1 /* 2 * Linux performance counter support for MIPS. 3 * 4 * Copyright (C) 2010 MIPS Technologies, Inc. 5 * Copyright (C) 2011 Cavium Networks, Inc. 6 * Author: Deng-Cheng Zhu 7 * 8 * This code is based on the implementation for ARM, which is in turn 9 * based on the sparc64 perf event code and the x86 code. Performance 10 * counter access is based on the MIPS Oprofile code. And the callchain 11 * support references the code of MIPS stacktrace.c. 12 * 13 * This program is free software; you can redistribute it and/or modify 14 * it under the terms of the GNU General Public License version 2 as 15 * published by the Free Software Foundation. 16 */ 17 18 #include <linux/cpumask.h> 19 #include <linux/interrupt.h> 20 #include <linux/smp.h> 21 #include <linux/kernel.h> 22 #include <linux/perf_event.h> 23 #include <linux/uaccess.h> 24 25 #include <asm/irq.h> 26 #include <asm/irq_regs.h> 27 #include <asm/stacktrace.h> 28 #include <asm/time.h> /* For perf_irq */ 29 30 #define MIPS_MAX_HWEVENTS 4 31 #define MIPS_TCS_PER_COUNTER 2 32 #define MIPS_CPUID_TO_COUNTER_MASK (MIPS_TCS_PER_COUNTER - 1) 33 34 struct cpu_hw_events { 35 /* Array of events on this cpu. */ 36 struct perf_event *events[MIPS_MAX_HWEVENTS]; 37 38 /* 39 * Set the bit (indexed by the counter number) when the counter 40 * is used for an event. 41 */ 42 unsigned long used_mask[BITS_TO_LONGS(MIPS_MAX_HWEVENTS)]; 43 44 /* 45 * Software copy of the control register for each performance counter. 46 * MIPS CPUs vary in performance counters. They use this differently, 47 * and even may not use it. 48 */ 49 unsigned int saved_ctrl[MIPS_MAX_HWEVENTS]; 50 }; 51 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = { 52 .saved_ctrl = {0}, 53 }; 54 55 /* The description of MIPS performance events. */ 56 struct mips_perf_event { 57 unsigned int event_id; 58 /* 59 * MIPS performance counters are indexed starting from 0. 60 * CNTR_EVEN indicates the indexes of the counters to be used are 61 * even numbers. 62 */ 63 unsigned int cntr_mask; 64 #define CNTR_EVEN 0x55555555 65 #define CNTR_ODD 0xaaaaaaaa 66 #define CNTR_ALL 0xffffffff 67 #ifdef CONFIG_MIPS_MT_SMP 68 enum { 69 T = 0, 70 V = 1, 71 P = 2, 72 } range; 73 #else 74 #define T 75 #define V 76 #define P 77 #endif 78 }; 79 80 static struct mips_perf_event raw_event; 81 static DEFINE_MUTEX(raw_event_mutex); 82 83 #define C(x) PERF_COUNT_HW_CACHE_##x 84 85 struct mips_pmu { 86 u64 max_period; 87 u64 valid_count; 88 u64 overflow; 89 const char *name; 90 int irq; 91 u64 (*read_counter)(unsigned int idx); 92 void (*write_counter)(unsigned int idx, u64 val); 93 const struct mips_perf_event *(*map_raw_event)(u64 config); 94 const struct mips_perf_event (*general_event_map)[PERF_COUNT_HW_MAX]; 95 const struct mips_perf_event (*cache_event_map) 96 [PERF_COUNT_HW_CACHE_MAX] 97 [PERF_COUNT_HW_CACHE_OP_MAX] 98 [PERF_COUNT_HW_CACHE_RESULT_MAX]; 99 unsigned int num_counters; 100 }; 101 102 static struct mips_pmu mipspmu; 103 104 #define M_CONFIG1_PC (1 << 4) 105 106 #define M_PERFCTL_EXL (1 << 0) 107 #define M_PERFCTL_KERNEL (1 << 1) 108 #define M_PERFCTL_SUPERVISOR (1 << 2) 109 #define M_PERFCTL_USER (1 << 3) 110 #define M_PERFCTL_INTERRUPT_ENABLE (1 << 4) 111 #define M_PERFCTL_EVENT(event) (((event) & 0x3ff) << 5) 112 #define M_PERFCTL_VPEID(vpe) ((vpe) << 16) 113 114 #ifdef CONFIG_CPU_BMIPS5000 115 #define M_PERFCTL_MT_EN(filter) 0 116 #else /* !CONFIG_CPU_BMIPS5000 */ 117 #define M_PERFCTL_MT_EN(filter) ((filter) << 20) 118 #endif /* CONFIG_CPU_BMIPS5000 */ 119 120 #define M_TC_EN_ALL M_PERFCTL_MT_EN(0) 121 #define M_TC_EN_VPE M_PERFCTL_MT_EN(1) 122 #define M_TC_EN_TC M_PERFCTL_MT_EN(2) 123 #define M_PERFCTL_TCID(tcid) ((tcid) << 22) 124 #define M_PERFCTL_WIDE (1 << 30) 125 #define M_PERFCTL_MORE (1 << 31) 126 #define M_PERFCTL_TC (1 << 30) 127 128 #define M_PERFCTL_COUNT_EVENT_WHENEVER (M_PERFCTL_EXL | \ 129 M_PERFCTL_KERNEL | \ 130 M_PERFCTL_USER | \ 131 M_PERFCTL_SUPERVISOR | \ 132 M_PERFCTL_INTERRUPT_ENABLE) 133 134 #ifdef CONFIG_MIPS_MT_SMP 135 #define M_PERFCTL_CONFIG_MASK 0x3fff801f 136 #else 137 #define M_PERFCTL_CONFIG_MASK 0x1f 138 #endif 139 #define M_PERFCTL_EVENT_MASK 0xfe0 140 141 142 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS 143 static int cpu_has_mipsmt_pertccounters; 144 145 static DEFINE_RWLOCK(pmuint_rwlock); 146 147 #if defined(CONFIG_CPU_BMIPS5000) 148 #define vpe_id() (cpu_has_mipsmt_pertccounters ? \ 149 0 : (smp_processor_id() & MIPS_CPUID_TO_COUNTER_MASK)) 150 #else 151 /* 152 * FIXME: For VSMP, vpe_id() is redefined for Perf-events, because 153 * cpu_data[cpuid].vpe_id reports 0 for _both_ CPUs. 154 */ 155 #define vpe_id() (cpu_has_mipsmt_pertccounters ? \ 156 0 : smp_processor_id()) 157 #endif 158 159 /* Copied from op_model_mipsxx.c */ 160 static unsigned int vpe_shift(void) 161 { 162 if (num_possible_cpus() > 1) 163 return 1; 164 165 return 0; 166 } 167 168 static unsigned int counters_total_to_per_cpu(unsigned int counters) 169 { 170 return counters >> vpe_shift(); 171 } 172 173 #else /* !CONFIG_MIPS_PERF_SHARED_TC_COUNTERS */ 174 #define vpe_id() 0 175 176 #endif /* CONFIG_MIPS_PERF_SHARED_TC_COUNTERS */ 177 178 static void resume_local_counters(void); 179 static void pause_local_counters(void); 180 static irqreturn_t mipsxx_pmu_handle_irq(int, void *); 181 static int mipsxx_pmu_handle_shared_irq(void); 182 183 static unsigned int mipsxx_pmu_swizzle_perf_idx(unsigned int idx) 184 { 185 if (vpe_id() == 1) 186 idx = (idx + 2) & 3; 187 return idx; 188 } 189 190 static u64 mipsxx_pmu_read_counter(unsigned int idx) 191 { 192 idx = mipsxx_pmu_swizzle_perf_idx(idx); 193 194 switch (idx) { 195 case 0: 196 /* 197 * The counters are unsigned, we must cast to truncate 198 * off the high bits. 199 */ 200 return (u32)read_c0_perfcntr0(); 201 case 1: 202 return (u32)read_c0_perfcntr1(); 203 case 2: 204 return (u32)read_c0_perfcntr2(); 205 case 3: 206 return (u32)read_c0_perfcntr3(); 207 default: 208 WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx); 209 return 0; 210 } 211 } 212 213 static u64 mipsxx_pmu_read_counter_64(unsigned int idx) 214 { 215 idx = mipsxx_pmu_swizzle_perf_idx(idx); 216 217 switch (idx) { 218 case 0: 219 return read_c0_perfcntr0_64(); 220 case 1: 221 return read_c0_perfcntr1_64(); 222 case 2: 223 return read_c0_perfcntr2_64(); 224 case 3: 225 return read_c0_perfcntr3_64(); 226 default: 227 WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx); 228 return 0; 229 } 230 } 231 232 static void mipsxx_pmu_write_counter(unsigned int idx, u64 val) 233 { 234 idx = mipsxx_pmu_swizzle_perf_idx(idx); 235 236 switch (idx) { 237 case 0: 238 write_c0_perfcntr0(val); 239 return; 240 case 1: 241 write_c0_perfcntr1(val); 242 return; 243 case 2: 244 write_c0_perfcntr2(val); 245 return; 246 case 3: 247 write_c0_perfcntr3(val); 248 return; 249 } 250 } 251 252 static void mipsxx_pmu_write_counter_64(unsigned int idx, u64 val) 253 { 254 idx = mipsxx_pmu_swizzle_perf_idx(idx); 255 256 switch (idx) { 257 case 0: 258 write_c0_perfcntr0_64(val); 259 return; 260 case 1: 261 write_c0_perfcntr1_64(val); 262 return; 263 case 2: 264 write_c0_perfcntr2_64(val); 265 return; 266 case 3: 267 write_c0_perfcntr3_64(val); 268 return; 269 } 270 } 271 272 static unsigned int mipsxx_pmu_read_control(unsigned int idx) 273 { 274 idx = mipsxx_pmu_swizzle_perf_idx(idx); 275 276 switch (idx) { 277 case 0: 278 return read_c0_perfctrl0(); 279 case 1: 280 return read_c0_perfctrl1(); 281 case 2: 282 return read_c0_perfctrl2(); 283 case 3: 284 return read_c0_perfctrl3(); 285 default: 286 WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx); 287 return 0; 288 } 289 } 290 291 static void mipsxx_pmu_write_control(unsigned int idx, unsigned int val) 292 { 293 idx = mipsxx_pmu_swizzle_perf_idx(idx); 294 295 switch (idx) { 296 case 0: 297 write_c0_perfctrl0(val); 298 return; 299 case 1: 300 write_c0_perfctrl1(val); 301 return; 302 case 2: 303 write_c0_perfctrl2(val); 304 return; 305 case 3: 306 write_c0_perfctrl3(val); 307 return; 308 } 309 } 310 311 static int mipsxx_pmu_alloc_counter(struct cpu_hw_events *cpuc, 312 struct hw_perf_event *hwc) 313 { 314 int i; 315 316 /* 317 * We only need to care the counter mask. The range has been 318 * checked definitely. 319 */ 320 unsigned long cntr_mask = (hwc->event_base >> 8) & 0xffff; 321 322 for (i = mipspmu.num_counters - 1; i >= 0; i--) { 323 /* 324 * Note that some MIPS perf events can be counted by both 325 * even and odd counters, wheresas many other are only by 326 * even _or_ odd counters. This introduces an issue that 327 * when the former kind of event takes the counter the 328 * latter kind of event wants to use, then the "counter 329 * allocation" for the latter event will fail. In fact if 330 * they can be dynamically swapped, they both feel happy. 331 * But here we leave this issue alone for now. 332 */ 333 if (test_bit(i, &cntr_mask) && 334 !test_and_set_bit(i, cpuc->used_mask)) 335 return i; 336 } 337 338 return -EAGAIN; 339 } 340 341 static void mipsxx_pmu_enable_event(struct hw_perf_event *evt, int idx) 342 { 343 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); 344 345 WARN_ON(idx < 0 || idx >= mipspmu.num_counters); 346 347 cpuc->saved_ctrl[idx] = M_PERFCTL_EVENT(evt->event_base & 0xff) | 348 (evt->config_base & M_PERFCTL_CONFIG_MASK) | 349 /* Make sure interrupt enabled. */ 350 M_PERFCTL_INTERRUPT_ENABLE; 351 if (IS_ENABLED(CONFIG_CPU_BMIPS5000)) 352 /* enable the counter for the calling thread */ 353 cpuc->saved_ctrl[idx] |= 354 (1 << (12 + vpe_id())) | M_PERFCTL_TC; 355 356 /* 357 * We do not actually let the counter run. Leave it until start(). 358 */ 359 } 360 361 static void mipsxx_pmu_disable_event(int idx) 362 { 363 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); 364 unsigned long flags; 365 366 WARN_ON(idx < 0 || idx >= mipspmu.num_counters); 367 368 local_irq_save(flags); 369 cpuc->saved_ctrl[idx] = mipsxx_pmu_read_control(idx) & 370 ~M_PERFCTL_COUNT_EVENT_WHENEVER; 371 mipsxx_pmu_write_control(idx, cpuc->saved_ctrl[idx]); 372 local_irq_restore(flags); 373 } 374 375 static int mipspmu_event_set_period(struct perf_event *event, 376 struct hw_perf_event *hwc, 377 int idx) 378 { 379 u64 left = local64_read(&hwc->period_left); 380 u64 period = hwc->sample_period; 381 int ret = 0; 382 383 if (unlikely((left + period) & (1ULL << 63))) { 384 /* left underflowed by more than period. */ 385 left = period; 386 local64_set(&hwc->period_left, left); 387 hwc->last_period = period; 388 ret = 1; 389 } else if (unlikely((left + period) <= period)) { 390 /* left underflowed by less than period. */ 391 left += period; 392 local64_set(&hwc->period_left, left); 393 hwc->last_period = period; 394 ret = 1; 395 } 396 397 if (left > mipspmu.max_period) { 398 left = mipspmu.max_period; 399 local64_set(&hwc->period_left, left); 400 } 401 402 local64_set(&hwc->prev_count, mipspmu.overflow - left); 403 404 mipspmu.write_counter(idx, mipspmu.overflow - left); 405 406 perf_event_update_userpage(event); 407 408 return ret; 409 } 410 411 static void mipspmu_event_update(struct perf_event *event, 412 struct hw_perf_event *hwc, 413 int idx) 414 { 415 u64 prev_raw_count, new_raw_count; 416 u64 delta; 417 418 again: 419 prev_raw_count = local64_read(&hwc->prev_count); 420 new_raw_count = mipspmu.read_counter(idx); 421 422 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count, 423 new_raw_count) != prev_raw_count) 424 goto again; 425 426 delta = new_raw_count - prev_raw_count; 427 428 local64_add(delta, &event->count); 429 local64_sub(delta, &hwc->period_left); 430 } 431 432 static void mipspmu_start(struct perf_event *event, int flags) 433 { 434 struct hw_perf_event *hwc = &event->hw; 435 436 if (flags & PERF_EF_RELOAD) 437 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE)); 438 439 hwc->state = 0; 440 441 /* Set the period for the event. */ 442 mipspmu_event_set_period(event, hwc, hwc->idx); 443 444 /* Enable the event. */ 445 mipsxx_pmu_enable_event(hwc, hwc->idx); 446 } 447 448 static void mipspmu_stop(struct perf_event *event, int flags) 449 { 450 struct hw_perf_event *hwc = &event->hw; 451 452 if (!(hwc->state & PERF_HES_STOPPED)) { 453 /* We are working on a local event. */ 454 mipsxx_pmu_disable_event(hwc->idx); 455 barrier(); 456 mipspmu_event_update(event, hwc, hwc->idx); 457 hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE; 458 } 459 } 460 461 static int mipspmu_add(struct perf_event *event, int flags) 462 { 463 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); 464 struct hw_perf_event *hwc = &event->hw; 465 int idx; 466 int err = 0; 467 468 perf_pmu_disable(event->pmu); 469 470 /* To look for a free counter for this event. */ 471 idx = mipsxx_pmu_alloc_counter(cpuc, hwc); 472 if (idx < 0) { 473 err = idx; 474 goto out; 475 } 476 477 /* 478 * If there is an event in the counter we are going to use then 479 * make sure it is disabled. 480 */ 481 event->hw.idx = idx; 482 mipsxx_pmu_disable_event(idx); 483 cpuc->events[idx] = event; 484 485 hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE; 486 if (flags & PERF_EF_START) 487 mipspmu_start(event, PERF_EF_RELOAD); 488 489 /* Propagate our changes to the userspace mapping. */ 490 perf_event_update_userpage(event); 491 492 out: 493 perf_pmu_enable(event->pmu); 494 return err; 495 } 496 497 static void mipspmu_del(struct perf_event *event, int flags) 498 { 499 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); 500 struct hw_perf_event *hwc = &event->hw; 501 int idx = hwc->idx; 502 503 WARN_ON(idx < 0 || idx >= mipspmu.num_counters); 504 505 mipspmu_stop(event, PERF_EF_UPDATE); 506 cpuc->events[idx] = NULL; 507 clear_bit(idx, cpuc->used_mask); 508 509 perf_event_update_userpage(event); 510 } 511 512 static void mipspmu_read(struct perf_event *event) 513 { 514 struct hw_perf_event *hwc = &event->hw; 515 516 /* Don't read disabled counters! */ 517 if (hwc->idx < 0) 518 return; 519 520 mipspmu_event_update(event, hwc, hwc->idx); 521 } 522 523 static void mipspmu_enable(struct pmu *pmu) 524 { 525 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS 526 write_unlock(&pmuint_rwlock); 527 #endif 528 resume_local_counters(); 529 } 530 531 /* 532 * MIPS performance counters can be per-TC. The control registers can 533 * not be directly accessed accross CPUs. Hence if we want to do global 534 * control, we need cross CPU calls. on_each_cpu() can help us, but we 535 * can not make sure this function is called with interrupts enabled. So 536 * here we pause local counters and then grab a rwlock and leave the 537 * counters on other CPUs alone. If any counter interrupt raises while 538 * we own the write lock, simply pause local counters on that CPU and 539 * spin in the handler. Also we know we won't be switched to another 540 * CPU after pausing local counters and before grabbing the lock. 541 */ 542 static void mipspmu_disable(struct pmu *pmu) 543 { 544 pause_local_counters(); 545 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS 546 write_lock(&pmuint_rwlock); 547 #endif 548 } 549 550 static atomic_t active_events = ATOMIC_INIT(0); 551 static DEFINE_MUTEX(pmu_reserve_mutex); 552 static int (*save_perf_irq)(void); 553 554 static int mipspmu_get_irq(void) 555 { 556 int err; 557 558 if (mipspmu.irq >= 0) { 559 /* Request my own irq handler. */ 560 err = request_irq(mipspmu.irq, mipsxx_pmu_handle_irq, 561 IRQF_PERCPU | IRQF_NOBALANCING, 562 "mips_perf_pmu", NULL); 563 if (err) { 564 pr_warning("Unable to request IRQ%d for MIPS " 565 "performance counters!\n", mipspmu.irq); 566 } 567 } else if (cp0_perfcount_irq < 0) { 568 /* 569 * We are sharing the irq number with the timer interrupt. 570 */ 571 save_perf_irq = perf_irq; 572 perf_irq = mipsxx_pmu_handle_shared_irq; 573 err = 0; 574 } else { 575 pr_warning("The platform hasn't properly defined its " 576 "interrupt controller.\n"); 577 err = -ENOENT; 578 } 579 580 return err; 581 } 582 583 static void mipspmu_free_irq(void) 584 { 585 if (mipspmu.irq >= 0) 586 free_irq(mipspmu.irq, NULL); 587 else if (cp0_perfcount_irq < 0) 588 perf_irq = save_perf_irq; 589 } 590 591 /* 592 * mipsxx/rm9000/loongson2 have different performance counters, they have 593 * specific low-level init routines. 594 */ 595 static void reset_counters(void *arg); 596 static int __hw_perf_event_init(struct perf_event *event); 597 598 static void hw_perf_event_destroy(struct perf_event *event) 599 { 600 if (atomic_dec_and_mutex_lock(&active_events, 601 &pmu_reserve_mutex)) { 602 /* 603 * We must not call the destroy function with interrupts 604 * disabled. 605 */ 606 on_each_cpu(reset_counters, 607 (void *)(long)mipspmu.num_counters, 1); 608 mipspmu_free_irq(); 609 mutex_unlock(&pmu_reserve_mutex); 610 } 611 } 612 613 static int mipspmu_event_init(struct perf_event *event) 614 { 615 int err = 0; 616 617 /* does not support taken branch sampling */ 618 if (has_branch_stack(event)) 619 return -EOPNOTSUPP; 620 621 switch (event->attr.type) { 622 case PERF_TYPE_RAW: 623 case PERF_TYPE_HARDWARE: 624 case PERF_TYPE_HW_CACHE: 625 break; 626 627 default: 628 return -ENOENT; 629 } 630 631 if (event->cpu >= nr_cpumask_bits || 632 (event->cpu >= 0 && !cpu_online(event->cpu))) 633 return -ENODEV; 634 635 if (!atomic_inc_not_zero(&active_events)) { 636 mutex_lock(&pmu_reserve_mutex); 637 if (atomic_read(&active_events) == 0) 638 err = mipspmu_get_irq(); 639 640 if (!err) 641 atomic_inc(&active_events); 642 mutex_unlock(&pmu_reserve_mutex); 643 } 644 645 if (err) 646 return err; 647 648 return __hw_perf_event_init(event); 649 } 650 651 static struct pmu pmu = { 652 .pmu_enable = mipspmu_enable, 653 .pmu_disable = mipspmu_disable, 654 .event_init = mipspmu_event_init, 655 .add = mipspmu_add, 656 .del = mipspmu_del, 657 .start = mipspmu_start, 658 .stop = mipspmu_stop, 659 .read = mipspmu_read, 660 }; 661 662 static unsigned int mipspmu_perf_event_encode(const struct mips_perf_event *pev) 663 { 664 /* 665 * Top 8 bits for range, next 16 bits for cntr_mask, lowest 8 bits for 666 * event_id. 667 */ 668 #ifdef CONFIG_MIPS_MT_SMP 669 return ((unsigned int)pev->range << 24) | 670 (pev->cntr_mask & 0xffff00) | 671 (pev->event_id & 0xff); 672 #else 673 return (pev->cntr_mask & 0xffff00) | 674 (pev->event_id & 0xff); 675 #endif 676 } 677 678 static const struct mips_perf_event *mipspmu_map_general_event(int idx) 679 { 680 681 if ((*mipspmu.general_event_map)[idx].cntr_mask == 0) 682 return ERR_PTR(-EOPNOTSUPP); 683 return &(*mipspmu.general_event_map)[idx]; 684 } 685 686 static const struct mips_perf_event *mipspmu_map_cache_event(u64 config) 687 { 688 unsigned int cache_type, cache_op, cache_result; 689 const struct mips_perf_event *pev; 690 691 cache_type = (config >> 0) & 0xff; 692 if (cache_type >= PERF_COUNT_HW_CACHE_MAX) 693 return ERR_PTR(-EINVAL); 694 695 cache_op = (config >> 8) & 0xff; 696 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX) 697 return ERR_PTR(-EINVAL); 698 699 cache_result = (config >> 16) & 0xff; 700 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX) 701 return ERR_PTR(-EINVAL); 702 703 pev = &((*mipspmu.cache_event_map) 704 [cache_type] 705 [cache_op] 706 [cache_result]); 707 708 if (pev->cntr_mask == 0) 709 return ERR_PTR(-EOPNOTSUPP); 710 711 return pev; 712 713 } 714 715 static int validate_group(struct perf_event *event) 716 { 717 struct perf_event *sibling, *leader = event->group_leader; 718 struct cpu_hw_events fake_cpuc; 719 720 memset(&fake_cpuc, 0, sizeof(fake_cpuc)); 721 722 if (mipsxx_pmu_alloc_counter(&fake_cpuc, &leader->hw) < 0) 723 return -EINVAL; 724 725 list_for_each_entry(sibling, &leader->sibling_list, group_entry) { 726 if (mipsxx_pmu_alloc_counter(&fake_cpuc, &sibling->hw) < 0) 727 return -EINVAL; 728 } 729 730 if (mipsxx_pmu_alloc_counter(&fake_cpuc, &event->hw) < 0) 731 return -EINVAL; 732 733 return 0; 734 } 735 736 /* This is needed by specific irq handlers in perf_event_*.c */ 737 static void handle_associated_event(struct cpu_hw_events *cpuc, 738 int idx, struct perf_sample_data *data, 739 struct pt_regs *regs) 740 { 741 struct perf_event *event = cpuc->events[idx]; 742 struct hw_perf_event *hwc = &event->hw; 743 744 mipspmu_event_update(event, hwc, idx); 745 data->period = event->hw.last_period; 746 if (!mipspmu_event_set_period(event, hwc, idx)) 747 return; 748 749 if (perf_event_overflow(event, data, regs)) 750 mipsxx_pmu_disable_event(idx); 751 } 752 753 754 static int __n_counters(void) 755 { 756 if (!(read_c0_config1() & M_CONFIG1_PC)) 757 return 0; 758 if (!(read_c0_perfctrl0() & M_PERFCTL_MORE)) 759 return 1; 760 if (!(read_c0_perfctrl1() & M_PERFCTL_MORE)) 761 return 2; 762 if (!(read_c0_perfctrl2() & M_PERFCTL_MORE)) 763 return 3; 764 765 return 4; 766 } 767 768 static int n_counters(void) 769 { 770 int counters; 771 772 switch (current_cpu_type()) { 773 case CPU_R10000: 774 counters = 2; 775 break; 776 777 case CPU_R12000: 778 case CPU_R14000: 779 counters = 4; 780 break; 781 782 default: 783 counters = __n_counters(); 784 } 785 786 return counters; 787 } 788 789 static void reset_counters(void *arg) 790 { 791 int counters = (int)(long)arg; 792 switch (counters) { 793 case 4: 794 mipsxx_pmu_write_control(3, 0); 795 mipspmu.write_counter(3, 0); 796 case 3: 797 mipsxx_pmu_write_control(2, 0); 798 mipspmu.write_counter(2, 0); 799 case 2: 800 mipsxx_pmu_write_control(1, 0); 801 mipspmu.write_counter(1, 0); 802 case 1: 803 mipsxx_pmu_write_control(0, 0); 804 mipspmu.write_counter(0, 0); 805 } 806 } 807 808 /* 24K/34K/1004K cores can share the same event map. */ 809 static const struct mips_perf_event mipsxxcore_event_map 810 [PERF_COUNT_HW_MAX] = { 811 [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P }, 812 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T }, 813 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x02, CNTR_EVEN, T }, 814 [PERF_COUNT_HW_BRANCH_MISSES] = { 0x02, CNTR_ODD, T }, 815 }; 816 817 /* 74K core has different branch event code. */ 818 static const struct mips_perf_event mipsxx74Kcore_event_map 819 [PERF_COUNT_HW_MAX] = { 820 [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P }, 821 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T }, 822 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x27, CNTR_EVEN, T }, 823 [PERF_COUNT_HW_BRANCH_MISSES] = { 0x27, CNTR_ODD, T }, 824 }; 825 826 static const struct mips_perf_event octeon_event_map[PERF_COUNT_HW_MAX] = { 827 [PERF_COUNT_HW_CPU_CYCLES] = { 0x01, CNTR_ALL }, 828 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x03, CNTR_ALL }, 829 [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x2b, CNTR_ALL }, 830 [PERF_COUNT_HW_CACHE_MISSES] = { 0x2e, CNTR_ALL }, 831 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x08, CNTR_ALL }, 832 [PERF_COUNT_HW_BRANCH_MISSES] = { 0x09, CNTR_ALL }, 833 [PERF_COUNT_HW_BUS_CYCLES] = { 0x25, CNTR_ALL }, 834 }; 835 836 static const struct mips_perf_event bmips5000_event_map 837 [PERF_COUNT_HW_MAX] = { 838 [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, T }, 839 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T }, 840 [PERF_COUNT_HW_BRANCH_MISSES] = { 0x02, CNTR_ODD, T }, 841 }; 842 843 /* 24K/34K/1004K cores can share the same cache event map. */ 844 static const struct mips_perf_event mipsxxcore_cache_map 845 [PERF_COUNT_HW_CACHE_MAX] 846 [PERF_COUNT_HW_CACHE_OP_MAX] 847 [PERF_COUNT_HW_CACHE_RESULT_MAX] = { 848 [C(L1D)] = { 849 /* 850 * Like some other architectures (e.g. ARM), the performance 851 * counters don't differentiate between read and write 852 * accesses/misses, so this isn't strictly correct, but it's the 853 * best we can do. Writes and reads get combined. 854 */ 855 [C(OP_READ)] = { 856 [C(RESULT_ACCESS)] = { 0x0a, CNTR_EVEN, T }, 857 [C(RESULT_MISS)] = { 0x0b, CNTR_EVEN | CNTR_ODD, T }, 858 }, 859 [C(OP_WRITE)] = { 860 [C(RESULT_ACCESS)] = { 0x0a, CNTR_EVEN, T }, 861 [C(RESULT_MISS)] = { 0x0b, CNTR_EVEN | CNTR_ODD, T }, 862 }, 863 }, 864 [C(L1I)] = { 865 [C(OP_READ)] = { 866 [C(RESULT_ACCESS)] = { 0x09, CNTR_EVEN, T }, 867 [C(RESULT_MISS)] = { 0x09, CNTR_ODD, T }, 868 }, 869 [C(OP_WRITE)] = { 870 [C(RESULT_ACCESS)] = { 0x09, CNTR_EVEN, T }, 871 [C(RESULT_MISS)] = { 0x09, CNTR_ODD, T }, 872 }, 873 [C(OP_PREFETCH)] = { 874 [C(RESULT_ACCESS)] = { 0x14, CNTR_EVEN, T }, 875 /* 876 * Note that MIPS has only "hit" events countable for 877 * the prefetch operation. 878 */ 879 }, 880 }, 881 [C(LL)] = { 882 [C(OP_READ)] = { 883 [C(RESULT_ACCESS)] = { 0x15, CNTR_ODD, P }, 884 [C(RESULT_MISS)] = { 0x16, CNTR_EVEN, P }, 885 }, 886 [C(OP_WRITE)] = { 887 [C(RESULT_ACCESS)] = { 0x15, CNTR_ODD, P }, 888 [C(RESULT_MISS)] = { 0x16, CNTR_EVEN, P }, 889 }, 890 }, 891 [C(DTLB)] = { 892 [C(OP_READ)] = { 893 [C(RESULT_ACCESS)] = { 0x06, CNTR_EVEN, T }, 894 [C(RESULT_MISS)] = { 0x06, CNTR_ODD, T }, 895 }, 896 [C(OP_WRITE)] = { 897 [C(RESULT_ACCESS)] = { 0x06, CNTR_EVEN, T }, 898 [C(RESULT_MISS)] = { 0x06, CNTR_ODD, T }, 899 }, 900 }, 901 [C(ITLB)] = { 902 [C(OP_READ)] = { 903 [C(RESULT_ACCESS)] = { 0x05, CNTR_EVEN, T }, 904 [C(RESULT_MISS)] = { 0x05, CNTR_ODD, T }, 905 }, 906 [C(OP_WRITE)] = { 907 [C(RESULT_ACCESS)] = { 0x05, CNTR_EVEN, T }, 908 [C(RESULT_MISS)] = { 0x05, CNTR_ODD, T }, 909 }, 910 }, 911 [C(BPU)] = { 912 /* Using the same code for *HW_BRANCH* */ 913 [C(OP_READ)] = { 914 [C(RESULT_ACCESS)] = { 0x02, CNTR_EVEN, T }, 915 [C(RESULT_MISS)] = { 0x02, CNTR_ODD, T }, 916 }, 917 [C(OP_WRITE)] = { 918 [C(RESULT_ACCESS)] = { 0x02, CNTR_EVEN, T }, 919 [C(RESULT_MISS)] = { 0x02, CNTR_ODD, T }, 920 }, 921 }, 922 }; 923 924 /* 74K core has completely different cache event map. */ 925 static const struct mips_perf_event mipsxx74Kcore_cache_map 926 [PERF_COUNT_HW_CACHE_MAX] 927 [PERF_COUNT_HW_CACHE_OP_MAX] 928 [PERF_COUNT_HW_CACHE_RESULT_MAX] = { 929 [C(L1D)] = { 930 /* 931 * Like some other architectures (e.g. ARM), the performance 932 * counters don't differentiate between read and write 933 * accesses/misses, so this isn't strictly correct, but it's the 934 * best we can do. Writes and reads get combined. 935 */ 936 [C(OP_READ)] = { 937 [C(RESULT_ACCESS)] = { 0x17, CNTR_ODD, T }, 938 [C(RESULT_MISS)] = { 0x18, CNTR_ODD, T }, 939 }, 940 [C(OP_WRITE)] = { 941 [C(RESULT_ACCESS)] = { 0x17, CNTR_ODD, T }, 942 [C(RESULT_MISS)] = { 0x18, CNTR_ODD, T }, 943 }, 944 }, 945 [C(L1I)] = { 946 [C(OP_READ)] = { 947 [C(RESULT_ACCESS)] = { 0x06, CNTR_EVEN, T }, 948 [C(RESULT_MISS)] = { 0x06, CNTR_ODD, T }, 949 }, 950 [C(OP_WRITE)] = { 951 [C(RESULT_ACCESS)] = { 0x06, CNTR_EVEN, T }, 952 [C(RESULT_MISS)] = { 0x06, CNTR_ODD, T }, 953 }, 954 [C(OP_PREFETCH)] = { 955 [C(RESULT_ACCESS)] = { 0x34, CNTR_EVEN, T }, 956 /* 957 * Note that MIPS has only "hit" events countable for 958 * the prefetch operation. 959 */ 960 }, 961 }, 962 [C(LL)] = { 963 [C(OP_READ)] = { 964 [C(RESULT_ACCESS)] = { 0x1c, CNTR_ODD, P }, 965 [C(RESULT_MISS)] = { 0x1d, CNTR_EVEN | CNTR_ODD, P }, 966 }, 967 [C(OP_WRITE)] = { 968 [C(RESULT_ACCESS)] = { 0x1c, CNTR_ODD, P }, 969 [C(RESULT_MISS)] = { 0x1d, CNTR_EVEN | CNTR_ODD, P }, 970 }, 971 }, 972 [C(ITLB)] = { 973 [C(OP_READ)] = { 974 [C(RESULT_ACCESS)] = { 0x04, CNTR_EVEN, T }, 975 [C(RESULT_MISS)] = { 0x04, CNTR_ODD, T }, 976 }, 977 [C(OP_WRITE)] = { 978 [C(RESULT_ACCESS)] = { 0x04, CNTR_EVEN, T }, 979 [C(RESULT_MISS)] = { 0x04, CNTR_ODD, T }, 980 }, 981 }, 982 [C(BPU)] = { 983 /* Using the same code for *HW_BRANCH* */ 984 [C(OP_READ)] = { 985 [C(RESULT_ACCESS)] = { 0x27, CNTR_EVEN, T }, 986 [C(RESULT_MISS)] = { 0x27, CNTR_ODD, T }, 987 }, 988 [C(OP_WRITE)] = { 989 [C(RESULT_ACCESS)] = { 0x27, CNTR_EVEN, T }, 990 [C(RESULT_MISS)] = { 0x27, CNTR_ODD, T }, 991 }, 992 }, 993 }; 994 995 /* BMIPS5000 */ 996 static const struct mips_perf_event bmips5000_cache_map 997 [PERF_COUNT_HW_CACHE_MAX] 998 [PERF_COUNT_HW_CACHE_OP_MAX] 999 [PERF_COUNT_HW_CACHE_RESULT_MAX] = { 1000 [C(L1D)] = { 1001 /* 1002 * Like some other architectures (e.g. ARM), the performance 1003 * counters don't differentiate between read and write 1004 * accesses/misses, so this isn't strictly correct, but it's the 1005 * best we can do. Writes and reads get combined. 1006 */ 1007 [C(OP_READ)] = { 1008 [C(RESULT_ACCESS)] = { 12, CNTR_EVEN, T }, 1009 [C(RESULT_MISS)] = { 12, CNTR_ODD, T }, 1010 }, 1011 [C(OP_WRITE)] = { 1012 [C(RESULT_ACCESS)] = { 12, CNTR_EVEN, T }, 1013 [C(RESULT_MISS)] = { 12, CNTR_ODD, T }, 1014 }, 1015 }, 1016 [C(L1I)] = { 1017 [C(OP_READ)] = { 1018 [C(RESULT_ACCESS)] = { 10, CNTR_EVEN, T }, 1019 [C(RESULT_MISS)] = { 10, CNTR_ODD, T }, 1020 }, 1021 [C(OP_WRITE)] = { 1022 [C(RESULT_ACCESS)] = { 10, CNTR_EVEN, T }, 1023 [C(RESULT_MISS)] = { 10, CNTR_ODD, T }, 1024 }, 1025 [C(OP_PREFETCH)] = { 1026 [C(RESULT_ACCESS)] = { 23, CNTR_EVEN, T }, 1027 /* 1028 * Note that MIPS has only "hit" events countable for 1029 * the prefetch operation. 1030 */ 1031 }, 1032 }, 1033 [C(LL)] = { 1034 [C(OP_READ)] = { 1035 [C(RESULT_ACCESS)] = { 28, CNTR_EVEN, P }, 1036 [C(RESULT_MISS)] = { 28, CNTR_ODD, P }, 1037 }, 1038 [C(OP_WRITE)] = { 1039 [C(RESULT_ACCESS)] = { 28, CNTR_EVEN, P }, 1040 [C(RESULT_MISS)] = { 28, CNTR_ODD, P }, 1041 }, 1042 }, 1043 [C(BPU)] = { 1044 /* Using the same code for *HW_BRANCH* */ 1045 [C(OP_READ)] = { 1046 [C(RESULT_MISS)] = { 0x02, CNTR_ODD, T }, 1047 }, 1048 [C(OP_WRITE)] = { 1049 [C(RESULT_MISS)] = { 0x02, CNTR_ODD, T }, 1050 }, 1051 }, 1052 }; 1053 1054 1055 static const struct mips_perf_event octeon_cache_map 1056 [PERF_COUNT_HW_CACHE_MAX] 1057 [PERF_COUNT_HW_CACHE_OP_MAX] 1058 [PERF_COUNT_HW_CACHE_RESULT_MAX] = { 1059 [C(L1D)] = { 1060 [C(OP_READ)] = { 1061 [C(RESULT_ACCESS)] = { 0x2b, CNTR_ALL }, 1062 [C(RESULT_MISS)] = { 0x2e, CNTR_ALL }, 1063 }, 1064 [C(OP_WRITE)] = { 1065 [C(RESULT_ACCESS)] = { 0x30, CNTR_ALL }, 1066 }, 1067 }, 1068 [C(L1I)] = { 1069 [C(OP_READ)] = { 1070 [C(RESULT_ACCESS)] = { 0x18, CNTR_ALL }, 1071 }, 1072 [C(OP_PREFETCH)] = { 1073 [C(RESULT_ACCESS)] = { 0x19, CNTR_ALL }, 1074 }, 1075 }, 1076 [C(DTLB)] = { 1077 /* 1078 * Only general DTLB misses are counted use the same event for 1079 * read and write. 1080 */ 1081 [C(OP_READ)] = { 1082 [C(RESULT_MISS)] = { 0x35, CNTR_ALL }, 1083 }, 1084 [C(OP_WRITE)] = { 1085 [C(RESULT_MISS)] = { 0x35, CNTR_ALL }, 1086 }, 1087 }, 1088 [C(ITLB)] = { 1089 [C(OP_READ)] = { 1090 [C(RESULT_MISS)] = { 0x37, CNTR_ALL }, 1091 }, 1092 }, 1093 }; 1094 1095 #ifdef CONFIG_MIPS_MT_SMP 1096 static void check_and_calc_range(struct perf_event *event, 1097 const struct mips_perf_event *pev) 1098 { 1099 struct hw_perf_event *hwc = &event->hw; 1100 1101 if (event->cpu >= 0) { 1102 if (pev->range > V) { 1103 /* 1104 * The user selected an event that is processor 1105 * wide, while expecting it to be VPE wide. 1106 */ 1107 hwc->config_base |= M_TC_EN_ALL; 1108 } else { 1109 /* 1110 * FIXME: cpu_data[event->cpu].vpe_id reports 0 1111 * for both CPUs. 1112 */ 1113 hwc->config_base |= M_PERFCTL_VPEID(event->cpu); 1114 hwc->config_base |= M_TC_EN_VPE; 1115 } 1116 } else 1117 hwc->config_base |= M_TC_EN_ALL; 1118 } 1119 #else 1120 static void check_and_calc_range(struct perf_event *event, 1121 const struct mips_perf_event *pev) 1122 { 1123 } 1124 #endif 1125 1126 static int __hw_perf_event_init(struct perf_event *event) 1127 { 1128 struct perf_event_attr *attr = &event->attr; 1129 struct hw_perf_event *hwc = &event->hw; 1130 const struct mips_perf_event *pev; 1131 int err; 1132 1133 /* Returning MIPS event descriptor for generic perf event. */ 1134 if (PERF_TYPE_HARDWARE == event->attr.type) { 1135 if (event->attr.config >= PERF_COUNT_HW_MAX) 1136 return -EINVAL; 1137 pev = mipspmu_map_general_event(event->attr.config); 1138 } else if (PERF_TYPE_HW_CACHE == event->attr.type) { 1139 pev = mipspmu_map_cache_event(event->attr.config); 1140 } else if (PERF_TYPE_RAW == event->attr.type) { 1141 /* We are working on the global raw event. */ 1142 mutex_lock(&raw_event_mutex); 1143 pev = mipspmu.map_raw_event(event->attr.config); 1144 } else { 1145 /* The event type is not (yet) supported. */ 1146 return -EOPNOTSUPP; 1147 } 1148 1149 if (IS_ERR(pev)) { 1150 if (PERF_TYPE_RAW == event->attr.type) 1151 mutex_unlock(&raw_event_mutex); 1152 return PTR_ERR(pev); 1153 } 1154 1155 /* 1156 * We allow max flexibility on how each individual counter shared 1157 * by the single CPU operates (the mode exclusion and the range). 1158 */ 1159 hwc->config_base = M_PERFCTL_INTERRUPT_ENABLE; 1160 1161 /* Calculate range bits and validate it. */ 1162 if (num_possible_cpus() > 1) 1163 check_and_calc_range(event, pev); 1164 1165 hwc->event_base = mipspmu_perf_event_encode(pev); 1166 if (PERF_TYPE_RAW == event->attr.type) 1167 mutex_unlock(&raw_event_mutex); 1168 1169 if (!attr->exclude_user) 1170 hwc->config_base |= M_PERFCTL_USER; 1171 if (!attr->exclude_kernel) { 1172 hwc->config_base |= M_PERFCTL_KERNEL; 1173 /* MIPS kernel mode: KSU == 00b || EXL == 1 || ERL == 1 */ 1174 hwc->config_base |= M_PERFCTL_EXL; 1175 } 1176 if (!attr->exclude_hv) 1177 hwc->config_base |= M_PERFCTL_SUPERVISOR; 1178 1179 hwc->config_base &= M_PERFCTL_CONFIG_MASK; 1180 /* 1181 * The event can belong to another cpu. We do not assign a local 1182 * counter for it for now. 1183 */ 1184 hwc->idx = -1; 1185 hwc->config = 0; 1186 1187 if (!hwc->sample_period) { 1188 hwc->sample_period = mipspmu.max_period; 1189 hwc->last_period = hwc->sample_period; 1190 local64_set(&hwc->period_left, hwc->sample_period); 1191 } 1192 1193 err = 0; 1194 if (event->group_leader != event) 1195 err = validate_group(event); 1196 1197 event->destroy = hw_perf_event_destroy; 1198 1199 if (err) 1200 event->destroy(event); 1201 1202 return err; 1203 } 1204 1205 static void pause_local_counters(void) 1206 { 1207 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); 1208 int ctr = mipspmu.num_counters; 1209 unsigned long flags; 1210 1211 local_irq_save(flags); 1212 do { 1213 ctr--; 1214 cpuc->saved_ctrl[ctr] = mipsxx_pmu_read_control(ctr); 1215 mipsxx_pmu_write_control(ctr, cpuc->saved_ctrl[ctr] & 1216 ~M_PERFCTL_COUNT_EVENT_WHENEVER); 1217 } while (ctr > 0); 1218 local_irq_restore(flags); 1219 } 1220 1221 static void resume_local_counters(void) 1222 { 1223 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); 1224 int ctr = mipspmu.num_counters; 1225 1226 do { 1227 ctr--; 1228 mipsxx_pmu_write_control(ctr, cpuc->saved_ctrl[ctr]); 1229 } while (ctr > 0); 1230 } 1231 1232 static int mipsxx_pmu_handle_shared_irq(void) 1233 { 1234 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); 1235 struct perf_sample_data data; 1236 unsigned int counters = mipspmu.num_counters; 1237 u64 counter; 1238 int handled = IRQ_NONE; 1239 struct pt_regs *regs; 1240 1241 if (cpu_has_perf_cntr_intr_bit && !(read_c0_cause() & CAUSEF_PCI)) 1242 return handled; 1243 /* 1244 * First we pause the local counters, so that when we are locked 1245 * here, the counters are all paused. When it gets locked due to 1246 * perf_disable(), the timer interrupt handler will be delayed. 1247 * 1248 * See also mipsxx_pmu_start(). 1249 */ 1250 pause_local_counters(); 1251 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS 1252 read_lock(&pmuint_rwlock); 1253 #endif 1254 1255 regs = get_irq_regs(); 1256 1257 perf_sample_data_init(&data, 0, 0); 1258 1259 switch (counters) { 1260 #define HANDLE_COUNTER(n) \ 1261 case n + 1: \ 1262 if (test_bit(n, cpuc->used_mask)) { \ 1263 counter = mipspmu.read_counter(n); \ 1264 if (counter & mipspmu.overflow) { \ 1265 handle_associated_event(cpuc, n, &data, regs); \ 1266 handled = IRQ_HANDLED; \ 1267 } \ 1268 } 1269 HANDLE_COUNTER(3) 1270 HANDLE_COUNTER(2) 1271 HANDLE_COUNTER(1) 1272 HANDLE_COUNTER(0) 1273 } 1274 1275 /* 1276 * Do all the work for the pending perf events. We can do this 1277 * in here because the performance counter interrupt is a regular 1278 * interrupt, not NMI. 1279 */ 1280 if (handled == IRQ_HANDLED) 1281 irq_work_run(); 1282 1283 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS 1284 read_unlock(&pmuint_rwlock); 1285 #endif 1286 resume_local_counters(); 1287 return handled; 1288 } 1289 1290 static irqreturn_t mipsxx_pmu_handle_irq(int irq, void *dev) 1291 { 1292 return mipsxx_pmu_handle_shared_irq(); 1293 } 1294 1295 /* 24K */ 1296 #define IS_BOTH_COUNTERS_24K_EVENT(b) \ 1297 ((b) == 0 || (b) == 1 || (b) == 11) 1298 1299 /* 34K */ 1300 #define IS_BOTH_COUNTERS_34K_EVENT(b) \ 1301 ((b) == 0 || (b) == 1 || (b) == 11) 1302 #ifdef CONFIG_MIPS_MT_SMP 1303 #define IS_RANGE_P_34K_EVENT(r, b) \ 1304 ((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 || \ 1305 (b) == 25 || (b) == 39 || (r) == 44 || (r) == 174 || \ 1306 (r) == 176 || ((b) >= 50 && (b) <= 55) || \ 1307 ((b) >= 64 && (b) <= 67)) 1308 #define IS_RANGE_V_34K_EVENT(r) ((r) == 47) 1309 #endif 1310 1311 /* 74K */ 1312 #define IS_BOTH_COUNTERS_74K_EVENT(b) \ 1313 ((b) == 0 || (b) == 1) 1314 1315 /* 1004K */ 1316 #define IS_BOTH_COUNTERS_1004K_EVENT(b) \ 1317 ((b) == 0 || (b) == 1 || (b) == 11) 1318 #ifdef CONFIG_MIPS_MT_SMP 1319 #define IS_RANGE_P_1004K_EVENT(r, b) \ 1320 ((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 || \ 1321 (b) == 25 || (b) == 36 || (b) == 39 || (r) == 44 || \ 1322 (r) == 174 || (r) == 176 || ((b) >= 50 && (b) <= 59) || \ 1323 (r) == 188 || (b) == 61 || (b) == 62 || \ 1324 ((b) >= 64 && (b) <= 67)) 1325 #define IS_RANGE_V_1004K_EVENT(r) ((r) == 47) 1326 #endif 1327 1328 /* BMIPS5000 */ 1329 #define IS_BOTH_COUNTERS_BMIPS5000_EVENT(b) \ 1330 ((b) == 0 || (b) == 1) 1331 1332 1333 /* 1334 * User can use 0-255 raw events, where 0-127 for the events of even 1335 * counters, and 128-255 for odd counters. Note that bit 7 is used to 1336 * indicate the parity. So, for example, when user wants to take the 1337 * Event Num of 15 for odd counters (by referring to the user manual), 1338 * then 128 needs to be added to 15 as the input for the event config, 1339 * i.e., 143 (0x8F) to be used. 1340 */ 1341 static const struct mips_perf_event *mipsxx_pmu_map_raw_event(u64 config) 1342 { 1343 unsigned int raw_id = config & 0xff; 1344 unsigned int base_id = raw_id & 0x7f; 1345 1346 raw_event.event_id = base_id; 1347 1348 switch (current_cpu_type()) { 1349 case CPU_24K: 1350 if (IS_BOTH_COUNTERS_24K_EVENT(base_id)) 1351 raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD; 1352 else 1353 raw_event.cntr_mask = 1354 raw_id > 127 ? CNTR_ODD : CNTR_EVEN; 1355 #ifdef CONFIG_MIPS_MT_SMP 1356 /* 1357 * This is actually doing nothing. Non-multithreading 1358 * CPUs will not check and calculate the range. 1359 */ 1360 raw_event.range = P; 1361 #endif 1362 break; 1363 case CPU_34K: 1364 if (IS_BOTH_COUNTERS_34K_EVENT(base_id)) 1365 raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD; 1366 else 1367 raw_event.cntr_mask = 1368 raw_id > 127 ? CNTR_ODD : CNTR_EVEN; 1369 #ifdef CONFIG_MIPS_MT_SMP 1370 if (IS_RANGE_P_34K_EVENT(raw_id, base_id)) 1371 raw_event.range = P; 1372 else if (unlikely(IS_RANGE_V_34K_EVENT(raw_id))) 1373 raw_event.range = V; 1374 else 1375 raw_event.range = T; 1376 #endif 1377 break; 1378 case CPU_74K: 1379 if (IS_BOTH_COUNTERS_74K_EVENT(base_id)) 1380 raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD; 1381 else 1382 raw_event.cntr_mask = 1383 raw_id > 127 ? CNTR_ODD : CNTR_EVEN; 1384 #ifdef CONFIG_MIPS_MT_SMP 1385 raw_event.range = P; 1386 #endif 1387 break; 1388 case CPU_1004K: 1389 if (IS_BOTH_COUNTERS_1004K_EVENT(base_id)) 1390 raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD; 1391 else 1392 raw_event.cntr_mask = 1393 raw_id > 127 ? CNTR_ODD : CNTR_EVEN; 1394 #ifdef CONFIG_MIPS_MT_SMP 1395 if (IS_RANGE_P_1004K_EVENT(raw_id, base_id)) 1396 raw_event.range = P; 1397 else if (unlikely(IS_RANGE_V_1004K_EVENT(raw_id))) 1398 raw_event.range = V; 1399 else 1400 raw_event.range = T; 1401 #endif 1402 break; 1403 case CPU_BMIPS5000: 1404 if (IS_BOTH_COUNTERS_BMIPS5000_EVENT(base_id)) 1405 raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD; 1406 else 1407 raw_event.cntr_mask = 1408 raw_id > 127 ? CNTR_ODD : CNTR_EVEN; 1409 } 1410 1411 return &raw_event; 1412 } 1413 1414 static const struct mips_perf_event *octeon_pmu_map_raw_event(u64 config) 1415 { 1416 unsigned int raw_id = config & 0xff; 1417 unsigned int base_id = raw_id & 0x7f; 1418 1419 1420 raw_event.cntr_mask = CNTR_ALL; 1421 raw_event.event_id = base_id; 1422 1423 if (current_cpu_type() == CPU_CAVIUM_OCTEON2) { 1424 if (base_id > 0x42) 1425 return ERR_PTR(-EOPNOTSUPP); 1426 } else { 1427 if (base_id > 0x3a) 1428 return ERR_PTR(-EOPNOTSUPP); 1429 } 1430 1431 switch (base_id) { 1432 case 0x00: 1433 case 0x0f: 1434 case 0x1e: 1435 case 0x1f: 1436 case 0x2f: 1437 case 0x34: 1438 case 0x3b ... 0x3f: 1439 return ERR_PTR(-EOPNOTSUPP); 1440 default: 1441 break; 1442 } 1443 1444 return &raw_event; 1445 } 1446 1447 static int __init 1448 init_hw_perf_events(void) 1449 { 1450 int counters, irq; 1451 int counter_bits; 1452 1453 pr_info("Performance counters: "); 1454 1455 counters = n_counters(); 1456 if (counters == 0) { 1457 pr_cont("No available PMU.\n"); 1458 return -ENODEV; 1459 } 1460 1461 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS 1462 cpu_has_mipsmt_pertccounters = read_c0_config7() & (1<<19); 1463 if (!cpu_has_mipsmt_pertccounters) 1464 counters = counters_total_to_per_cpu(counters); 1465 #endif 1466 1467 #ifdef MSC01E_INT_BASE 1468 if (cpu_has_veic) { 1469 /* 1470 * Using platform specific interrupt controller defines. 1471 */ 1472 irq = MSC01E_INT_BASE + MSC01E_INT_PERFCTR; 1473 } else { 1474 #endif 1475 if ((cp0_perfcount_irq >= 0) && 1476 (cp0_compare_irq != cp0_perfcount_irq)) 1477 irq = MIPS_CPU_IRQ_BASE + cp0_perfcount_irq; 1478 else 1479 irq = -1; 1480 #ifdef MSC01E_INT_BASE 1481 } 1482 #endif 1483 1484 mipspmu.map_raw_event = mipsxx_pmu_map_raw_event; 1485 1486 switch (current_cpu_type()) { 1487 case CPU_24K: 1488 mipspmu.name = "mips/24K"; 1489 mipspmu.general_event_map = &mipsxxcore_event_map; 1490 mipspmu.cache_event_map = &mipsxxcore_cache_map; 1491 break; 1492 case CPU_34K: 1493 mipspmu.name = "mips/34K"; 1494 mipspmu.general_event_map = &mipsxxcore_event_map; 1495 mipspmu.cache_event_map = &mipsxxcore_cache_map; 1496 break; 1497 case CPU_74K: 1498 mipspmu.name = "mips/74K"; 1499 mipspmu.general_event_map = &mipsxx74Kcore_event_map; 1500 mipspmu.cache_event_map = &mipsxx74Kcore_cache_map; 1501 break; 1502 case CPU_1004K: 1503 mipspmu.name = "mips/1004K"; 1504 mipspmu.general_event_map = &mipsxxcore_event_map; 1505 mipspmu.cache_event_map = &mipsxxcore_cache_map; 1506 break; 1507 case CPU_LOONGSON1: 1508 mipspmu.name = "mips/loongson1"; 1509 mipspmu.general_event_map = &mipsxxcore_event_map; 1510 mipspmu.cache_event_map = &mipsxxcore_cache_map; 1511 break; 1512 case CPU_CAVIUM_OCTEON: 1513 case CPU_CAVIUM_OCTEON_PLUS: 1514 case CPU_CAVIUM_OCTEON2: 1515 mipspmu.name = "octeon"; 1516 mipspmu.general_event_map = &octeon_event_map; 1517 mipspmu.cache_event_map = &octeon_cache_map; 1518 mipspmu.map_raw_event = octeon_pmu_map_raw_event; 1519 break; 1520 case CPU_BMIPS5000: 1521 mipspmu.name = "BMIPS5000"; 1522 mipspmu.general_event_map = &bmips5000_event_map; 1523 mipspmu.cache_event_map = &bmips5000_cache_map; 1524 break; 1525 default: 1526 pr_cont("Either hardware does not support performance " 1527 "counters, or not yet implemented.\n"); 1528 return -ENODEV; 1529 } 1530 1531 mipspmu.num_counters = counters; 1532 mipspmu.irq = irq; 1533 1534 if (read_c0_perfctrl0() & M_PERFCTL_WIDE) { 1535 mipspmu.max_period = (1ULL << 63) - 1; 1536 mipspmu.valid_count = (1ULL << 63) - 1; 1537 mipspmu.overflow = 1ULL << 63; 1538 mipspmu.read_counter = mipsxx_pmu_read_counter_64; 1539 mipspmu.write_counter = mipsxx_pmu_write_counter_64; 1540 counter_bits = 64; 1541 } else { 1542 mipspmu.max_period = (1ULL << 31) - 1; 1543 mipspmu.valid_count = (1ULL << 31) - 1; 1544 mipspmu.overflow = 1ULL << 31; 1545 mipspmu.read_counter = mipsxx_pmu_read_counter; 1546 mipspmu.write_counter = mipsxx_pmu_write_counter; 1547 counter_bits = 32; 1548 } 1549 1550 on_each_cpu(reset_counters, (void *)(long)counters, 1); 1551 1552 pr_cont("%s PMU enabled, %d %d-bit counters available to each " 1553 "CPU, irq %d%s\n", mipspmu.name, counters, counter_bits, irq, 1554 irq < 0 ? " (share with timer interrupt)" : ""); 1555 1556 perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW); 1557 1558 return 0; 1559 } 1560 early_initcall(init_hw_perf_events); 1561