xref: /linux/arch/mips/kernel/mips-cm.c (revision 6f87359e8bcaf88381b9c9c038929e0e6872d308)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2013 Imagination Technologies
4  * Author: Paul Burton <paul.burton@mips.com>
5  */
6 
7 #include <linux/errno.h>
8 #include <linux/percpu.h>
9 #include <linux/spinlock.h>
10 
11 #include <asm/mips-cps.h>
12 #include <asm/mipsregs.h>
13 
14 void __iomem *mips_gcr_base;
15 void __iomem *mips_cm_l2sync_base;
16 int mips_cm_is64;
17 
18 static char *cm2_tr[8] = {
19 	"mem",	"gcr",	"gic",	"mmio",
20 	"0x04", "cpc", "0x06", "0x07"
21 };
22 
23 /* CM3 Tag ECC transaction type */
24 static char *cm3_tr[16] = {
25 	[0x0] = "ReqNoData",
26 	[0x1] = "0x1",
27 	[0x2] = "ReqWData",
28 	[0x3] = "0x3",
29 	[0x4] = "IReqNoResp",
30 	[0x5] = "IReqWResp",
31 	[0x6] = "IReqNoRespDat",
32 	[0x7] = "IReqWRespDat",
33 	[0x8] = "RespNoData",
34 	[0x9] = "RespDataFol",
35 	[0xa] = "RespWData",
36 	[0xb] = "RespDataOnly",
37 	[0xc] = "IRespNoData",
38 	[0xd] = "IRespDataFol",
39 	[0xe] = "IRespWData",
40 	[0xf] = "IRespDataOnly"
41 };
42 
43 static char *cm2_cmd[32] = {
44 	[0x00] = "0x00",
45 	[0x01] = "Legacy Write",
46 	[0x02] = "Legacy Read",
47 	[0x03] = "0x03",
48 	[0x04] = "0x04",
49 	[0x05] = "0x05",
50 	[0x06] = "0x06",
51 	[0x07] = "0x07",
52 	[0x08] = "Coherent Read Own",
53 	[0x09] = "Coherent Read Share",
54 	[0x0a] = "Coherent Read Discard",
55 	[0x0b] = "Coherent Ready Share Always",
56 	[0x0c] = "Coherent Upgrade",
57 	[0x0d] = "Coherent Writeback",
58 	[0x0e] = "0x0e",
59 	[0x0f] = "0x0f",
60 	[0x10] = "Coherent Copyback",
61 	[0x11] = "Coherent Copyback Invalidate",
62 	[0x12] = "Coherent Invalidate",
63 	[0x13] = "Coherent Write Invalidate",
64 	[0x14] = "Coherent Completion Sync",
65 	[0x15] = "0x15",
66 	[0x16] = "0x16",
67 	[0x17] = "0x17",
68 	[0x18] = "0x18",
69 	[0x19] = "0x19",
70 	[0x1a] = "0x1a",
71 	[0x1b] = "0x1b",
72 	[0x1c] = "0x1c",
73 	[0x1d] = "0x1d",
74 	[0x1e] = "0x1e",
75 	[0x1f] = "0x1f"
76 };
77 
78 /* CM3 Tag ECC command type */
79 static char *cm3_cmd[16] = {
80 	[0x0] = "Legacy Read",
81 	[0x1] = "Legacy Write",
82 	[0x2] = "Coherent Read Own",
83 	[0x3] = "Coherent Read Share",
84 	[0x4] = "Coherent Read Discard",
85 	[0x5] = "Coherent Evicted",
86 	[0x6] = "Coherent Upgrade",
87 	[0x7] = "Coherent Upgrade for Store Conditional",
88 	[0x8] = "Coherent Writeback",
89 	[0x9] = "Coherent Write Invalidate",
90 	[0xa] = "0xa",
91 	[0xb] = "0xb",
92 	[0xc] = "0xc",
93 	[0xd] = "0xd",
94 	[0xe] = "0xe",
95 	[0xf] = "0xf"
96 };
97 
98 /* CM3 Tag ECC command group */
99 static char *cm3_cmd_group[8] = {
100 	[0x0] = "Normal",
101 	[0x1] = "Registers",
102 	[0x2] = "TLB",
103 	[0x3] = "0x3",
104 	[0x4] = "L1I",
105 	[0x5] = "L1D",
106 	[0x6] = "L3",
107 	[0x7] = "L2"
108 };
109 
110 static char *cm2_core[8] = {
111 	"Invalid/OK",	"Invalid/Data",
112 	"Shared/OK",	"Shared/Data",
113 	"Modified/OK",	"Modified/Data",
114 	"Exclusive/OK", "Exclusive/Data"
115 };
116 
117 static char *cm2_causes[32] = {
118 	"None", "GC_WR_ERR", "GC_RD_ERR", "COH_WR_ERR",
119 	"COH_RD_ERR", "MMIO_WR_ERR", "MMIO_RD_ERR", "0x07",
120 	"0x08", "0x09", "0x0a", "0x0b",
121 	"0x0c", "0x0d", "0x0e", "0x0f",
122 	"0x10", "0x11", "0x12", "0x13",
123 	"0x14", "0x15", "0x16", "INTVN_WR_ERR",
124 	"INTVN_RD_ERR", "0x19", "0x1a", "0x1b",
125 	"0x1c", "0x1d", "0x1e", "0x1f"
126 };
127 
128 static char *cm3_causes[32] = {
129 	"0x0", "MP_CORRECTABLE_ECC_ERR", "MP_REQUEST_DECODE_ERR",
130 	"MP_UNCORRECTABLE_ECC_ERR", "MP_PARITY_ERR", "MP_COHERENCE_ERR",
131 	"CMBIU_REQUEST_DECODE_ERR", "CMBIU_PARITY_ERR", "CMBIU_AXI_RESP_ERR",
132 	"0x9", "RBI_BUS_ERR", "0xb", "0xc", "0xd", "0xe", "0xf", "0x10",
133 	"0x11", "0x12", "0x13", "0x14", "0x15", "0x16", "0x17", "0x18",
134 	"0x19", "0x1a", "0x1b", "0x1c", "0x1d", "0x1e", "0x1f"
135 };
136 
137 static DEFINE_PER_CPU_ALIGNED(spinlock_t, cm_core_lock);
138 static DEFINE_PER_CPU_ALIGNED(unsigned long, cm_core_lock_flags);
139 
140 phys_addr_t __mips_cm_phys_base(void)
141 {
142 	u32 config3 = read_c0_config3();
143 	unsigned long cmgcr;
144 
145 	/* Check the CMGCRBase register is implemented */
146 	if (!(config3 & MIPS_CONF3_CMGCR))
147 		return 0;
148 
149 	/* Read the address from CMGCRBase */
150 	cmgcr = read_c0_cmgcrbase();
151 	return (cmgcr & MIPS_CMGCRF_BASE) << (36 - 32);
152 }
153 
154 phys_addr_t mips_cm_phys_base(void)
155 	__attribute__((weak, alias("__mips_cm_phys_base")));
156 
157 phys_addr_t __mips_cm_l2sync_phys_base(void)
158 {
159 	u32 base_reg;
160 
161 	/*
162 	 * If the L2-only sync region is already enabled then leave it at it's
163 	 * current location.
164 	 */
165 	base_reg = read_gcr_l2_only_sync_base();
166 	if (base_reg & CM_GCR_L2_ONLY_SYNC_BASE_SYNCEN)
167 		return base_reg & CM_GCR_L2_ONLY_SYNC_BASE_SYNCBASE;
168 
169 	/* Default to following the CM */
170 	return mips_cm_phys_base() + MIPS_CM_GCR_SIZE;
171 }
172 
173 phys_addr_t mips_cm_l2sync_phys_base(void)
174 	__attribute__((weak, alias("__mips_cm_l2sync_phys_base")));
175 
176 static void mips_cm_probe_l2sync(void)
177 {
178 	unsigned major_rev;
179 	phys_addr_t addr;
180 
181 	/* L2-only sync was introduced with CM major revision 6 */
182 	major_rev = (read_gcr_rev() & CM_GCR_REV_MAJOR) >>
183 		__ffs(CM_GCR_REV_MAJOR);
184 	if (major_rev < 6)
185 		return;
186 
187 	/* Find a location for the L2 sync region */
188 	addr = mips_cm_l2sync_phys_base();
189 	BUG_ON((addr & CM_GCR_L2_ONLY_SYNC_BASE_SYNCBASE) != addr);
190 	if (!addr)
191 		return;
192 
193 	/* Set the region base address & enable it */
194 	write_gcr_l2_only_sync_base(addr | CM_GCR_L2_ONLY_SYNC_BASE_SYNCEN);
195 
196 	/* Map the region */
197 	mips_cm_l2sync_base = ioremap(addr, MIPS_CM_L2SYNC_SIZE);
198 }
199 
200 int mips_cm_probe(void)
201 {
202 	phys_addr_t addr;
203 	u32 base_reg;
204 	unsigned cpu;
205 
206 	/*
207 	 * No need to probe again if we have already been
208 	 * here before.
209 	 */
210 	if (mips_gcr_base)
211 		return 0;
212 
213 	addr = mips_cm_phys_base();
214 	BUG_ON((addr & CM_GCR_BASE_GCRBASE) != addr);
215 	if (!addr)
216 		return -ENODEV;
217 
218 	mips_gcr_base = ioremap(addr, MIPS_CM_GCR_SIZE);
219 	if (!mips_gcr_base)
220 		return -ENXIO;
221 
222 	/* sanity check that we're looking at a CM */
223 	base_reg = read_gcr_base();
224 	if ((base_reg & CM_GCR_BASE_GCRBASE) != addr) {
225 		pr_err("GCRs appear to have been moved (expected them at 0x%08lx)!\n",
226 		       (unsigned long)addr);
227 		mips_gcr_base = NULL;
228 		return -ENODEV;
229 	}
230 
231 	/* set default target to memory */
232 	change_gcr_base(CM_GCR_BASE_CMDEFTGT, CM_GCR_BASE_CMDEFTGT_MEM);
233 
234 	/* disable CM regions */
235 	write_gcr_reg0_base(CM_GCR_REGn_BASE_BASEADDR);
236 	write_gcr_reg0_mask(CM_GCR_REGn_MASK_ADDRMASK);
237 	write_gcr_reg1_base(CM_GCR_REGn_BASE_BASEADDR);
238 	write_gcr_reg1_mask(CM_GCR_REGn_MASK_ADDRMASK);
239 	write_gcr_reg2_base(CM_GCR_REGn_BASE_BASEADDR);
240 	write_gcr_reg2_mask(CM_GCR_REGn_MASK_ADDRMASK);
241 	write_gcr_reg3_base(CM_GCR_REGn_BASE_BASEADDR);
242 	write_gcr_reg3_mask(CM_GCR_REGn_MASK_ADDRMASK);
243 
244 	/* probe for an L2-only sync region */
245 	mips_cm_probe_l2sync();
246 
247 	/* determine register width for this CM */
248 	mips_cm_is64 = IS_ENABLED(CONFIG_64BIT) && (mips_cm_revision() >= CM_REV_CM3);
249 
250 	for_each_possible_cpu(cpu)
251 		spin_lock_init(&per_cpu(cm_core_lock, cpu));
252 
253 	return 0;
254 }
255 
256 void mips_cm_lock_other(unsigned int cluster, unsigned int core,
257 			unsigned int vp, unsigned int block)
258 {
259 	unsigned int curr_core, cm_rev;
260 	u32 val;
261 
262 	cm_rev = mips_cm_revision();
263 	preempt_disable();
264 
265 	if (cm_rev >= CM_REV_CM3) {
266 		val = core << __ffs(CM3_GCR_Cx_OTHER_CORE);
267 		val |= vp << __ffs(CM3_GCR_Cx_OTHER_VP);
268 
269 		if (cm_rev >= CM_REV_CM3_5) {
270 			val |= CM_GCR_Cx_OTHER_CLUSTER_EN;
271 			val |= cluster << __ffs(CM_GCR_Cx_OTHER_CLUSTER);
272 			val |= block << __ffs(CM_GCR_Cx_OTHER_BLOCK);
273 		} else {
274 			WARN_ON(cluster != 0);
275 			WARN_ON(block != CM_GCR_Cx_OTHER_BLOCK_LOCAL);
276 		}
277 
278 		/*
279 		 * We need to disable interrupts in SMP systems in order to
280 		 * ensure that we don't interrupt the caller with code which
281 		 * may modify the redirect register. We do so here in a
282 		 * slightly obscure way by using a spin lock, since this has
283 		 * the neat property of also catching any nested uses of
284 		 * mips_cm_lock_other() leading to a deadlock or a nice warning
285 		 * with lockdep enabled.
286 		 */
287 		spin_lock_irqsave(this_cpu_ptr(&cm_core_lock),
288 				  *this_cpu_ptr(&cm_core_lock_flags));
289 	} else {
290 		WARN_ON(cluster != 0);
291 		WARN_ON(block != CM_GCR_Cx_OTHER_BLOCK_LOCAL);
292 
293 		/*
294 		 * We only have a GCR_CL_OTHER per core in systems with
295 		 * CM 2.5 & older, so have to ensure other VP(E)s don't
296 		 * race with us.
297 		 */
298 		curr_core = cpu_core(&current_cpu_data);
299 		spin_lock_irqsave(&per_cpu(cm_core_lock, curr_core),
300 				  per_cpu(cm_core_lock_flags, curr_core));
301 
302 		val = core << __ffs(CM_GCR_Cx_OTHER_CORENUM);
303 	}
304 
305 	write_gcr_cl_other(val);
306 
307 	/*
308 	 * Ensure the core-other region reflects the appropriate core &
309 	 * VP before any accesses to it occur.
310 	 */
311 	mb();
312 }
313 
314 void mips_cm_unlock_other(void)
315 {
316 	unsigned int curr_core;
317 
318 	if (mips_cm_revision() < CM_REV_CM3) {
319 		curr_core = cpu_core(&current_cpu_data);
320 		spin_unlock_irqrestore(&per_cpu(cm_core_lock, curr_core),
321 				       per_cpu(cm_core_lock_flags, curr_core));
322 	} else {
323 		spin_unlock_irqrestore(this_cpu_ptr(&cm_core_lock),
324 				       *this_cpu_ptr(&cm_core_lock_flags));
325 	}
326 
327 	preempt_enable();
328 }
329 
330 void mips_cm_error_report(void)
331 {
332 	u64 cm_error, cm_addr, cm_other;
333 	unsigned long revision;
334 	int ocause, cause;
335 	char buf[256];
336 
337 	if (!mips_cm_present())
338 		return;
339 
340 	revision = mips_cm_revision();
341 	cm_error = read_gcr_error_cause();
342 	cm_addr = read_gcr_error_addr();
343 	cm_other = read_gcr_error_mult();
344 
345 	if (revision < CM_REV_CM3) { /* CM2 */
346 		cause = cm_error >> __ffs(CM_GCR_ERROR_CAUSE_ERRTYPE);
347 		ocause = cm_other >> __ffs(CM_GCR_ERROR_MULT_ERR2ND);
348 
349 		if (!cause)
350 			return;
351 
352 		if (cause < 16) {
353 			unsigned long cca_bits = (cm_error >> 15) & 7;
354 			unsigned long tr_bits = (cm_error >> 12) & 7;
355 			unsigned long cmd_bits = (cm_error >> 7) & 0x1f;
356 			unsigned long stag_bits = (cm_error >> 3) & 15;
357 			unsigned long sport_bits = (cm_error >> 0) & 7;
358 
359 			snprintf(buf, sizeof(buf),
360 				 "CCA=%lu TR=%s MCmd=%s STag=%lu "
361 				 "SPort=%lu\n", cca_bits, cm2_tr[tr_bits],
362 				 cm2_cmd[cmd_bits], stag_bits, sport_bits);
363 		} else {
364 			/* glob state & sresp together */
365 			unsigned long c3_bits = (cm_error >> 18) & 7;
366 			unsigned long c2_bits = (cm_error >> 15) & 7;
367 			unsigned long c1_bits = (cm_error >> 12) & 7;
368 			unsigned long c0_bits = (cm_error >> 9) & 7;
369 			unsigned long sc_bit = (cm_error >> 8) & 1;
370 			unsigned long cmd_bits = (cm_error >> 3) & 0x1f;
371 			unsigned long sport_bits = (cm_error >> 0) & 7;
372 
373 			snprintf(buf, sizeof(buf),
374 				 "C3=%s C2=%s C1=%s C0=%s SC=%s "
375 				 "MCmd=%s SPort=%lu\n",
376 				 cm2_core[c3_bits], cm2_core[c2_bits],
377 				 cm2_core[c1_bits], cm2_core[c0_bits],
378 				 sc_bit ? "True" : "False",
379 				 cm2_cmd[cmd_bits], sport_bits);
380 		}
381 		pr_err("CM_ERROR=%08llx %s <%s>\n", cm_error,
382 		       cm2_causes[cause], buf);
383 		pr_err("CM_ADDR =%08llx\n", cm_addr);
384 		pr_err("CM_OTHER=%08llx %s\n", cm_other, cm2_causes[ocause]);
385 	} else { /* CM3 */
386 		ulong core_id_bits, vp_id_bits, cmd_bits, cmd_group_bits;
387 		ulong cm3_cca_bits, mcp_bits, cm3_tr_bits, sched_bit;
388 
389 		cause = cm_error >> __ffs64(CM3_GCR_ERROR_CAUSE_ERRTYPE);
390 		ocause = cm_other >> __ffs(CM_GCR_ERROR_MULT_ERR2ND);
391 
392 		if (!cause)
393 			return;
394 
395 		/* Used by cause == {1,2,3} */
396 		core_id_bits = (cm_error >> 22) & 0xf;
397 		vp_id_bits = (cm_error >> 18) & 0xf;
398 		cmd_bits = (cm_error >> 14) & 0xf;
399 		cmd_group_bits = (cm_error >> 11) & 0xf;
400 		cm3_cca_bits = (cm_error >> 8) & 7;
401 		mcp_bits = (cm_error >> 5) & 0xf;
402 		cm3_tr_bits = (cm_error >> 1) & 0xf;
403 		sched_bit = cm_error & 0x1;
404 
405 		if (cause == 1 || cause == 3) { /* Tag ECC */
406 			unsigned long tag_ecc = (cm_error >> 57) & 0x1;
407 			unsigned long tag_way_bits = (cm_error >> 29) & 0xffff;
408 			unsigned long dword_bits = (cm_error >> 49) & 0xff;
409 			unsigned long data_way_bits = (cm_error >> 45) & 0xf;
410 			unsigned long data_sets_bits = (cm_error >> 29) & 0xfff;
411 			unsigned long bank_bit = (cm_error >> 28) & 0x1;
412 			snprintf(buf, sizeof(buf),
413 				 "%s ECC Error: Way=%lu (DWORD=%lu, Sets=%lu)"
414 				 "Bank=%lu CoreID=%lu VPID=%lu Command=%s"
415 				 "Command Group=%s CCA=%lu MCP=%d"
416 				 "Transaction type=%s Scheduler=%lu\n",
417 				 tag_ecc ? "TAG" : "DATA",
418 				 tag_ecc ? (unsigned long)ffs(tag_way_bits) - 1 :
419 				 data_way_bits, bank_bit, dword_bits,
420 				 data_sets_bits,
421 				 core_id_bits, vp_id_bits,
422 				 cm3_cmd[cmd_bits],
423 				 cm3_cmd_group[cmd_group_bits],
424 				 cm3_cca_bits, 1 << mcp_bits,
425 				 cm3_tr[cm3_tr_bits], sched_bit);
426 		} else if (cause == 2) {
427 			unsigned long data_error_type = (cm_error >> 41) & 0xfff;
428 			unsigned long data_decode_cmd = (cm_error >> 37) & 0xf;
429 			unsigned long data_decode_group = (cm_error >> 34) & 0x7;
430 			unsigned long data_decode_destination_id = (cm_error >> 28) & 0x3f;
431 
432 			snprintf(buf, sizeof(buf),
433 				 "Decode Request Error: Type=%lu, Command=%lu"
434 				 "Command Group=%lu Destination ID=%lu"
435 				 "CoreID=%lu VPID=%lu Command=%s"
436 				 "Command Group=%s CCA=%lu MCP=%d"
437 				 "Transaction type=%s Scheduler=%lu\n",
438 				 data_error_type, data_decode_cmd,
439 				 data_decode_group, data_decode_destination_id,
440 				 core_id_bits, vp_id_bits,
441 				 cm3_cmd[cmd_bits],
442 				 cm3_cmd_group[cmd_group_bits],
443 				 cm3_cca_bits, 1 << mcp_bits,
444 				 cm3_tr[cm3_tr_bits], sched_bit);
445 		} else {
446 			buf[0] = 0;
447 		}
448 
449 		pr_err("CM_ERROR=%llx %s <%s>\n", cm_error,
450 		       cm3_causes[cause], buf);
451 		pr_err("CM_ADDR =%llx\n", cm_addr);
452 		pr_err("CM_OTHER=%llx %s\n", cm_other, cm3_causes[ocause]);
453 	}
454 
455 	/* reprime cause register */
456 	write_gcr_error_cause(cm_error);
457 }
458