xref: /linux/arch/mips/kernel/perf_event_mipsxx.c (revision e0bf6c5ca2d3281f231c5f0c9bf145e9513644de)
1 /*
2  * Linux performance counter support for MIPS.
3  *
4  * Copyright (C) 2010 MIPS Technologies, Inc.
5  * Copyright (C) 2011 Cavium Networks, Inc.
6  * Author: Deng-Cheng Zhu
7  *
8  * This code is based on the implementation for ARM, which is in turn
9  * based on the sparc64 perf event code and the x86 code. Performance
10  * counter access is based on the MIPS Oprofile code. And the callchain
11  * support references the code of MIPS stacktrace.c.
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License version 2 as
15  * published by the Free Software Foundation.
16  */
17 
18 #include <linux/cpumask.h>
19 #include <linux/interrupt.h>
20 #include <linux/smp.h>
21 #include <linux/kernel.h>
22 #include <linux/perf_event.h>
23 #include <linux/uaccess.h>
24 
25 #include <asm/irq.h>
26 #include <asm/irq_regs.h>
27 #include <asm/stacktrace.h>
28 #include <asm/time.h> /* For perf_irq */
29 
30 #define MIPS_MAX_HWEVENTS 4
31 #define MIPS_TCS_PER_COUNTER 2
32 #define MIPS_CPUID_TO_COUNTER_MASK (MIPS_TCS_PER_COUNTER - 1)
33 
34 struct cpu_hw_events {
35 	/* Array of events on this cpu. */
36 	struct perf_event	*events[MIPS_MAX_HWEVENTS];
37 
38 	/*
39 	 * Set the bit (indexed by the counter number) when the counter
40 	 * is used for an event.
41 	 */
42 	unsigned long		used_mask[BITS_TO_LONGS(MIPS_MAX_HWEVENTS)];
43 
44 	/*
45 	 * Software copy of the control register for each performance counter.
46 	 * MIPS CPUs vary in performance counters. They use this differently,
47 	 * and even may not use it.
48 	 */
49 	unsigned int		saved_ctrl[MIPS_MAX_HWEVENTS];
50 };
51 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
52 	.saved_ctrl = {0},
53 };
54 
55 /* The description of MIPS performance events. */
56 struct mips_perf_event {
57 	unsigned int event_id;
58 	/*
59 	 * MIPS performance counters are indexed starting from 0.
60 	 * CNTR_EVEN indicates the indexes of the counters to be used are
61 	 * even numbers.
62 	 */
63 	unsigned int cntr_mask;
64 	#define CNTR_EVEN	0x55555555
65 	#define CNTR_ODD	0xaaaaaaaa
66 	#define CNTR_ALL	0xffffffff
67 #ifdef CONFIG_MIPS_MT_SMP
68 	enum {
69 		T  = 0,
70 		V  = 1,
71 		P  = 2,
72 	} range;
73 #else
74 	#define T
75 	#define V
76 	#define P
77 #endif
78 };
79 
80 static struct mips_perf_event raw_event;
81 static DEFINE_MUTEX(raw_event_mutex);
82 
83 #define C(x) PERF_COUNT_HW_CACHE_##x
84 
85 struct mips_pmu {
86 	u64		max_period;
87 	u64		valid_count;
88 	u64		overflow;
89 	const char	*name;
90 	int		irq;
91 	u64		(*read_counter)(unsigned int idx);
92 	void		(*write_counter)(unsigned int idx, u64 val);
93 	const struct mips_perf_event *(*map_raw_event)(u64 config);
94 	const struct mips_perf_event (*general_event_map)[PERF_COUNT_HW_MAX];
95 	const struct mips_perf_event (*cache_event_map)
96 				[PERF_COUNT_HW_CACHE_MAX]
97 				[PERF_COUNT_HW_CACHE_OP_MAX]
98 				[PERF_COUNT_HW_CACHE_RESULT_MAX];
99 	unsigned int	num_counters;
100 };
101 
102 static struct mips_pmu mipspmu;
103 
104 #define M_CONFIG1_PC	(1 << 4)
105 
106 #define M_PERFCTL_EXL			(1	<<  0)
107 #define M_PERFCTL_KERNEL		(1	<<  1)
108 #define M_PERFCTL_SUPERVISOR		(1	<<  2)
109 #define M_PERFCTL_USER			(1	<<  3)
110 #define M_PERFCTL_INTERRUPT_ENABLE	(1	<<  4)
111 #define M_PERFCTL_EVENT(event)		(((event) & 0x3ff)  << 5)
112 #define M_PERFCTL_VPEID(vpe)		((vpe)	  << 16)
113 
114 #ifdef CONFIG_CPU_BMIPS5000
115 #define M_PERFCTL_MT_EN(filter)		0
116 #else /* !CONFIG_CPU_BMIPS5000 */
117 #define M_PERFCTL_MT_EN(filter)		((filter) << 20)
118 #endif /* CONFIG_CPU_BMIPS5000 */
119 
120 #define	   M_TC_EN_ALL			M_PERFCTL_MT_EN(0)
121 #define	   M_TC_EN_VPE			M_PERFCTL_MT_EN(1)
122 #define	   M_TC_EN_TC			M_PERFCTL_MT_EN(2)
123 #define M_PERFCTL_TCID(tcid)		((tcid)	  << 22)
124 #define M_PERFCTL_WIDE			(1	<< 30)
125 #define M_PERFCTL_MORE			(1	<< 31)
126 #define M_PERFCTL_TC			(1	<< 30)
127 
128 #define M_PERFCTL_COUNT_EVENT_WHENEVER	(M_PERFCTL_EXL |		\
129 					M_PERFCTL_KERNEL |		\
130 					M_PERFCTL_USER |		\
131 					M_PERFCTL_SUPERVISOR |		\
132 					M_PERFCTL_INTERRUPT_ENABLE)
133 
134 #ifdef CONFIG_MIPS_MT_SMP
135 #define M_PERFCTL_CONFIG_MASK		0x3fff801f
136 #else
137 #define M_PERFCTL_CONFIG_MASK		0x1f
138 #endif
139 #define M_PERFCTL_EVENT_MASK		0xfe0
140 
141 
142 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
143 static int cpu_has_mipsmt_pertccounters;
144 
145 static DEFINE_RWLOCK(pmuint_rwlock);
146 
147 #if defined(CONFIG_CPU_BMIPS5000)
148 #define vpe_id()	(cpu_has_mipsmt_pertccounters ? \
149 			 0 : (smp_processor_id() & MIPS_CPUID_TO_COUNTER_MASK))
150 #else
151 /*
152  * FIXME: For VSMP, vpe_id() is redefined for Perf-events, because
153  * cpu_data[cpuid].vpe_id reports 0 for _both_ CPUs.
154  */
155 #define vpe_id()	(cpu_has_mipsmt_pertccounters ? \
156 			 0 : smp_processor_id())
157 #endif
158 
159 /* Copied from op_model_mipsxx.c */
160 static unsigned int vpe_shift(void)
161 {
162 	if (num_possible_cpus() > 1)
163 		return 1;
164 
165 	return 0;
166 }
167 
168 static unsigned int counters_total_to_per_cpu(unsigned int counters)
169 {
170 	return counters >> vpe_shift();
171 }
172 
173 #else /* !CONFIG_MIPS_PERF_SHARED_TC_COUNTERS */
174 #define vpe_id()	0
175 
176 #endif /* CONFIG_MIPS_PERF_SHARED_TC_COUNTERS */
177 
178 static void resume_local_counters(void);
179 static void pause_local_counters(void);
180 static irqreturn_t mipsxx_pmu_handle_irq(int, void *);
181 static int mipsxx_pmu_handle_shared_irq(void);
182 
183 static unsigned int mipsxx_pmu_swizzle_perf_idx(unsigned int idx)
184 {
185 	if (vpe_id() == 1)
186 		idx = (idx + 2) & 3;
187 	return idx;
188 }
189 
190 static u64 mipsxx_pmu_read_counter(unsigned int idx)
191 {
192 	idx = mipsxx_pmu_swizzle_perf_idx(idx);
193 
194 	switch (idx) {
195 	case 0:
196 		/*
197 		 * The counters are unsigned, we must cast to truncate
198 		 * off the high bits.
199 		 */
200 		return (u32)read_c0_perfcntr0();
201 	case 1:
202 		return (u32)read_c0_perfcntr1();
203 	case 2:
204 		return (u32)read_c0_perfcntr2();
205 	case 3:
206 		return (u32)read_c0_perfcntr3();
207 	default:
208 		WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
209 		return 0;
210 	}
211 }
212 
213 static u64 mipsxx_pmu_read_counter_64(unsigned int idx)
214 {
215 	idx = mipsxx_pmu_swizzle_perf_idx(idx);
216 
217 	switch (idx) {
218 	case 0:
219 		return read_c0_perfcntr0_64();
220 	case 1:
221 		return read_c0_perfcntr1_64();
222 	case 2:
223 		return read_c0_perfcntr2_64();
224 	case 3:
225 		return read_c0_perfcntr3_64();
226 	default:
227 		WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
228 		return 0;
229 	}
230 }
231 
232 static void mipsxx_pmu_write_counter(unsigned int idx, u64 val)
233 {
234 	idx = mipsxx_pmu_swizzle_perf_idx(idx);
235 
236 	switch (idx) {
237 	case 0:
238 		write_c0_perfcntr0(val);
239 		return;
240 	case 1:
241 		write_c0_perfcntr1(val);
242 		return;
243 	case 2:
244 		write_c0_perfcntr2(val);
245 		return;
246 	case 3:
247 		write_c0_perfcntr3(val);
248 		return;
249 	}
250 }
251 
252 static void mipsxx_pmu_write_counter_64(unsigned int idx, u64 val)
253 {
254 	idx = mipsxx_pmu_swizzle_perf_idx(idx);
255 
256 	switch (idx) {
257 	case 0:
258 		write_c0_perfcntr0_64(val);
259 		return;
260 	case 1:
261 		write_c0_perfcntr1_64(val);
262 		return;
263 	case 2:
264 		write_c0_perfcntr2_64(val);
265 		return;
266 	case 3:
267 		write_c0_perfcntr3_64(val);
268 		return;
269 	}
270 }
271 
272 static unsigned int mipsxx_pmu_read_control(unsigned int idx)
273 {
274 	idx = mipsxx_pmu_swizzle_perf_idx(idx);
275 
276 	switch (idx) {
277 	case 0:
278 		return read_c0_perfctrl0();
279 	case 1:
280 		return read_c0_perfctrl1();
281 	case 2:
282 		return read_c0_perfctrl2();
283 	case 3:
284 		return read_c0_perfctrl3();
285 	default:
286 		WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
287 		return 0;
288 	}
289 }
290 
291 static void mipsxx_pmu_write_control(unsigned int idx, unsigned int val)
292 {
293 	idx = mipsxx_pmu_swizzle_perf_idx(idx);
294 
295 	switch (idx) {
296 	case 0:
297 		write_c0_perfctrl0(val);
298 		return;
299 	case 1:
300 		write_c0_perfctrl1(val);
301 		return;
302 	case 2:
303 		write_c0_perfctrl2(val);
304 		return;
305 	case 3:
306 		write_c0_perfctrl3(val);
307 		return;
308 	}
309 }
310 
311 static int mipsxx_pmu_alloc_counter(struct cpu_hw_events *cpuc,
312 				    struct hw_perf_event *hwc)
313 {
314 	int i;
315 
316 	/*
317 	 * We only need to care the counter mask. The range has been
318 	 * checked definitely.
319 	 */
320 	unsigned long cntr_mask = (hwc->event_base >> 8) & 0xffff;
321 
322 	for (i = mipspmu.num_counters - 1; i >= 0; i--) {
323 		/*
324 		 * Note that some MIPS perf events can be counted by both
325 		 * even and odd counters, wheresas many other are only by
326 		 * even _or_ odd counters. This introduces an issue that
327 		 * when the former kind of event takes the counter the
328 		 * latter kind of event wants to use, then the "counter
329 		 * allocation" for the latter event will fail. In fact if
330 		 * they can be dynamically swapped, they both feel happy.
331 		 * But here we leave this issue alone for now.
332 		 */
333 		if (test_bit(i, &cntr_mask) &&
334 			!test_and_set_bit(i, cpuc->used_mask))
335 			return i;
336 	}
337 
338 	return -EAGAIN;
339 }
340 
341 static void mipsxx_pmu_enable_event(struct hw_perf_event *evt, int idx)
342 {
343 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
344 
345 	WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
346 
347 	cpuc->saved_ctrl[idx] = M_PERFCTL_EVENT(evt->event_base & 0xff) |
348 		(evt->config_base & M_PERFCTL_CONFIG_MASK) |
349 		/* Make sure interrupt enabled. */
350 		M_PERFCTL_INTERRUPT_ENABLE;
351 	if (IS_ENABLED(CONFIG_CPU_BMIPS5000))
352 		/* enable the counter for the calling thread */
353 		cpuc->saved_ctrl[idx] |=
354 			(1 << (12 + vpe_id())) | M_PERFCTL_TC;
355 
356 	/*
357 	 * We do not actually let the counter run. Leave it until start().
358 	 */
359 }
360 
361 static void mipsxx_pmu_disable_event(int idx)
362 {
363 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
364 	unsigned long flags;
365 
366 	WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
367 
368 	local_irq_save(flags);
369 	cpuc->saved_ctrl[idx] = mipsxx_pmu_read_control(idx) &
370 		~M_PERFCTL_COUNT_EVENT_WHENEVER;
371 	mipsxx_pmu_write_control(idx, cpuc->saved_ctrl[idx]);
372 	local_irq_restore(flags);
373 }
374 
375 static int mipspmu_event_set_period(struct perf_event *event,
376 				    struct hw_perf_event *hwc,
377 				    int idx)
378 {
379 	u64 left = local64_read(&hwc->period_left);
380 	u64 period = hwc->sample_period;
381 	int ret = 0;
382 
383 	if (unlikely((left + period) & (1ULL << 63))) {
384 		/* left underflowed by more than period. */
385 		left = period;
386 		local64_set(&hwc->period_left, left);
387 		hwc->last_period = period;
388 		ret = 1;
389 	} else	if (unlikely((left + period) <= period)) {
390 		/* left underflowed by less than period. */
391 		left += period;
392 		local64_set(&hwc->period_left, left);
393 		hwc->last_period = period;
394 		ret = 1;
395 	}
396 
397 	if (left > mipspmu.max_period) {
398 		left = mipspmu.max_period;
399 		local64_set(&hwc->period_left, left);
400 	}
401 
402 	local64_set(&hwc->prev_count, mipspmu.overflow - left);
403 
404 	mipspmu.write_counter(idx, mipspmu.overflow - left);
405 
406 	perf_event_update_userpage(event);
407 
408 	return ret;
409 }
410 
411 static void mipspmu_event_update(struct perf_event *event,
412 				 struct hw_perf_event *hwc,
413 				 int idx)
414 {
415 	u64 prev_raw_count, new_raw_count;
416 	u64 delta;
417 
418 again:
419 	prev_raw_count = local64_read(&hwc->prev_count);
420 	new_raw_count = mipspmu.read_counter(idx);
421 
422 	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
423 				new_raw_count) != prev_raw_count)
424 		goto again;
425 
426 	delta = new_raw_count - prev_raw_count;
427 
428 	local64_add(delta, &event->count);
429 	local64_sub(delta, &hwc->period_left);
430 }
431 
432 static void mipspmu_start(struct perf_event *event, int flags)
433 {
434 	struct hw_perf_event *hwc = &event->hw;
435 
436 	if (flags & PERF_EF_RELOAD)
437 		WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
438 
439 	hwc->state = 0;
440 
441 	/* Set the period for the event. */
442 	mipspmu_event_set_period(event, hwc, hwc->idx);
443 
444 	/* Enable the event. */
445 	mipsxx_pmu_enable_event(hwc, hwc->idx);
446 }
447 
448 static void mipspmu_stop(struct perf_event *event, int flags)
449 {
450 	struct hw_perf_event *hwc = &event->hw;
451 
452 	if (!(hwc->state & PERF_HES_STOPPED)) {
453 		/* We are working on a local event. */
454 		mipsxx_pmu_disable_event(hwc->idx);
455 		barrier();
456 		mipspmu_event_update(event, hwc, hwc->idx);
457 		hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
458 	}
459 }
460 
461 static int mipspmu_add(struct perf_event *event, int flags)
462 {
463 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
464 	struct hw_perf_event *hwc = &event->hw;
465 	int idx;
466 	int err = 0;
467 
468 	perf_pmu_disable(event->pmu);
469 
470 	/* To look for a free counter for this event. */
471 	idx = mipsxx_pmu_alloc_counter(cpuc, hwc);
472 	if (idx < 0) {
473 		err = idx;
474 		goto out;
475 	}
476 
477 	/*
478 	 * If there is an event in the counter we are going to use then
479 	 * make sure it is disabled.
480 	 */
481 	event->hw.idx = idx;
482 	mipsxx_pmu_disable_event(idx);
483 	cpuc->events[idx] = event;
484 
485 	hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
486 	if (flags & PERF_EF_START)
487 		mipspmu_start(event, PERF_EF_RELOAD);
488 
489 	/* Propagate our changes to the userspace mapping. */
490 	perf_event_update_userpage(event);
491 
492 out:
493 	perf_pmu_enable(event->pmu);
494 	return err;
495 }
496 
497 static void mipspmu_del(struct perf_event *event, int flags)
498 {
499 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
500 	struct hw_perf_event *hwc = &event->hw;
501 	int idx = hwc->idx;
502 
503 	WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
504 
505 	mipspmu_stop(event, PERF_EF_UPDATE);
506 	cpuc->events[idx] = NULL;
507 	clear_bit(idx, cpuc->used_mask);
508 
509 	perf_event_update_userpage(event);
510 }
511 
512 static void mipspmu_read(struct perf_event *event)
513 {
514 	struct hw_perf_event *hwc = &event->hw;
515 
516 	/* Don't read disabled counters! */
517 	if (hwc->idx < 0)
518 		return;
519 
520 	mipspmu_event_update(event, hwc, hwc->idx);
521 }
522 
523 static void mipspmu_enable(struct pmu *pmu)
524 {
525 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
526 	write_unlock(&pmuint_rwlock);
527 #endif
528 	resume_local_counters();
529 }
530 
531 /*
532  * MIPS performance counters can be per-TC. The control registers can
533  * not be directly accessed accross CPUs. Hence if we want to do global
534  * control, we need cross CPU calls. on_each_cpu() can help us, but we
535  * can not make sure this function is called with interrupts enabled. So
536  * here we pause local counters and then grab a rwlock and leave the
537  * counters on other CPUs alone. If any counter interrupt raises while
538  * we own the write lock, simply pause local counters on that CPU and
539  * spin in the handler. Also we know we won't be switched to another
540  * CPU after pausing local counters and before grabbing the lock.
541  */
542 static void mipspmu_disable(struct pmu *pmu)
543 {
544 	pause_local_counters();
545 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
546 	write_lock(&pmuint_rwlock);
547 #endif
548 }
549 
550 static atomic_t active_events = ATOMIC_INIT(0);
551 static DEFINE_MUTEX(pmu_reserve_mutex);
552 static int (*save_perf_irq)(void);
553 
554 static int mipspmu_get_irq(void)
555 {
556 	int err;
557 
558 	if (mipspmu.irq >= 0) {
559 		/* Request my own irq handler. */
560 		err = request_irq(mipspmu.irq, mipsxx_pmu_handle_irq,
561 			IRQF_PERCPU | IRQF_NOBALANCING | IRQF_NO_THREAD,
562 			"mips_perf_pmu", NULL);
563 		if (err) {
564 			pr_warn("Unable to request IRQ%d for MIPS performance counters!\n",
565 				mipspmu.irq);
566 		}
567 	} else if (cp0_perfcount_irq < 0) {
568 		/*
569 		 * We are sharing the irq number with the timer interrupt.
570 		 */
571 		save_perf_irq = perf_irq;
572 		perf_irq = mipsxx_pmu_handle_shared_irq;
573 		err = 0;
574 	} else {
575 		pr_warn("The platform hasn't properly defined its interrupt controller\n");
576 		err = -ENOENT;
577 	}
578 
579 	return err;
580 }
581 
582 static void mipspmu_free_irq(void)
583 {
584 	if (mipspmu.irq >= 0)
585 		free_irq(mipspmu.irq, NULL);
586 	else if (cp0_perfcount_irq < 0)
587 		perf_irq = save_perf_irq;
588 }
589 
590 /*
591  * mipsxx/rm9000/loongson2 have different performance counters, they have
592  * specific low-level init routines.
593  */
594 static void reset_counters(void *arg);
595 static int __hw_perf_event_init(struct perf_event *event);
596 
597 static void hw_perf_event_destroy(struct perf_event *event)
598 {
599 	if (atomic_dec_and_mutex_lock(&active_events,
600 				&pmu_reserve_mutex)) {
601 		/*
602 		 * We must not call the destroy function with interrupts
603 		 * disabled.
604 		 */
605 		on_each_cpu(reset_counters,
606 			(void *)(long)mipspmu.num_counters, 1);
607 		mipspmu_free_irq();
608 		mutex_unlock(&pmu_reserve_mutex);
609 	}
610 }
611 
612 static int mipspmu_event_init(struct perf_event *event)
613 {
614 	int err = 0;
615 
616 	/* does not support taken branch sampling */
617 	if (has_branch_stack(event))
618 		return -EOPNOTSUPP;
619 
620 	switch (event->attr.type) {
621 	case PERF_TYPE_RAW:
622 	case PERF_TYPE_HARDWARE:
623 	case PERF_TYPE_HW_CACHE:
624 		break;
625 
626 	default:
627 		return -ENOENT;
628 	}
629 
630 	if (event->cpu >= nr_cpumask_bits ||
631 	    (event->cpu >= 0 && !cpu_online(event->cpu)))
632 		return -ENODEV;
633 
634 	if (!atomic_inc_not_zero(&active_events)) {
635 		mutex_lock(&pmu_reserve_mutex);
636 		if (atomic_read(&active_events) == 0)
637 			err = mipspmu_get_irq();
638 
639 		if (!err)
640 			atomic_inc(&active_events);
641 		mutex_unlock(&pmu_reserve_mutex);
642 	}
643 
644 	if (err)
645 		return err;
646 
647 	return __hw_perf_event_init(event);
648 }
649 
650 static struct pmu pmu = {
651 	.pmu_enable	= mipspmu_enable,
652 	.pmu_disable	= mipspmu_disable,
653 	.event_init	= mipspmu_event_init,
654 	.add		= mipspmu_add,
655 	.del		= mipspmu_del,
656 	.start		= mipspmu_start,
657 	.stop		= mipspmu_stop,
658 	.read		= mipspmu_read,
659 };
660 
661 static unsigned int mipspmu_perf_event_encode(const struct mips_perf_event *pev)
662 {
663 /*
664  * Top 8 bits for range, next 16 bits for cntr_mask, lowest 8 bits for
665  * event_id.
666  */
667 #ifdef CONFIG_MIPS_MT_SMP
668 	return ((unsigned int)pev->range << 24) |
669 		(pev->cntr_mask & 0xffff00) |
670 		(pev->event_id & 0xff);
671 #else
672 	return (pev->cntr_mask & 0xffff00) |
673 		(pev->event_id & 0xff);
674 #endif
675 }
676 
677 static const struct mips_perf_event *mipspmu_map_general_event(int idx)
678 {
679 
680 	if ((*mipspmu.general_event_map)[idx].cntr_mask == 0)
681 		return ERR_PTR(-EOPNOTSUPP);
682 	return &(*mipspmu.general_event_map)[idx];
683 }
684 
685 static const struct mips_perf_event *mipspmu_map_cache_event(u64 config)
686 {
687 	unsigned int cache_type, cache_op, cache_result;
688 	const struct mips_perf_event *pev;
689 
690 	cache_type = (config >> 0) & 0xff;
691 	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
692 		return ERR_PTR(-EINVAL);
693 
694 	cache_op = (config >> 8) & 0xff;
695 	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
696 		return ERR_PTR(-EINVAL);
697 
698 	cache_result = (config >> 16) & 0xff;
699 	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
700 		return ERR_PTR(-EINVAL);
701 
702 	pev = &((*mipspmu.cache_event_map)
703 					[cache_type]
704 					[cache_op]
705 					[cache_result]);
706 
707 	if (pev->cntr_mask == 0)
708 		return ERR_PTR(-EOPNOTSUPP);
709 
710 	return pev;
711 
712 }
713 
714 static int validate_group(struct perf_event *event)
715 {
716 	struct perf_event *sibling, *leader = event->group_leader;
717 	struct cpu_hw_events fake_cpuc;
718 
719 	memset(&fake_cpuc, 0, sizeof(fake_cpuc));
720 
721 	if (mipsxx_pmu_alloc_counter(&fake_cpuc, &leader->hw) < 0)
722 		return -EINVAL;
723 
724 	list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
725 		if (mipsxx_pmu_alloc_counter(&fake_cpuc, &sibling->hw) < 0)
726 			return -EINVAL;
727 	}
728 
729 	if (mipsxx_pmu_alloc_counter(&fake_cpuc, &event->hw) < 0)
730 		return -EINVAL;
731 
732 	return 0;
733 }
734 
735 /* This is needed by specific irq handlers in perf_event_*.c */
736 static void handle_associated_event(struct cpu_hw_events *cpuc,
737 				    int idx, struct perf_sample_data *data,
738 				    struct pt_regs *regs)
739 {
740 	struct perf_event *event = cpuc->events[idx];
741 	struct hw_perf_event *hwc = &event->hw;
742 
743 	mipspmu_event_update(event, hwc, idx);
744 	data->period = event->hw.last_period;
745 	if (!mipspmu_event_set_period(event, hwc, idx))
746 		return;
747 
748 	if (perf_event_overflow(event, data, regs))
749 		mipsxx_pmu_disable_event(idx);
750 }
751 
752 
753 static int __n_counters(void)
754 {
755 	if (!(read_c0_config1() & M_CONFIG1_PC))
756 		return 0;
757 	if (!(read_c0_perfctrl0() & M_PERFCTL_MORE))
758 		return 1;
759 	if (!(read_c0_perfctrl1() & M_PERFCTL_MORE))
760 		return 2;
761 	if (!(read_c0_perfctrl2() & M_PERFCTL_MORE))
762 		return 3;
763 
764 	return 4;
765 }
766 
767 static int n_counters(void)
768 {
769 	int counters;
770 
771 	switch (current_cpu_type()) {
772 	case CPU_R10000:
773 		counters = 2;
774 		break;
775 
776 	case CPU_R12000:
777 	case CPU_R14000:
778 		counters = 4;
779 		break;
780 
781 	default:
782 		counters = __n_counters();
783 	}
784 
785 	return counters;
786 }
787 
788 static void reset_counters(void *arg)
789 {
790 	int counters = (int)(long)arg;
791 	switch (counters) {
792 	case 4:
793 		mipsxx_pmu_write_control(3, 0);
794 		mipspmu.write_counter(3, 0);
795 	case 3:
796 		mipsxx_pmu_write_control(2, 0);
797 		mipspmu.write_counter(2, 0);
798 	case 2:
799 		mipsxx_pmu_write_control(1, 0);
800 		mipspmu.write_counter(1, 0);
801 	case 1:
802 		mipsxx_pmu_write_control(0, 0);
803 		mipspmu.write_counter(0, 0);
804 	}
805 }
806 
807 /* 24K/34K/1004K/interAptiv/loongson1 cores share the same event map. */
808 static const struct mips_perf_event mipsxxcore_event_map
809 				[PERF_COUNT_HW_MAX] = {
810 	[PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P },
811 	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
812 	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x02, CNTR_EVEN, T },
813 	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x02, CNTR_ODD, T },
814 };
815 
816 /* 74K/proAptiv core has different branch event code. */
817 static const struct mips_perf_event mipsxxcore_event_map2
818 				[PERF_COUNT_HW_MAX] = {
819 	[PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P },
820 	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
821 	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x27, CNTR_EVEN, T },
822 	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x27, CNTR_ODD, T },
823 };
824 
825 static const struct mips_perf_event octeon_event_map[PERF_COUNT_HW_MAX] = {
826 	[PERF_COUNT_HW_CPU_CYCLES] = { 0x01, CNTR_ALL },
827 	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x03, CNTR_ALL },
828 	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0x2b, CNTR_ALL },
829 	[PERF_COUNT_HW_CACHE_MISSES] = { 0x2e, CNTR_ALL	 },
830 	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x08, CNTR_ALL },
831 	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x09, CNTR_ALL },
832 	[PERF_COUNT_HW_BUS_CYCLES] = { 0x25, CNTR_ALL },
833 };
834 
835 static const struct mips_perf_event bmips5000_event_map
836 				[PERF_COUNT_HW_MAX] = {
837 	[PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, T },
838 	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
839 	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x02, CNTR_ODD, T },
840 };
841 
842 static const struct mips_perf_event xlp_event_map[PERF_COUNT_HW_MAX] = {
843 	[PERF_COUNT_HW_CPU_CYCLES] = { 0x01, CNTR_ALL },
844 	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x18, CNTR_ALL }, /* PAPI_TOT_INS */
845 	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0x04, CNTR_ALL }, /* PAPI_L1_ICA */
846 	[PERF_COUNT_HW_CACHE_MISSES] = { 0x07, CNTR_ALL }, /* PAPI_L1_ICM */
847 	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x1b, CNTR_ALL }, /* PAPI_BR_CN */
848 	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x1c, CNTR_ALL }, /* PAPI_BR_MSP */
849 };
850 
851 /* 24K/34K/1004K/interAptiv/loongson1 cores share the same cache event map. */
852 static const struct mips_perf_event mipsxxcore_cache_map
853 				[PERF_COUNT_HW_CACHE_MAX]
854 				[PERF_COUNT_HW_CACHE_OP_MAX]
855 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
856 [C(L1D)] = {
857 	/*
858 	 * Like some other architectures (e.g. ARM), the performance
859 	 * counters don't differentiate between read and write
860 	 * accesses/misses, so this isn't strictly correct, but it's the
861 	 * best we can do. Writes and reads get combined.
862 	 */
863 	[C(OP_READ)] = {
864 		[C(RESULT_ACCESS)]	= { 0x0a, CNTR_EVEN, T },
865 		[C(RESULT_MISS)]	= { 0x0b, CNTR_EVEN | CNTR_ODD, T },
866 	},
867 	[C(OP_WRITE)] = {
868 		[C(RESULT_ACCESS)]	= { 0x0a, CNTR_EVEN, T },
869 		[C(RESULT_MISS)]	= { 0x0b, CNTR_EVEN | CNTR_ODD, T },
870 	},
871 },
872 [C(L1I)] = {
873 	[C(OP_READ)] = {
874 		[C(RESULT_ACCESS)]	= { 0x09, CNTR_EVEN, T },
875 		[C(RESULT_MISS)]	= { 0x09, CNTR_ODD, T },
876 	},
877 	[C(OP_WRITE)] = {
878 		[C(RESULT_ACCESS)]	= { 0x09, CNTR_EVEN, T },
879 		[C(RESULT_MISS)]	= { 0x09, CNTR_ODD, T },
880 	},
881 	[C(OP_PREFETCH)] = {
882 		[C(RESULT_ACCESS)]	= { 0x14, CNTR_EVEN, T },
883 		/*
884 		 * Note that MIPS has only "hit" events countable for
885 		 * the prefetch operation.
886 		 */
887 	},
888 },
889 [C(LL)] = {
890 	[C(OP_READ)] = {
891 		[C(RESULT_ACCESS)]	= { 0x15, CNTR_ODD, P },
892 		[C(RESULT_MISS)]	= { 0x16, CNTR_EVEN, P },
893 	},
894 	[C(OP_WRITE)] = {
895 		[C(RESULT_ACCESS)]	= { 0x15, CNTR_ODD, P },
896 		[C(RESULT_MISS)]	= { 0x16, CNTR_EVEN, P },
897 	},
898 },
899 [C(DTLB)] = {
900 	[C(OP_READ)] = {
901 		[C(RESULT_ACCESS)]	= { 0x06, CNTR_EVEN, T },
902 		[C(RESULT_MISS)]	= { 0x06, CNTR_ODD, T },
903 	},
904 	[C(OP_WRITE)] = {
905 		[C(RESULT_ACCESS)]	= { 0x06, CNTR_EVEN, T },
906 		[C(RESULT_MISS)]	= { 0x06, CNTR_ODD, T },
907 	},
908 },
909 [C(ITLB)] = {
910 	[C(OP_READ)] = {
911 		[C(RESULT_ACCESS)]	= { 0x05, CNTR_EVEN, T },
912 		[C(RESULT_MISS)]	= { 0x05, CNTR_ODD, T },
913 	},
914 	[C(OP_WRITE)] = {
915 		[C(RESULT_ACCESS)]	= { 0x05, CNTR_EVEN, T },
916 		[C(RESULT_MISS)]	= { 0x05, CNTR_ODD, T },
917 	},
918 },
919 [C(BPU)] = {
920 	/* Using the same code for *HW_BRANCH* */
921 	[C(OP_READ)] = {
922 		[C(RESULT_ACCESS)]	= { 0x02, CNTR_EVEN, T },
923 		[C(RESULT_MISS)]	= { 0x02, CNTR_ODD, T },
924 	},
925 	[C(OP_WRITE)] = {
926 		[C(RESULT_ACCESS)]	= { 0x02, CNTR_EVEN, T },
927 		[C(RESULT_MISS)]	= { 0x02, CNTR_ODD, T },
928 	},
929 },
930 };
931 
932 /* 74K/proAptiv core has completely different cache event map. */
933 static const struct mips_perf_event mipsxxcore_cache_map2
934 				[PERF_COUNT_HW_CACHE_MAX]
935 				[PERF_COUNT_HW_CACHE_OP_MAX]
936 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
937 [C(L1D)] = {
938 	/*
939 	 * Like some other architectures (e.g. ARM), the performance
940 	 * counters don't differentiate between read and write
941 	 * accesses/misses, so this isn't strictly correct, but it's the
942 	 * best we can do. Writes and reads get combined.
943 	 */
944 	[C(OP_READ)] = {
945 		[C(RESULT_ACCESS)]	= { 0x17, CNTR_ODD, T },
946 		[C(RESULT_MISS)]	= { 0x18, CNTR_ODD, T },
947 	},
948 	[C(OP_WRITE)] = {
949 		[C(RESULT_ACCESS)]	= { 0x17, CNTR_ODD, T },
950 		[C(RESULT_MISS)]	= { 0x18, CNTR_ODD, T },
951 	},
952 },
953 [C(L1I)] = {
954 	[C(OP_READ)] = {
955 		[C(RESULT_ACCESS)]	= { 0x06, CNTR_EVEN, T },
956 		[C(RESULT_MISS)]	= { 0x06, CNTR_ODD, T },
957 	},
958 	[C(OP_WRITE)] = {
959 		[C(RESULT_ACCESS)]	= { 0x06, CNTR_EVEN, T },
960 		[C(RESULT_MISS)]	= { 0x06, CNTR_ODD, T },
961 	},
962 	[C(OP_PREFETCH)] = {
963 		[C(RESULT_ACCESS)]	= { 0x34, CNTR_EVEN, T },
964 		/*
965 		 * Note that MIPS has only "hit" events countable for
966 		 * the prefetch operation.
967 		 */
968 	},
969 },
970 [C(LL)] = {
971 	[C(OP_READ)] = {
972 		[C(RESULT_ACCESS)]	= { 0x1c, CNTR_ODD, P },
973 		[C(RESULT_MISS)]	= { 0x1d, CNTR_EVEN, P },
974 	},
975 	[C(OP_WRITE)] = {
976 		[C(RESULT_ACCESS)]	= { 0x1c, CNTR_ODD, P },
977 		[C(RESULT_MISS)]	= { 0x1d, CNTR_EVEN, P },
978 	},
979 },
980 /*
981  * 74K core does not have specific DTLB events. proAptiv core has
982  * "speculative" DTLB events which are numbered 0x63 (even/odd) and
983  * not included here. One can use raw events if really needed.
984  */
985 [C(ITLB)] = {
986 	[C(OP_READ)] = {
987 		[C(RESULT_ACCESS)]	= { 0x04, CNTR_EVEN, T },
988 		[C(RESULT_MISS)]	= { 0x04, CNTR_ODD, T },
989 	},
990 	[C(OP_WRITE)] = {
991 		[C(RESULT_ACCESS)]	= { 0x04, CNTR_EVEN, T },
992 		[C(RESULT_MISS)]	= { 0x04, CNTR_ODD, T },
993 	},
994 },
995 [C(BPU)] = {
996 	/* Using the same code for *HW_BRANCH* */
997 	[C(OP_READ)] = {
998 		[C(RESULT_ACCESS)]	= { 0x27, CNTR_EVEN, T },
999 		[C(RESULT_MISS)]	= { 0x27, CNTR_ODD, T },
1000 	},
1001 	[C(OP_WRITE)] = {
1002 		[C(RESULT_ACCESS)]	= { 0x27, CNTR_EVEN, T },
1003 		[C(RESULT_MISS)]	= { 0x27, CNTR_ODD, T },
1004 	},
1005 },
1006 };
1007 
1008 /* BMIPS5000 */
1009 static const struct mips_perf_event bmips5000_cache_map
1010 				[PERF_COUNT_HW_CACHE_MAX]
1011 				[PERF_COUNT_HW_CACHE_OP_MAX]
1012 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1013 [C(L1D)] = {
1014 	/*
1015 	 * Like some other architectures (e.g. ARM), the performance
1016 	 * counters don't differentiate between read and write
1017 	 * accesses/misses, so this isn't strictly correct, but it's the
1018 	 * best we can do. Writes and reads get combined.
1019 	 */
1020 	[C(OP_READ)] = {
1021 		[C(RESULT_ACCESS)]	= { 12, CNTR_EVEN, T },
1022 		[C(RESULT_MISS)]	= { 12, CNTR_ODD, T },
1023 	},
1024 	[C(OP_WRITE)] = {
1025 		[C(RESULT_ACCESS)]	= { 12, CNTR_EVEN, T },
1026 		[C(RESULT_MISS)]	= { 12, CNTR_ODD, T },
1027 	},
1028 },
1029 [C(L1I)] = {
1030 	[C(OP_READ)] = {
1031 		[C(RESULT_ACCESS)]	= { 10, CNTR_EVEN, T },
1032 		[C(RESULT_MISS)]	= { 10, CNTR_ODD, T },
1033 	},
1034 	[C(OP_WRITE)] = {
1035 		[C(RESULT_ACCESS)]	= { 10, CNTR_EVEN, T },
1036 		[C(RESULT_MISS)]	= { 10, CNTR_ODD, T },
1037 	},
1038 	[C(OP_PREFETCH)] = {
1039 		[C(RESULT_ACCESS)]	= { 23, CNTR_EVEN, T },
1040 		/*
1041 		 * Note that MIPS has only "hit" events countable for
1042 		 * the prefetch operation.
1043 		 */
1044 	},
1045 },
1046 [C(LL)] = {
1047 	[C(OP_READ)] = {
1048 		[C(RESULT_ACCESS)]	= { 28, CNTR_EVEN, P },
1049 		[C(RESULT_MISS)]	= { 28, CNTR_ODD, P },
1050 	},
1051 	[C(OP_WRITE)] = {
1052 		[C(RESULT_ACCESS)]	= { 28, CNTR_EVEN, P },
1053 		[C(RESULT_MISS)]	= { 28, CNTR_ODD, P },
1054 	},
1055 },
1056 [C(BPU)] = {
1057 	/* Using the same code for *HW_BRANCH* */
1058 	[C(OP_READ)] = {
1059 		[C(RESULT_MISS)]	= { 0x02, CNTR_ODD, T },
1060 	},
1061 	[C(OP_WRITE)] = {
1062 		[C(RESULT_MISS)]	= { 0x02, CNTR_ODD, T },
1063 	},
1064 },
1065 };
1066 
1067 
1068 static const struct mips_perf_event octeon_cache_map
1069 				[PERF_COUNT_HW_CACHE_MAX]
1070 				[PERF_COUNT_HW_CACHE_OP_MAX]
1071 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1072 [C(L1D)] = {
1073 	[C(OP_READ)] = {
1074 		[C(RESULT_ACCESS)]	= { 0x2b, CNTR_ALL },
1075 		[C(RESULT_MISS)]	= { 0x2e, CNTR_ALL },
1076 	},
1077 	[C(OP_WRITE)] = {
1078 		[C(RESULT_ACCESS)]	= { 0x30, CNTR_ALL },
1079 	},
1080 },
1081 [C(L1I)] = {
1082 	[C(OP_READ)] = {
1083 		[C(RESULT_ACCESS)]	= { 0x18, CNTR_ALL },
1084 	},
1085 	[C(OP_PREFETCH)] = {
1086 		[C(RESULT_ACCESS)]	= { 0x19, CNTR_ALL },
1087 	},
1088 },
1089 [C(DTLB)] = {
1090 	/*
1091 	 * Only general DTLB misses are counted use the same event for
1092 	 * read and write.
1093 	 */
1094 	[C(OP_READ)] = {
1095 		[C(RESULT_MISS)]	= { 0x35, CNTR_ALL },
1096 	},
1097 	[C(OP_WRITE)] = {
1098 		[C(RESULT_MISS)]	= { 0x35, CNTR_ALL },
1099 	},
1100 },
1101 [C(ITLB)] = {
1102 	[C(OP_READ)] = {
1103 		[C(RESULT_MISS)]	= { 0x37, CNTR_ALL },
1104 	},
1105 },
1106 };
1107 
1108 static const struct mips_perf_event xlp_cache_map
1109 				[PERF_COUNT_HW_CACHE_MAX]
1110 				[PERF_COUNT_HW_CACHE_OP_MAX]
1111 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1112 [C(L1D)] = {
1113 	[C(OP_READ)] = {
1114 		[C(RESULT_ACCESS)]	= { 0x31, CNTR_ALL }, /* PAPI_L1_DCR */
1115 		[C(RESULT_MISS)]	= { 0x30, CNTR_ALL }, /* PAPI_L1_LDM */
1116 	},
1117 	[C(OP_WRITE)] = {
1118 		[C(RESULT_ACCESS)]	= { 0x2f, CNTR_ALL }, /* PAPI_L1_DCW */
1119 		[C(RESULT_MISS)]	= { 0x2e, CNTR_ALL }, /* PAPI_L1_STM */
1120 	},
1121 },
1122 [C(L1I)] = {
1123 	[C(OP_READ)] = {
1124 		[C(RESULT_ACCESS)]	= { 0x04, CNTR_ALL }, /* PAPI_L1_ICA */
1125 		[C(RESULT_MISS)]	= { 0x07, CNTR_ALL }, /* PAPI_L1_ICM */
1126 	},
1127 },
1128 [C(LL)] = {
1129 	[C(OP_READ)] = {
1130 		[C(RESULT_ACCESS)]	= { 0x35, CNTR_ALL }, /* PAPI_L2_DCR */
1131 		[C(RESULT_MISS)]	= { 0x37, CNTR_ALL }, /* PAPI_L2_LDM */
1132 	},
1133 	[C(OP_WRITE)] = {
1134 		[C(RESULT_ACCESS)]	= { 0x34, CNTR_ALL }, /* PAPI_L2_DCA */
1135 		[C(RESULT_MISS)]	= { 0x36, CNTR_ALL }, /* PAPI_L2_DCM */
1136 	},
1137 },
1138 [C(DTLB)] = {
1139 	/*
1140 	 * Only general DTLB misses are counted use the same event for
1141 	 * read and write.
1142 	 */
1143 	[C(OP_READ)] = {
1144 		[C(RESULT_MISS)]	= { 0x2d, CNTR_ALL }, /* PAPI_TLB_DM */
1145 	},
1146 	[C(OP_WRITE)] = {
1147 		[C(RESULT_MISS)]	= { 0x2d, CNTR_ALL }, /* PAPI_TLB_DM */
1148 	},
1149 },
1150 [C(ITLB)] = {
1151 	[C(OP_READ)] = {
1152 		[C(RESULT_MISS)]	= { 0x08, CNTR_ALL }, /* PAPI_TLB_IM */
1153 	},
1154 	[C(OP_WRITE)] = {
1155 		[C(RESULT_MISS)]	= { 0x08, CNTR_ALL }, /* PAPI_TLB_IM */
1156 	},
1157 },
1158 [C(BPU)] = {
1159 	[C(OP_READ)] = {
1160 		[C(RESULT_MISS)]	= { 0x25, CNTR_ALL },
1161 	},
1162 },
1163 };
1164 
1165 #ifdef CONFIG_MIPS_MT_SMP
1166 static void check_and_calc_range(struct perf_event *event,
1167 				 const struct mips_perf_event *pev)
1168 {
1169 	struct hw_perf_event *hwc = &event->hw;
1170 
1171 	if (event->cpu >= 0) {
1172 		if (pev->range > V) {
1173 			/*
1174 			 * The user selected an event that is processor
1175 			 * wide, while expecting it to be VPE wide.
1176 			 */
1177 			hwc->config_base |= M_TC_EN_ALL;
1178 		} else {
1179 			/*
1180 			 * FIXME: cpu_data[event->cpu].vpe_id reports 0
1181 			 * for both CPUs.
1182 			 */
1183 			hwc->config_base |= M_PERFCTL_VPEID(event->cpu);
1184 			hwc->config_base |= M_TC_EN_VPE;
1185 		}
1186 	} else
1187 		hwc->config_base |= M_TC_EN_ALL;
1188 }
1189 #else
1190 static void check_and_calc_range(struct perf_event *event,
1191 				 const struct mips_perf_event *pev)
1192 {
1193 }
1194 #endif
1195 
1196 static int __hw_perf_event_init(struct perf_event *event)
1197 {
1198 	struct perf_event_attr *attr = &event->attr;
1199 	struct hw_perf_event *hwc = &event->hw;
1200 	const struct mips_perf_event *pev;
1201 	int err;
1202 
1203 	/* Returning MIPS event descriptor for generic perf event. */
1204 	if (PERF_TYPE_HARDWARE == event->attr.type) {
1205 		if (event->attr.config >= PERF_COUNT_HW_MAX)
1206 			return -EINVAL;
1207 		pev = mipspmu_map_general_event(event->attr.config);
1208 	} else if (PERF_TYPE_HW_CACHE == event->attr.type) {
1209 		pev = mipspmu_map_cache_event(event->attr.config);
1210 	} else if (PERF_TYPE_RAW == event->attr.type) {
1211 		/* We are working on the global raw event. */
1212 		mutex_lock(&raw_event_mutex);
1213 		pev = mipspmu.map_raw_event(event->attr.config);
1214 	} else {
1215 		/* The event type is not (yet) supported. */
1216 		return -EOPNOTSUPP;
1217 	}
1218 
1219 	if (IS_ERR(pev)) {
1220 		if (PERF_TYPE_RAW == event->attr.type)
1221 			mutex_unlock(&raw_event_mutex);
1222 		return PTR_ERR(pev);
1223 	}
1224 
1225 	/*
1226 	 * We allow max flexibility on how each individual counter shared
1227 	 * by the single CPU operates (the mode exclusion and the range).
1228 	 */
1229 	hwc->config_base = M_PERFCTL_INTERRUPT_ENABLE;
1230 
1231 	/* Calculate range bits and validate it. */
1232 	if (num_possible_cpus() > 1)
1233 		check_and_calc_range(event, pev);
1234 
1235 	hwc->event_base = mipspmu_perf_event_encode(pev);
1236 	if (PERF_TYPE_RAW == event->attr.type)
1237 		mutex_unlock(&raw_event_mutex);
1238 
1239 	if (!attr->exclude_user)
1240 		hwc->config_base |= M_PERFCTL_USER;
1241 	if (!attr->exclude_kernel) {
1242 		hwc->config_base |= M_PERFCTL_KERNEL;
1243 		/* MIPS kernel mode: KSU == 00b || EXL == 1 || ERL == 1 */
1244 		hwc->config_base |= M_PERFCTL_EXL;
1245 	}
1246 	if (!attr->exclude_hv)
1247 		hwc->config_base |= M_PERFCTL_SUPERVISOR;
1248 
1249 	hwc->config_base &= M_PERFCTL_CONFIG_MASK;
1250 	/*
1251 	 * The event can belong to another cpu. We do not assign a local
1252 	 * counter for it for now.
1253 	 */
1254 	hwc->idx = -1;
1255 	hwc->config = 0;
1256 
1257 	if (!hwc->sample_period) {
1258 		hwc->sample_period  = mipspmu.max_period;
1259 		hwc->last_period    = hwc->sample_period;
1260 		local64_set(&hwc->period_left, hwc->sample_period);
1261 	}
1262 
1263 	err = 0;
1264 	if (event->group_leader != event)
1265 		err = validate_group(event);
1266 
1267 	event->destroy = hw_perf_event_destroy;
1268 
1269 	if (err)
1270 		event->destroy(event);
1271 
1272 	return err;
1273 }
1274 
1275 static void pause_local_counters(void)
1276 {
1277 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1278 	int ctr = mipspmu.num_counters;
1279 	unsigned long flags;
1280 
1281 	local_irq_save(flags);
1282 	do {
1283 		ctr--;
1284 		cpuc->saved_ctrl[ctr] = mipsxx_pmu_read_control(ctr);
1285 		mipsxx_pmu_write_control(ctr, cpuc->saved_ctrl[ctr] &
1286 					 ~M_PERFCTL_COUNT_EVENT_WHENEVER);
1287 	} while (ctr > 0);
1288 	local_irq_restore(flags);
1289 }
1290 
1291 static void resume_local_counters(void)
1292 {
1293 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1294 	int ctr = mipspmu.num_counters;
1295 
1296 	do {
1297 		ctr--;
1298 		mipsxx_pmu_write_control(ctr, cpuc->saved_ctrl[ctr]);
1299 	} while (ctr > 0);
1300 }
1301 
1302 static int mipsxx_pmu_handle_shared_irq(void)
1303 {
1304 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1305 	struct perf_sample_data data;
1306 	unsigned int counters = mipspmu.num_counters;
1307 	u64 counter;
1308 	int handled = IRQ_NONE;
1309 	struct pt_regs *regs;
1310 
1311 	if (cpu_has_perf_cntr_intr_bit && !(read_c0_cause() & CAUSEF_PCI))
1312 		return handled;
1313 	/*
1314 	 * First we pause the local counters, so that when we are locked
1315 	 * here, the counters are all paused. When it gets locked due to
1316 	 * perf_disable(), the timer interrupt handler will be delayed.
1317 	 *
1318 	 * See also mipsxx_pmu_start().
1319 	 */
1320 	pause_local_counters();
1321 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
1322 	read_lock(&pmuint_rwlock);
1323 #endif
1324 
1325 	regs = get_irq_regs();
1326 
1327 	perf_sample_data_init(&data, 0, 0);
1328 
1329 	switch (counters) {
1330 #define HANDLE_COUNTER(n)						\
1331 	case n + 1:							\
1332 		if (test_bit(n, cpuc->used_mask)) {			\
1333 			counter = mipspmu.read_counter(n);		\
1334 			if (counter & mipspmu.overflow) {		\
1335 				handle_associated_event(cpuc, n, &data, regs); \
1336 				handled = IRQ_HANDLED;			\
1337 			}						\
1338 		}
1339 	HANDLE_COUNTER(3)
1340 	HANDLE_COUNTER(2)
1341 	HANDLE_COUNTER(1)
1342 	HANDLE_COUNTER(0)
1343 	}
1344 
1345 	/*
1346 	 * Do all the work for the pending perf events. We can do this
1347 	 * in here because the performance counter interrupt is a regular
1348 	 * interrupt, not NMI.
1349 	 */
1350 	if (handled == IRQ_HANDLED)
1351 		irq_work_run();
1352 
1353 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
1354 	read_unlock(&pmuint_rwlock);
1355 #endif
1356 	resume_local_counters();
1357 	return handled;
1358 }
1359 
1360 static irqreturn_t mipsxx_pmu_handle_irq(int irq, void *dev)
1361 {
1362 	return mipsxx_pmu_handle_shared_irq();
1363 }
1364 
1365 /* 24K */
1366 #define IS_BOTH_COUNTERS_24K_EVENT(b)					\
1367 	((b) == 0 || (b) == 1 || (b) == 11)
1368 
1369 /* 34K */
1370 #define IS_BOTH_COUNTERS_34K_EVENT(b)					\
1371 	((b) == 0 || (b) == 1 || (b) == 11)
1372 #ifdef CONFIG_MIPS_MT_SMP
1373 #define IS_RANGE_P_34K_EVENT(r, b)					\
1374 	((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 ||		\
1375 	 (b) == 25 || (b) == 39 || (r) == 44 || (r) == 174 ||		\
1376 	 (r) == 176 || ((b) >= 50 && (b) <= 55) ||			\
1377 	 ((b) >= 64 && (b) <= 67))
1378 #define IS_RANGE_V_34K_EVENT(r) ((r) == 47)
1379 #endif
1380 
1381 /* 74K */
1382 #define IS_BOTH_COUNTERS_74K_EVENT(b)					\
1383 	((b) == 0 || (b) == 1)
1384 
1385 /* proAptiv */
1386 #define IS_BOTH_COUNTERS_PROAPTIV_EVENT(b)				\
1387 	((b) == 0 || (b) == 1)
1388 /* P5600 */
1389 #define IS_BOTH_COUNTERS_P5600_EVENT(b)					\
1390 	((b) == 0 || (b) == 1)
1391 
1392 /* 1004K */
1393 #define IS_BOTH_COUNTERS_1004K_EVENT(b)					\
1394 	((b) == 0 || (b) == 1 || (b) == 11)
1395 #ifdef CONFIG_MIPS_MT_SMP
1396 #define IS_RANGE_P_1004K_EVENT(r, b)					\
1397 	((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 ||		\
1398 	 (b) == 25 || (b) == 36 || (b) == 39 || (r) == 44 ||		\
1399 	 (r) == 174 || (r) == 176 || ((b) >= 50 && (b) <= 59) ||	\
1400 	 (r) == 188 || (b) == 61 || (b) == 62 ||			\
1401 	 ((b) >= 64 && (b) <= 67))
1402 #define IS_RANGE_V_1004K_EVENT(r)	((r) == 47)
1403 #endif
1404 
1405 /* interAptiv */
1406 #define IS_BOTH_COUNTERS_INTERAPTIV_EVENT(b)				\
1407 	((b) == 0 || (b) == 1 || (b) == 11)
1408 #ifdef CONFIG_MIPS_MT_SMP
1409 /* The P/V/T info is not provided for "(b) == 38" in SUM, assume P. */
1410 #define IS_RANGE_P_INTERAPTIV_EVENT(r, b)				\
1411 	((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 ||		\
1412 	 (b) == 25 || (b) == 36 || (b) == 38 || (b) == 39 ||		\
1413 	 (r) == 44 || (r) == 174 || (r) == 176 || ((b) >= 50 &&		\
1414 	 (b) <= 59) || (r) == 188 || (b) == 61 || (b) == 62 ||		\
1415 	 ((b) >= 64 && (b) <= 67))
1416 #define IS_RANGE_V_INTERAPTIV_EVENT(r)	((r) == 47 || (r) == 175)
1417 #endif
1418 
1419 /* BMIPS5000 */
1420 #define IS_BOTH_COUNTERS_BMIPS5000_EVENT(b)				\
1421 	((b) == 0 || (b) == 1)
1422 
1423 
1424 /*
1425  * For most cores the user can use 0-255 raw events, where 0-127 for the events
1426  * of even counters, and 128-255 for odd counters. Note that bit 7 is used to
1427  * indicate the even/odd bank selector. So, for example, when user wants to take
1428  * the Event Num of 15 for odd counters (by referring to the user manual), then
1429  * 128 needs to be added to 15 as the input for the event config, i.e., 143 (0x8F)
1430  * to be used.
1431  *
1432  * Some newer cores have even more events, in which case the user can use raw
1433  * events 0-511, where 0-255 are for the events of even counters, and 256-511
1434  * are for odd counters, so bit 8 is used to indicate the even/odd bank selector.
1435  */
1436 static const struct mips_perf_event *mipsxx_pmu_map_raw_event(u64 config)
1437 {
1438 	/* currently most cores have 7-bit event numbers */
1439 	unsigned int raw_id = config & 0xff;
1440 	unsigned int base_id = raw_id & 0x7f;
1441 
1442 	switch (current_cpu_type()) {
1443 	case CPU_24K:
1444 		if (IS_BOTH_COUNTERS_24K_EVENT(base_id))
1445 			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1446 		else
1447 			raw_event.cntr_mask =
1448 				raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1449 #ifdef CONFIG_MIPS_MT_SMP
1450 		/*
1451 		 * This is actually doing nothing. Non-multithreading
1452 		 * CPUs will not check and calculate the range.
1453 		 */
1454 		raw_event.range = P;
1455 #endif
1456 		break;
1457 	case CPU_34K:
1458 		if (IS_BOTH_COUNTERS_34K_EVENT(base_id))
1459 			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1460 		else
1461 			raw_event.cntr_mask =
1462 				raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1463 #ifdef CONFIG_MIPS_MT_SMP
1464 		if (IS_RANGE_P_34K_EVENT(raw_id, base_id))
1465 			raw_event.range = P;
1466 		else if (unlikely(IS_RANGE_V_34K_EVENT(raw_id)))
1467 			raw_event.range = V;
1468 		else
1469 			raw_event.range = T;
1470 #endif
1471 		break;
1472 	case CPU_74K:
1473 	case CPU_1074K:
1474 		if (IS_BOTH_COUNTERS_74K_EVENT(base_id))
1475 			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1476 		else
1477 			raw_event.cntr_mask =
1478 				raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1479 #ifdef CONFIG_MIPS_MT_SMP
1480 		raw_event.range = P;
1481 #endif
1482 		break;
1483 	case CPU_PROAPTIV:
1484 		if (IS_BOTH_COUNTERS_PROAPTIV_EVENT(base_id))
1485 			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1486 		else
1487 			raw_event.cntr_mask =
1488 				raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1489 #ifdef CONFIG_MIPS_MT_SMP
1490 		raw_event.range = P;
1491 #endif
1492 		break;
1493 	case CPU_P5600:
1494 		/* 8-bit event numbers */
1495 		raw_id = config & 0x1ff;
1496 		base_id = raw_id & 0xff;
1497 		if (IS_BOTH_COUNTERS_P5600_EVENT(base_id))
1498 			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1499 		else
1500 			raw_event.cntr_mask =
1501 				raw_id > 255 ? CNTR_ODD : CNTR_EVEN;
1502 #ifdef CONFIG_MIPS_MT_SMP
1503 		raw_event.range = P;
1504 #endif
1505 		break;
1506 	case CPU_1004K:
1507 		if (IS_BOTH_COUNTERS_1004K_EVENT(base_id))
1508 			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1509 		else
1510 			raw_event.cntr_mask =
1511 				raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1512 #ifdef CONFIG_MIPS_MT_SMP
1513 		if (IS_RANGE_P_1004K_EVENT(raw_id, base_id))
1514 			raw_event.range = P;
1515 		else if (unlikely(IS_RANGE_V_1004K_EVENT(raw_id)))
1516 			raw_event.range = V;
1517 		else
1518 			raw_event.range = T;
1519 #endif
1520 		break;
1521 	case CPU_INTERAPTIV:
1522 		if (IS_BOTH_COUNTERS_INTERAPTIV_EVENT(base_id))
1523 			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1524 		else
1525 			raw_event.cntr_mask =
1526 				raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1527 #ifdef CONFIG_MIPS_MT_SMP
1528 		if (IS_RANGE_P_INTERAPTIV_EVENT(raw_id, base_id))
1529 			raw_event.range = P;
1530 		else if (unlikely(IS_RANGE_V_INTERAPTIV_EVENT(raw_id)))
1531 			raw_event.range = V;
1532 		else
1533 			raw_event.range = T;
1534 #endif
1535 		break;
1536 	case CPU_BMIPS5000:
1537 		if (IS_BOTH_COUNTERS_BMIPS5000_EVENT(base_id))
1538 			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1539 		else
1540 			raw_event.cntr_mask =
1541 				raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1542 	}
1543 
1544 	raw_event.event_id = base_id;
1545 
1546 	return &raw_event;
1547 }
1548 
1549 static const struct mips_perf_event *octeon_pmu_map_raw_event(u64 config)
1550 {
1551 	unsigned int raw_id = config & 0xff;
1552 	unsigned int base_id = raw_id & 0x7f;
1553 
1554 
1555 	raw_event.cntr_mask = CNTR_ALL;
1556 	raw_event.event_id = base_id;
1557 
1558 	if (current_cpu_type() == CPU_CAVIUM_OCTEON2) {
1559 		if (base_id > 0x42)
1560 			return ERR_PTR(-EOPNOTSUPP);
1561 	} else {
1562 		if (base_id > 0x3a)
1563 			return ERR_PTR(-EOPNOTSUPP);
1564 	}
1565 
1566 	switch (base_id) {
1567 	case 0x00:
1568 	case 0x0f:
1569 	case 0x1e:
1570 	case 0x1f:
1571 	case 0x2f:
1572 	case 0x34:
1573 	case 0x3b ... 0x3f:
1574 		return ERR_PTR(-EOPNOTSUPP);
1575 	default:
1576 		break;
1577 	}
1578 
1579 	return &raw_event;
1580 }
1581 
1582 static const struct mips_perf_event *xlp_pmu_map_raw_event(u64 config)
1583 {
1584 	unsigned int raw_id = config & 0xff;
1585 
1586 	/* Only 1-63 are defined */
1587 	if ((raw_id < 0x01) || (raw_id > 0x3f))
1588 		return ERR_PTR(-EOPNOTSUPP);
1589 
1590 	raw_event.cntr_mask = CNTR_ALL;
1591 	raw_event.event_id = raw_id;
1592 
1593 	return &raw_event;
1594 }
1595 
1596 static int __init
1597 init_hw_perf_events(void)
1598 {
1599 	int counters, irq;
1600 	int counter_bits;
1601 
1602 	pr_info("Performance counters: ");
1603 
1604 	counters = n_counters();
1605 	if (counters == 0) {
1606 		pr_cont("No available PMU.\n");
1607 		return -ENODEV;
1608 	}
1609 
1610 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
1611 	cpu_has_mipsmt_pertccounters = read_c0_config7() & (1<<19);
1612 	if (!cpu_has_mipsmt_pertccounters)
1613 		counters = counters_total_to_per_cpu(counters);
1614 #endif
1615 
1616 	if (get_c0_perfcount_int)
1617 		irq = get_c0_perfcount_int();
1618 	else if ((cp0_perfcount_irq >= 0) &&
1619 		 (cp0_compare_irq != cp0_perfcount_irq))
1620 		irq = MIPS_CPU_IRQ_BASE + cp0_perfcount_irq;
1621 	else
1622 		irq = -1;
1623 
1624 	mipspmu.map_raw_event = mipsxx_pmu_map_raw_event;
1625 
1626 	switch (current_cpu_type()) {
1627 	case CPU_24K:
1628 		mipspmu.name = "mips/24K";
1629 		mipspmu.general_event_map = &mipsxxcore_event_map;
1630 		mipspmu.cache_event_map = &mipsxxcore_cache_map;
1631 		break;
1632 	case CPU_34K:
1633 		mipspmu.name = "mips/34K";
1634 		mipspmu.general_event_map = &mipsxxcore_event_map;
1635 		mipspmu.cache_event_map = &mipsxxcore_cache_map;
1636 		break;
1637 	case CPU_74K:
1638 		mipspmu.name = "mips/74K";
1639 		mipspmu.general_event_map = &mipsxxcore_event_map2;
1640 		mipspmu.cache_event_map = &mipsxxcore_cache_map2;
1641 		break;
1642 	case CPU_PROAPTIV:
1643 		mipspmu.name = "mips/proAptiv";
1644 		mipspmu.general_event_map = &mipsxxcore_event_map2;
1645 		mipspmu.cache_event_map = &mipsxxcore_cache_map2;
1646 		break;
1647 	case CPU_P5600:
1648 		mipspmu.name = "mips/P5600";
1649 		mipspmu.general_event_map = &mipsxxcore_event_map2;
1650 		mipspmu.cache_event_map = &mipsxxcore_cache_map2;
1651 		break;
1652 	case CPU_1004K:
1653 		mipspmu.name = "mips/1004K";
1654 		mipspmu.general_event_map = &mipsxxcore_event_map;
1655 		mipspmu.cache_event_map = &mipsxxcore_cache_map;
1656 		break;
1657 	case CPU_1074K:
1658 		mipspmu.name = "mips/1074K";
1659 		mipspmu.general_event_map = &mipsxxcore_event_map;
1660 		mipspmu.cache_event_map = &mipsxxcore_cache_map;
1661 		break;
1662 	case CPU_INTERAPTIV:
1663 		mipspmu.name = "mips/interAptiv";
1664 		mipspmu.general_event_map = &mipsxxcore_event_map;
1665 		mipspmu.cache_event_map = &mipsxxcore_cache_map;
1666 		break;
1667 	case CPU_LOONGSON1:
1668 		mipspmu.name = "mips/loongson1";
1669 		mipspmu.general_event_map = &mipsxxcore_event_map;
1670 		mipspmu.cache_event_map = &mipsxxcore_cache_map;
1671 		break;
1672 	case CPU_CAVIUM_OCTEON:
1673 	case CPU_CAVIUM_OCTEON_PLUS:
1674 	case CPU_CAVIUM_OCTEON2:
1675 		mipspmu.name = "octeon";
1676 		mipspmu.general_event_map = &octeon_event_map;
1677 		mipspmu.cache_event_map = &octeon_cache_map;
1678 		mipspmu.map_raw_event = octeon_pmu_map_raw_event;
1679 		break;
1680 	case CPU_BMIPS5000:
1681 		mipspmu.name = "BMIPS5000";
1682 		mipspmu.general_event_map = &bmips5000_event_map;
1683 		mipspmu.cache_event_map = &bmips5000_cache_map;
1684 		break;
1685 	case CPU_XLP:
1686 		mipspmu.name = "xlp";
1687 		mipspmu.general_event_map = &xlp_event_map;
1688 		mipspmu.cache_event_map = &xlp_cache_map;
1689 		mipspmu.map_raw_event = xlp_pmu_map_raw_event;
1690 		break;
1691 	default:
1692 		pr_cont("Either hardware does not support performance "
1693 			"counters, or not yet implemented.\n");
1694 		return -ENODEV;
1695 	}
1696 
1697 	mipspmu.num_counters = counters;
1698 	mipspmu.irq = irq;
1699 
1700 	if (read_c0_perfctrl0() & M_PERFCTL_WIDE) {
1701 		mipspmu.max_period = (1ULL << 63) - 1;
1702 		mipspmu.valid_count = (1ULL << 63) - 1;
1703 		mipspmu.overflow = 1ULL << 63;
1704 		mipspmu.read_counter = mipsxx_pmu_read_counter_64;
1705 		mipspmu.write_counter = mipsxx_pmu_write_counter_64;
1706 		counter_bits = 64;
1707 	} else {
1708 		mipspmu.max_period = (1ULL << 31) - 1;
1709 		mipspmu.valid_count = (1ULL << 31) - 1;
1710 		mipspmu.overflow = 1ULL << 31;
1711 		mipspmu.read_counter = mipsxx_pmu_read_counter;
1712 		mipspmu.write_counter = mipsxx_pmu_write_counter;
1713 		counter_bits = 32;
1714 	}
1715 
1716 	on_each_cpu(reset_counters, (void *)(long)counters, 1);
1717 
1718 	pr_cont("%s PMU enabled, %d %d-bit counters available to each "
1719 		"CPU, irq %d%s\n", mipspmu.name, counters, counter_bits, irq,
1720 		irq < 0 ? " (share with timer interrupt)" : "");
1721 
1722 	perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1723 
1724 	return 0;
1725 }
1726 early_initcall(init_hw_perf_events);
1727