028 	/* 74K core does not have specific DTLB events. */
1029 	[C(OP_READ)] = {
1030 		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1031 		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1032 	},
1033 	[C(OP_WRITE)] = {
1034 		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1035 		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1036 	},
1037 	[C(OP_PREFETCH)] = {
1038 		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1039 		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1040 	},
1041 },
1042 [C(ITLB)] = {
1043 	[C(OP_READ)] = {
1044 		[C(RESULT_ACCESS)]	= { 0x04, CNTR_EVEN, T },
1045 		[C(RESULT_MISS)]	= { 0x04, CNTR_ODD, T },
1046 	},
1047 	[C(OP_WRITE)] = {
1048 		[C(RESULT_ACCESS)]	= { 0x04, CNTR_EVEN, T },
1049 		[C(RESULT_MISS)]	= { 0x04, CNTR_ODD, T },
1050 	},
1051 	[C(OP_PREFETCH)] = {
1052 		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1053 		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1054 	},
1055 },
1056 [C(BPU)] = {
1057 	/* Using the same code for *HW_BRANCH* */
1058 	[C(OP_READ)] = {
1059 		[C(RESULT_ACCESS)]	= { 0x27, CNTR_EVEN, T },
1060 		[C(RESULT_MISS)]	= { 0x27, CNTR_ODD, T },
1061 	},
1062 	[C(OP_WRITE)] = {
1063 		[C(RESULT_ACCESS)]	= { 0x27, CNTR_EVEN, T },
1064 		[C(RESULT_MISS)]	= { 0x27, CNTR_ODD, T },
1065 	},
1066 	[C(OP_PREFETCH)] = {
1067 		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1068 		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1069 	},
1070 },
1071 [C(NODE)] = {
1072 	[C(OP_READ)] = {
1073 		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1074 		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1075 	},
1076 	[C(OP_WRITE)] = {
1077 		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1078 		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1079 	},
1080 	[C(OP_PREFETCH)] = {
1081 		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1082 		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1083 	},
1084 },
1085 };
1086 
1087 
1088 static const struct mips_perf_event octeon_cache_map
1089 				[PERF_COUNT_HW_CACHE_MAX]
1090 				[PERF_COUNT_HW_CACHE_OP_MAX]
1091 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1092 [C(L1D)] = {
1093 	[C(OP_READ)] = {
1094 		[C(RESULT_ACCESS)]	= { 0x2b, CNTR_ALL },
1095 		[C(RESULT_MISS)]	= { 0x2e, CNTR_ALL },
1096 	},
1097 	[C(OP_WRITE)] = {
1098 		[C(RESULT_ACCESS)]	= { 0x30, CNTR_ALL },
1099 		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1100 	},
1101 	[C(OP_PREFETCH)] = {
1102 		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1103 		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1104 	},
1105 },
1106 [C(L1I)] = {
1107 	[C(OP_READ)] = {
1108 		[C(RESULT_ACCESS)]	= { 0x18, CNTR_ALL },
1109 		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1110 	},
1111 	[C(OP_WRITE)] = {
1112 		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1113 		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1114 	},
1115 	[C(OP_PREFETCH)] = {
1116 		[C(RESULT_ACCESS)]	= { 0x19, CNTR_ALL },
1117 		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1118 	},
1119 },
1120 [C(LL)] = {
1121 	[C(OP_READ)] = {
1122 		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1123 		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1124 	},
1125 	[C(OP_WRITE)] = {
1126 		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1127 		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1128 	},
1129 	[C(OP_PREFETCH)] = {
1130 		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1131 		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1132 	},
1133 },
1134 [C(DTLB)] = {
1135 	/*
1136 	 * Only general DTLB misses are counted use the same event for
1137 	 * read and write.
1138 	 */
1139 	[C(OP_READ)] = {
1140 		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1141 		[C(RESULT_MISS)]	= { 0x35, CNTR_ALL },
1142 	},
1143 	[C(OP_WRITE)] = {
1144 		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1145 		[C(RESULT_MISS)]	= { 0x35, CNTR_ALL },
1146 	},
1147 	[C(OP_PREFETCH)] = {
1148 		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1149 		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1150 	},
1151 },
1152 [C(ITLB)] = {
1153 	[C(OP_READ)] = {
1154 		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1155 		[C(RESULT_MISS)]	= { 0x37, CNTR_ALL },
1156 	},
1157 	[C(OP_WRITE)] = {
1158 		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1159 		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1160 	},
1161 	[C(OP_PREFETCH)] = {
1162 		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1163 		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1164 	},
1165 },
1166 [C(BPU)] = {
1167 	/* Using the same code for *HW_BRANCH* */
1168 	[C(OP_READ)] = {
1169 		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1170 		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1171 	},
1172 	[C(OP_WRITE)] = {
1173 		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1174 		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1175 	},
1176 	[C(OP_PREFETCH)] = {
1177 		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1178 		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1179 	},
1180 },
1181 };
1182 
1183 #ifdef CONFIG_MIPS_MT_SMP
1184 static void check_and_calc_range(struct perf_event *event,
1185 				 const struct mips_perf_event *pev)
1186 {
1187 	struct hw_perf_event *hwc = &event->hw;
1188 
1189 	if (event->cpu >= 0) {
1190 		if (pev->range > V) {
1191 			/*
1192 			 * The user selected an event that is processor
1193 			 * wide, while expecting it to be VPE wide.
1194 			 */
1195 			hwc->config_base |= M_TC_EN_ALL;
1196 		} else {
1197 			/*
1198 			 * FIXME: cpu_data[event->cpu].vpe_id reports 0
1199 			 * for both CPUs.
1200 			 */
1201 			hwc->config_base |= M_PERFCTL_VPEID(event->cpu);
1202 			hwc->config_base |= M_TC_EN_VPE;
1203 		}
1204 	} else
1205 		hwc->config_base |= M_TC_EN_ALL;
1206 }
1207 #else
1208 static void check_and_calc_range(struct perf_event *event,
1209 				 const struct mips_perf_event *pev)
1210 {
1211 }
1212 #endif
1213 
1214 static int __hw_perf_event_init(struct perf_event *event)
1215 {
1216 	struct perf_event_attr *attr = &event->attr;
1217 	struct hw_perf_event *hwc = &event->hw;
1218 	const struct mips_perf_event *pev;
1219 	int err;
1220 
1221 	/* Returning MIPS event descriptor for generic perf event. */
1222 	if (PERF_TYPE_HARDWARE == event->attr.type) {
1223 		if (event->attr.config >= PERF_COUNT_HW_MAX)
1224 			return -EINVAL;
1225 		pev = mipspmu_map_general_event(event->attr.config);
1226 	} else if (PERF_TYPE_HW_CACHE == event->attr.type) {
1227 		pev = mipspmu_map_cache_event(event->attr.config);
1228 	} else if (PERF_TYPE_RAW == event->attr.type) {
1229 		/* We are working on the global raw event. */
1230 		mutex_lock(&raw_event_mutex);
1231 		pev = mipspmu.map_raw_event(event->attr.config);
1232 	} else {
1233 		/* The event type is not (yet) supported. */
1234 		return -EOPNOTSUPP;
1235 	}
1236 
1237 	if (IS_ERR(pev)) {
1238 		if (PERF_TYPE_RAW == event->attr.type)
1239 			mutex_unlock(&raw_event_mutex);
1240 		return PTR_ERR(pev);
1241 	}
1242 
1243 	/*
1244 	 * We allow max flexibility on how each individual counter shared
1245 	 * by the single CPU operates (the mode exclusion and the range).
1246 	 */
1247 	hwc->config_base = M_PERFCTL_INTERRUPT_ENABLE;
1248 
1249 	/* Calculate range bits and validate it. */
1250 	if (num_possible_cpus() > 1)
1251 		check_and_calc_range(event, pev);
1252 
1253 	hwc->event_base = mipspmu_perf_event_encode(pev);
1254 	if (PERF_TYPE_RAW == event->attr.type)
1255 		mutex_unlock(&raw_event_mutex);
1256 
1257 	if (!attr->exclude_user)
1258 		hwc->config_base |= M_PERFCTL_USER;
1259 	if (!attr->exclude_kernel) {
1260 		hwc->config_base |= M_PERFCTL_KERNEL;
1261 		/* MIPS kernel mode: KSU == 00b || EXL == 1 || ERL == 1 */
1262 		hwc->config_base |= M_PERFCTL_EXL;
1263 	}
1264 	if (!attr->exclude_hv)
1265 		hwc->config_base |= M_PERFCTL_SUPERVISOR;
1266 
1267 	hwc->config_base &= M_PERFCTL_CONFIG_MASK;
1268 	/*
1269 	 * The event can belong to another cpu. We do not assign a local
1270 	 * counter for it for now.
1271 	 */
1272 	hwc->idx = -1;
1273 	hwc->config = 0;
1274 
1275 	if (!hwc->sample_period) {
1276 		hwc->sample_period  = mipspmu.max_period;
1277 		hwc->last_period    = hwc->sample_period;
1278 		local64_set(&hwc->period_left, hwc->sample_period);
1279 	}
1280 
1281 	err = 0;
1282 	if (event->group_leader != event) {
1283 		err = validate_group(event);
1284 		if (err)
1285 			return -EINVAL;
1286 	}
1287 
1288 	event->destroy = hw_perf_event_destroy;
1289 	return err;
1290 }
1291 
1292 static void pause_local_counters(void)
1293 {
1294 	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1295 	int ctr = mipspmu.num_counters;
1296 	unsigned long flags;
1297 
1298 	local_irq_save(flags);
1299 	do {
1300 		ctr--;
1301 		cpuc->saved_ctrl[ctr] = mipsxx_pmu_read_control(ctr);
1302 		mipsxx_pmu_write_control(ctr, cpuc->saved_ctrl[ctr] &
1303 					 ~M_PERFCTL_COUNT_EVENT_WHENEVER);
1304 	} while (ctr > 0);
1305 	local_irq_restore(flags);
1306 }
1307 
1308 static void resume_local_counters(void)
1309 {
1310 	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1311 	int ctr = mipspmu.num_counters;
1312 
1313 	do {
1314 		ctr--;
1315 		mipsxx_pmu_write_control(ctr, cpuc->saved_ctrl[ctr]);
1316 	} while (ctr > 0);
1317 }
1318 
1319 static int mipsxx_pmu_handle_shared_irq(void)
1320 {
1321 	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1322 	struct perf_sample_data data;
1323 	unsigned int counters = mipspmu.num_counters;
1324 	u64 counter;
1325 	int handled = IRQ_NONE;
1326 	struct pt_regs *regs;
1327 
1328 	if (cpu_has_mips_r2 && !(read_c0_cause() & (1 << 26)))
1329 		return handled;
1330 	/*
1331 	 * First we pause the local counters, so that when we are locked
1332 	 * here, the counters are all paused. When it gets locked due to
1333 	 * perf_disable(), the timer interrupt handler will be delayed.
1334 	 *
1335 	 * See also mipsxx_pmu_start().
1336 	 */
1337 	pause_local_counters();
1338 #ifdef CONFIG_MIPS_MT_SMP
1339 	read_lock(&pmuint_rwlock);
1340 #endif
1341 
1342 	regs = get_irq_regs();
1343 
1344 	perf_sample_data_init(&data, 0);
1345 
1346 	switch (counters) {
1347 #define HANDLE_COUNTER(n)						\
1348 	case n + 1:							\
1349 		if (test_bit(n, cpuc->used_mask)) {			\
1350 			counter = mipspmu.read_counter(n);		\
1351 			if (counter & mipspmu.overflow) {		\
1352 				handle_associated_event(cpuc, n, &data, regs); \
1353 				handled = IRQ_HANDLED;			\
1354 			}						\
1355 		}
1356 	HANDLE_COUNTER(3)
1357 	HANDLE_COUNTER(2)
1358 	HANDLE_COUNTER(1)
1359 	HANDLE_COUNTER(0)
1360 	}
1361 
1362 	/*
1363 	 * Do all the work for the pending perf events. We can do this
1364 	 * in here because the performance counter interrupt is a regular
1365 	 * interrupt, not NMI.
1366 	 */
1367 	if (handled == IRQ_HANDLED)
1368 		irq_work_run();
1369 
1370 #ifdef CONFIG_MIPS_MT_SMP
1371 	read_unlock(&pmuint_rwlock);
1372 #endif
1373 	resume_local_counters();
1374 	return handled;
1375 }
1376 
1377 static irqreturn_t mipsxx_pmu_handle_irq(int irq, void *dev)
1378 {
1379 	return mipsxx_pmu_handle_shared_irq();
1380 }
1381 
1382 /* 24K */
1383 #define IS_UNSUPPORTED_24K_EVENT(r, b)					\
1384 	((b) == 12 || (r) == 151 || (r) == 152 || (b) == 26 ||		\
1385 	 (b) == 27 || (r) == 28 || (r) == 158 || (b) == 31 ||		\
1386 	 (b) == 32 || (b) == 34 || (b) == 36 || (r) == 168 ||		\
1387 	 (r) == 172 || (b) == 47 || ((b) >= 56 && (b) <= 63) ||		\
1388 	 ((b) >= 68 && (b) <= 127))
1389 #define IS_BOTH_COUNTERS_24K_EVENT(b)					\
1390 	((b) == 0 || (b) == 1 || (b) == 11)
1391 
1392 /* 34K */
1393 #define IS_UNSUPPORTED_34K_EVENT(r, b)					\
1394 	((b) == 12 || (r) == 27 || (r) == 158 || (b) == 36 ||		\
1395 	 (b) == 38 || (r) == 175 || ((b) >= 56 && (b) <= 63) ||		\
1396 	 ((b) >= 68 && (b) <= 127))
1397 #define IS_BOTH_COUNTERS_34K_EVENT(b)					\
1398 	((b) == 0 || (b) == 1 || (b) == 11)
1399 #ifdef CONFIG_MIPS_MT_SMP
1400 #define IS_RANGE_P_34K_EVENT(r, b)					\
1401 	((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 ||		\
1402 	 (b) == 25 || (b) == 39 || (r) == 44 || (r) == 174 ||		\
1403 	 (r) == 176 || ((b) >= 50 && (b) <= 55) ||			\
1404 	 ((b) >= 64 && (b) <= 67))
1405 #define IS_RANGE_V_34K_EVENT(r)	((r) == 47)
1406 #endif
1407 
1408 /* 74K */
1409 #define IS_UNSUPPORTED_74K_EVENT(r, b)					\
1410 	((r) == 5 || ((r) >= 135 && (r) <= 137) ||			\
1411 	 ((b) >= 10 && (b) <= 12) || (b) == 22 || (b) == 27 ||		\
1412 	 (b) == 33 || (b) == 34 || ((b) >= 47 && (b) <= 49) ||		\
1413 	 (r) == 178 || (b) == 55 || (b) == 57 || (b) == 60 ||		\
1414 	 (b) == 61 || (r) == 62 || (r) == 191 ||			\
1415 	 ((b) >= 64 && (b) <= 127))
1416 #define IS_BOTH_COUNTERS_74K_EVENT(b)					\
1417 	((b) == 0 || (b) == 1)
1418 
1419 /* 1004K */
1420 #define IS_UNSUPPORTED_1004K_EVENT(r, b)				\
1421 	((b) == 12 || (r) == 27 || (r) == 158 || (b) == 38 ||		\
1422 	 (r) == 175 || (b) == 63 || ((b) >= 68 && (b) <= 127))
1423 #define IS_BOTH_COUNTERS_1004K_EVENT(b)					\
1424 	((b) == 0 || (b) == 1 || (b) == 11)
1425 #ifdef CONFIG_MIPS_MT_SMP
1426 #define IS_RANGE_P_1004K_EVENT(r, b)					\
1427 	((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 ||		\
1428 	 (b) == 25 || (b) == 36 || (b) == 39 || (r) == 44 ||		\
1429 	 (r) == 174 || (r) == 176 || ((b) >= 50 && (b) <= 59) ||	\
1430 	 (r) == 188 || (b) == 61 || (b) == 62 ||			\
1431 	 ((b) >= 64 && (b) <= 67))
1432 #define IS_RANGE_V_1004K_EVENT(r)	((r) == 47)
1433 #endif
1434 
1435 /*
1436  * User can use 0-255 raw events, where 0-127 for the events of even
1437  * counters, and 128-255 for odd counters. Note that bit 7 is used to
1438  * indicate the parity. So, for example, when user wants to take the
1439  * Event Num of 15 for odd counters (by referring to the user manual),
1440  * then 128 needs to be added to 15 as the input for the event config,
1441  * i.e., 143 (0x8F) to be used.
1442  */
1443 static const struct mips_perf_event *mipsxx_pmu_map_raw_event(u64 config)
1444 {
1445 	unsigned int raw_id = config & 0xff;
1446 	unsigned int base_id = raw_id & 0x7f;
1447 
1448 	switch (current_cpu_type()) {
1449 	case CPU_24K:
1450 		if (IS_UNSUPPORTED_24K_EVENT(raw_id, base_id))
1451 			return ERR_PTR(-EOPNOTSUPP);
1452 		raw_event.event_id = base_id;
1453 		if (IS_BOTH_COUNTERS_24K_EVENT(base_id))
1454 			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1455 		else
1456 			raw_event.cntr_mask =
1457 				raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1458 #ifdef CONFIG_MIPS_MT_SMP
1459 		/*
1460 		 * This is actually doing nothing. Non-multithreading
1461 		 * CPUs will not check and calculate the range.
1462 		 */
1463 		raw_event.range = P;
1464 #endif
1465 		break;
1466 	case CPU_34K:
1467 		if (IS_UNSUPPORTED_34K_EVENT(raw_id, base_id))
1468 			return ERR_PTR(-EOPNOTSUPP);
1469 		raw_event.event_id = base_id;
1470 		if (IS_BOTH_COUNTERS_34K_EVENT(base_id))
1471 			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1472 		else
1473 			raw_event.cntr_mask =
1474 				raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1475 #ifdef CONFIG_MIPS_MT_SMP
1476 		if (IS_RANGE_P_34K_EVENT(raw_id, base_id))
1477 			raw_event.range = P;
1478 		else if (unlikely(IS_RANGE_V_34K_EVENT(raw_id)))
1479 			raw_event.range = V;
1480 		else
1481 			raw_event.range = T;
1482 #endif
1483 		break;
1484 	case CPU_74K:
1485 		if (IS_UNSUPPORTED_74K_EVENT(raw_id, base_id))
1486 			return ERR_PTR(-EOPNOTSUPP);
1487 		raw_event.event_id = base_id;
1488 		if (IS_BOTH_COUNTERS_74K_EVENT(base_id))
1489 			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1490 		else
1491 			raw_event.cntr_mask =
1492 				raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1493 #ifdef CONFIG_MIPS_MT_SMP
1494 		raw_event.range = P;
1495 #endif
1496 		break;
1497 	case CPU_1004K:
1498 		if (IS_UNSUPPORTED_1004K_EVENT(raw_id, base_id))
1499 			return ERR_PTR(-EOPNOTSUPP);
1500 		raw_event.event_id = base_id;
1501 		if (IS_BOTH_COUNTERS_1004K_EVENT(base_id))
1502 			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1503 		else
1504 			raw_event.cntr_mask =
1505 				raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1506 #ifdef CONFIG_MIPS_MT_SMP
1507 		if (IS_RANGE_P_1004K_EVENT(raw_id, base_id))
1508 			raw_event.range = P;
1509 		else if (unlikely(IS_RANGE_V_1004K_EVENT(raw_id)))
1510 			raw_event.range = V;
1511 		else
1512 			raw_event.range = T;
1513 #endif
1514 		break;
1515 	}
1516 
1517 	return &raw_event;
1518 }
1519 
1520 static const struct mips_perf_event *octeon_pmu_map_raw_event(u64 config)
1521 {
1522 	unsigned int raw_id = config & 0xff;
1523 	unsigned int base_id = raw_id & 0x7f;
1524 
1525 
1526 	raw_event.cntr_mask = CNTR_ALL;
1527 	raw_event.event_id = base_id;
1528 
1529 	if (current_cpu_type() == CPU_CAVIUM_OCTEON2) {
1530 		if (base_id > 0x42)
1531 			return ERR_PTR(-EOPNOTSUPP);
1532 	} else {
1533 		if (base_id > 0x3a)
1534 			return ERR_PTR(-EOPNOTSUPP);
1535 	}
1536 
1537 	switch (base_id) {
1538 	case 0x00:
1539 	case 0x0f:
1540 	case 0x1e:
1541 	case 0x1f:
1542 	case 0x2f:
1543 	case 0x34:
1544 	case 0x3b ... 0x3f:
1545 		return ERR_PTR(-EOPNOTSUPP);
1546 	default:
1547 		break;
1548 	}
1549 
1550 	return &raw_event;
1551 }
1552 
1553 static int __init
1554 init_hw_perf_events(void)
1555 {
1556 	int counters, irq;
1557 	int counter_bits;
1558 
1559 	pr_info("Performance counters: ");
1560 
1561 	counters = n_counters();
1562 	if (counters == 0) {
1563 		pr_cont("No available PMU.\n");
1564 		return -ENODEV;
1565 	}
1566 
1567 #ifdef CONFIG_MIPS_MT_SMP
1568 	cpu_has_mipsmt_pertccounters = read_c0_config7() & (1<<19);
1569 	if (!cpu_has_mipsmt_pertccounters)
1570 		counters = counters_total_to_per_cpu(counters);
1571 #endif
1572 
1573 #ifdef MSC01E_INT_BASE
1574 	if (cpu_has_veic) {
1575 		/*
1576 		 * Using platform specific interrupt controller defines.
1577 		 */
1578 		irq = MSC01E_INT_BASE + MSC01E_INT_PERFCTR;
1579 	} else {
1580 #endif
1581 		if (cp0_perfcount_irq >= 0)
1582 			irq = MIPS_CPU_IRQ_BASE + cp0_perfcount_irq;
1583 		else
1584 			irq = -1;
1585 #ifdef MSC01E_INT_BASE
1586 	}
1587 #endif
1588 
1589 	mipspmu.map_raw_event = mipsxx_pmu_map_raw_event;
1590 
1591 	switch (current_cpu_type()) {
1592 	case CPU_24K:
1593 		mipspmu.name = "mips/24K";
1594 		mipspmu.general_event_map = &mipsxxcore_event_map;
1595 		mipspmu.cache_event_map = &mipsxxcore_cache_map;
1596 		break;
1597 	case CPU_34K:
1598 		mipspmu.name = "mips/34K";
1599 		mipspmu.general_event_map = &mipsxxcore_event_map;
1600 		mipspmu.cache_event_map = &mipsxxcore_cache_map;
1601 		break;
1602 	case CPU_74K:
1603 		mipspmu.name = "mips/74K";
1604 		mipspmu.general_event_map = &mipsxx74Kcore_event_map;
1605 		mipspmu.cache_event_map = &mipsxx74Kcore_cache_map;
1606 		break;
1607 	case CPU_1004K:
1608 		mipspmu.name = "mips/1004K";
1609 		mipspmu.general_event_map = &mipsxxcore_event_map;
1610 		mipspmu.cache_event_map = &mipsxxcore_cache_map;
1611 		break;
1612 	case CPU_CAVIUM_OCTEON:
1613 	case CPU_CAVIUM_OCTEON_PLUS:
1614 	case CPU_CAVIUM_OCTEON2:
1615 		mipspmu.name = "octeon";
1616 		mipspmu.general_event_map = &octeon_event_map;
1617 		mipspmu.cache_event_map = &octeon_cache_map;
1618 		mipspmu.map_raw_event = octeon_pmu_map_raw_event;
1619 		break;
1620 	default:
1621 		pr_cont("Either hardware does not support performance "
1622 			"counters, or not yet implemented.\n");
1623 		return -ENODEV;
1624 	}
1625 
1626 	mipspmu.num_counters = counters;
1627 	mipspmu.irq = irq;
1628 
1629 	if (read_c0_perfctrl0() & M_PERFCTL_WIDE) {
1630 		mipspmu.max_period = (1ULL << 63) - 1;
1631 		mipspmu.valid_count = (1ULL << 63) - 1;
1632 		mipspmu.overflow = 1ULL << 63;
1633 		mipspmu.read_counter = mipsxx_pmu_read_counter_64;
1634 		mipspmu.write_counter = mipsxx_pmu_write_counter_64;
1635 		counter_bits = 64;
1636 	} else {
1637 		mipspmu.max_period = (1ULL << 31) - 1;
1638 		mipspmu.valid_count = (1ULL << 31) - 1;
1639 		mipspmu.overflow = 1ULL << 31;
1640 		mipspmu.read_counter = mipsxx_pmu_read_counter;
1641 		mipspmu.write_counter = mipsxx_pmu_write_counter;
1642 		counter_bits = 32;
1643 	}
1644 
1645 	on_each_cpu(reset_counters, (void *)(long)counters, 1);
1646 
1647 	pr_cont("%s PMU enabled, %d %d-bit counters available to each "
1648 		"CPU, irq %d%s\n", mipspmu.name, counters, counter_bits, irq,
1649 		irq < 0 ? " (share with timer interrupt)" : "");
1650 
1651 	perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1652 
1653 	return 0;
1654 }
1655 early_initcall(init_hw_perf_events);
1656