1 /* 2 * Kernel Probes (KProbes) 3 * arch/mips/kernel/kprobes.c 4 * 5 * Copyright 2006 Sony Corp. 6 * Copyright 2010 Cavium Networks 7 * 8 * Some portions copied from the powerpc version. 9 * 10 * Copyright (C) IBM Corporation, 2002, 2004 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License as published by 14 * the Free Software Foundation; version 2 of the License. 15 * 16 * This program is distributed in the hope that it will be useful, 17 * but WITHOUT ANY WARRANTY; without even the implied warranty of 18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 19 * GNU General Public License for more details. 20 * 21 * You should have received a copy of the GNU General Public License 22 * along with this program; if not, write to the Free Software 23 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 24 */ 25 26 #include <linux/kprobes.h> 27 #include <linux/preempt.h> 28 #include <linux/uaccess.h> 29 #include <linux/kdebug.h> 30 #include <linux/slab.h> 31 32 #include <asm/ptrace.h> 33 #include <asm/branch.h> 34 #include <asm/break.h> 35 #include <asm/inst.h> 36 37 static const union mips_instruction breakpoint_insn = { 38 .b_format = { 39 .opcode = spec_op, 40 .code = BRK_KPROBE_BP, 41 .func = break_op 42 } 43 }; 44 45 static const union mips_instruction breakpoint2_insn = { 46 .b_format = { 47 .opcode = spec_op, 48 .code = BRK_KPROBE_SSTEPBP, 49 .func = break_op 50 } 51 }; 52 53 DEFINE_PER_CPU(struct kprobe *, current_kprobe); 54 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk); 55 56 static int __kprobes insn_has_delayslot(union mips_instruction insn) 57 { 58 switch (insn.i_format.opcode) { 59 60 /* 61 * This group contains: 62 * jr and jalr are in r_format format. 63 */ 64 case spec_op: 65 switch (insn.r_format.func) { 66 case jr_op: 67 case jalr_op: 68 break; 69 default: 70 goto insn_ok; 71 } 72 73 /* 74 * This group contains: 75 * bltz_op, bgez_op, bltzl_op, bgezl_op, 76 * bltzal_op, bgezal_op, bltzall_op, bgezall_op. 77 */ 78 case bcond_op: 79 80 /* 81 * These are unconditional and in j_format. 82 */ 83 case jal_op: 84 case j_op: 85 86 /* 87 * These are conditional and in i_format. 88 */ 89 case beq_op: 90 case beql_op: 91 case bne_op: 92 case bnel_op: 93 case blez_op: 94 case blezl_op: 95 case bgtz_op: 96 case bgtzl_op: 97 98 /* 99 * These are the FPA/cp1 branch instructions. 100 */ 101 case cop1_op: 102 103 #ifdef CONFIG_CPU_CAVIUM_OCTEON 104 case lwc2_op: /* This is bbit0 on Octeon */ 105 case ldc2_op: /* This is bbit032 on Octeon */ 106 case swc2_op: /* This is bbit1 on Octeon */ 107 case sdc2_op: /* This is bbit132 on Octeon */ 108 #endif 109 return 1; 110 default: 111 break; 112 } 113 insn_ok: 114 return 0; 115 } 116 117 /* 118 * insn_has_ll_or_sc function checks whether instruction is ll or sc 119 * one; putting breakpoint on top of atomic ll/sc pair is bad idea; 120 * so we need to prevent it and refuse kprobes insertion for such 121 * instructions; cannot do much about breakpoint in the middle of 122 * ll/sc pair; it is upto user to avoid those places 123 */ 124 static int __kprobes insn_has_ll_or_sc(union mips_instruction insn) 125 { 126 int ret = 0; 127 128 switch (insn.i_format.opcode) { 129 case ll_op: 130 case lld_op: 131 case sc_op: 132 case scd_op: 133 ret = 1; 134 break; 135 default: 136 break; 137 } 138 return ret; 139 } 140 141 int __kprobes arch_prepare_kprobe(struct kprobe *p) 142 { 143 union mips_instruction insn; 144 union mips_instruction prev_insn; 145 int ret = 0; 146 147 insn = p->addr[0]; 148 149 if (insn_has_ll_or_sc(insn)) { 150 pr_notice("Kprobes for ll and sc instructions are not" 151 "supported\n"); 152 ret = -EINVAL; 153 goto out; 154 } 155 156 if ((probe_kernel_read(&prev_insn, p->addr - 1, 157 sizeof(mips_instruction)) == 0) && 158 insn_has_delayslot(prev_insn)) { 159 pr_notice("Kprobes for branch delayslot are not supported\n"); 160 ret = -EINVAL; 161 goto out; 162 } 163 164 /* insn: must be on special executable page on mips. */ 165 p->ainsn.insn = get_insn_slot(); 166 if (!p->ainsn.insn) { 167 ret = -ENOMEM; 168 goto out; 169 } 170 171 /* 172 * In the kprobe->ainsn.insn[] array we store the original 173 * instruction at index zero and a break trap instruction at 174 * index one. 175 * 176 * On MIPS arch if the instruction at probed address is a 177 * branch instruction, we need to execute the instruction at 178 * Branch Delayslot (BD) at the time of probe hit. As MIPS also 179 * doesn't have single stepping support, the BD instruction can 180 * not be executed in-line and it would be executed on SSOL slot 181 * using a normal breakpoint instruction in the next slot. 182 * So, read the instruction and save it for later execution. 183 */ 184 if (insn_has_delayslot(insn)) 185 memcpy(&p->ainsn.insn[0], p->addr + 1, sizeof(kprobe_opcode_t)); 186 else 187 memcpy(&p->ainsn.insn[0], p->addr, sizeof(kprobe_opcode_t)); 188 189 p->ainsn.insn[1] = breakpoint2_insn; 190 p->opcode = *p->addr; 191 192 out: 193 return ret; 194 } 195 196 void __kprobes arch_arm_kprobe(struct kprobe *p) 197 { 198 *p->addr = breakpoint_insn; 199 flush_insn_slot(p); 200 } 201 202 void __kprobes arch_disarm_kprobe(struct kprobe *p) 203 { 204 *p->addr = p->opcode; 205 flush_insn_slot(p); 206 } 207 208 void __kprobes arch_remove_kprobe(struct kprobe *p) 209 { 210 if (p->ainsn.insn) { 211 free_insn_slot(p->ainsn.insn, 0); 212 p->ainsn.insn = NULL; 213 } 214 } 215 216 static void save_previous_kprobe(struct kprobe_ctlblk *kcb) 217 { 218 kcb->prev_kprobe.kp = kprobe_running(); 219 kcb->prev_kprobe.status = kcb->kprobe_status; 220 kcb->prev_kprobe.old_SR = kcb->kprobe_old_SR; 221 kcb->prev_kprobe.saved_SR = kcb->kprobe_saved_SR; 222 kcb->prev_kprobe.saved_epc = kcb->kprobe_saved_epc; 223 } 224 225 static void restore_previous_kprobe(struct kprobe_ctlblk *kcb) 226 { 227 __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp); 228 kcb->kprobe_status = kcb->prev_kprobe.status; 229 kcb->kprobe_old_SR = kcb->prev_kprobe.old_SR; 230 kcb->kprobe_saved_SR = kcb->prev_kprobe.saved_SR; 231 kcb->kprobe_saved_epc = kcb->prev_kprobe.saved_epc; 232 } 233 234 static void set_current_kprobe(struct kprobe *p, struct pt_regs *regs, 235 struct kprobe_ctlblk *kcb) 236 { 237 __this_cpu_write(current_kprobe, p); 238 kcb->kprobe_saved_SR = kcb->kprobe_old_SR = (regs->cp0_status & ST0_IE); 239 kcb->kprobe_saved_epc = regs->cp0_epc; 240 } 241 242 /** 243 * evaluate_branch_instrucion - 244 * 245 * Evaluate the branch instruction at probed address during probe hit. The 246 * result of evaluation would be the updated epc. The insturction in delayslot 247 * would actually be single stepped using a normal breakpoint) on SSOL slot. 248 * 249 * The result is also saved in the kprobe control block for later use, 250 * in case we need to execute the delayslot instruction. The latter will be 251 * false for NOP instruction in dealyslot and the branch-likely instructions 252 * when the branch is taken. And for those cases we set a flag as 253 * SKIP_DELAYSLOT in the kprobe control block 254 */ 255 static int evaluate_branch_instruction(struct kprobe *p, struct pt_regs *regs, 256 struct kprobe_ctlblk *kcb) 257 { 258 union mips_instruction insn = p->opcode; 259 long epc; 260 int ret = 0; 261 262 epc = regs->cp0_epc; 263 if (epc & 3) 264 goto unaligned; 265 266 if (p->ainsn.insn->word == 0) 267 kcb->flags |= SKIP_DELAYSLOT; 268 else 269 kcb->flags &= ~SKIP_DELAYSLOT; 270 271 ret = __compute_return_epc_for_insn(regs, insn); 272 if (ret < 0) 273 return ret; 274 275 if (ret == BRANCH_LIKELY_TAKEN) 276 kcb->flags |= SKIP_DELAYSLOT; 277 278 kcb->target_epc = regs->cp0_epc; 279 280 return 0; 281 282 unaligned: 283 pr_notice("%s: unaligned epc - sending SIGBUS.\n", current->comm); 284 force_sig(SIGBUS, current); 285 return -EFAULT; 286 287 } 288 289 static void prepare_singlestep(struct kprobe *p, struct pt_regs *regs, 290 struct kprobe_ctlblk *kcb) 291 { 292 int ret = 0; 293 294 regs->cp0_status &= ~ST0_IE; 295 296 /* single step inline if the instruction is a break */ 297 if (p->opcode.word == breakpoint_insn.word || 298 p->opcode.word == breakpoint2_insn.word) 299 regs->cp0_epc = (unsigned long)p->addr; 300 else if (insn_has_delayslot(p->opcode)) { 301 ret = evaluate_branch_instruction(p, regs, kcb); 302 if (ret < 0) { 303 pr_notice("Kprobes: Error in evaluating branch\n"); 304 return; 305 } 306 } 307 regs->cp0_epc = (unsigned long)&p->ainsn.insn[0]; 308 } 309 310 /* 311 * Called after single-stepping. p->addr is the address of the 312 * instruction whose first byte has been replaced by the "break 0" 313 * instruction. To avoid the SMP problems that can occur when we 314 * temporarily put back the original opcode to single-step, we 315 * single-stepped a copy of the instruction. The address of this 316 * copy is p->ainsn.insn. 317 * 318 * This function prepares to return from the post-single-step 319 * breakpoint trap. In case of branch instructions, the target 320 * epc to be restored. 321 */ 322 static void __kprobes resume_execution(struct kprobe *p, 323 struct pt_regs *regs, 324 struct kprobe_ctlblk *kcb) 325 { 326 if (insn_has_delayslot(p->opcode)) 327 regs->cp0_epc = kcb->target_epc; 328 else { 329 unsigned long orig_epc = kcb->kprobe_saved_epc; 330 regs->cp0_epc = orig_epc + 4; 331 } 332 } 333 334 static int __kprobes kprobe_handler(struct pt_regs *regs) 335 { 336 struct kprobe *p; 337 int ret = 0; 338 kprobe_opcode_t *addr; 339 struct kprobe_ctlblk *kcb; 340 341 addr = (kprobe_opcode_t *) regs->cp0_epc; 342 343 /* 344 * We don't want to be preempted for the entire 345 * duration of kprobe processing 346 */ 347 preempt_disable(); 348 kcb = get_kprobe_ctlblk(); 349 350 /* Check we're not actually recursing */ 351 if (kprobe_running()) { 352 p = get_kprobe(addr); 353 if (p) { 354 if (kcb->kprobe_status == KPROBE_HIT_SS && 355 p->ainsn.insn->word == breakpoint_insn.word) { 356 regs->cp0_status &= ~ST0_IE; 357 regs->cp0_status |= kcb->kprobe_saved_SR; 358 goto no_kprobe; 359 } 360 /* 361 * We have reentered the kprobe_handler(), since 362 * another probe was hit while within the handler. 363 * We here save the original kprobes variables and 364 * just single step on the instruction of the new probe 365 * without calling any user handlers. 366 */ 367 save_previous_kprobe(kcb); 368 set_current_kprobe(p, regs, kcb); 369 kprobes_inc_nmissed_count(p); 370 prepare_singlestep(p, regs, kcb); 371 kcb->kprobe_status = KPROBE_REENTER; 372 if (kcb->flags & SKIP_DELAYSLOT) { 373 resume_execution(p, regs, kcb); 374 restore_previous_kprobe(kcb); 375 preempt_enable_no_resched(); 376 } 377 return 1; 378 } else { 379 if (addr->word != breakpoint_insn.word) { 380 /* 381 * The breakpoint instruction was removed by 382 * another cpu right after we hit, no further 383 * handling of this interrupt is appropriate 384 */ 385 ret = 1; 386 goto no_kprobe; 387 } 388 p = __this_cpu_read(current_kprobe); 389 if (p->break_handler && p->break_handler(p, regs)) 390 goto ss_probe; 391 } 392 goto no_kprobe; 393 } 394 395 p = get_kprobe(addr); 396 if (!p) { 397 if (addr->word != breakpoint_insn.word) { 398 /* 399 * The breakpoint instruction was removed right 400 * after we hit it. Another cpu has removed 401 * either a probepoint or a debugger breakpoint 402 * at this address. In either case, no further 403 * handling of this interrupt is appropriate. 404 */ 405 ret = 1; 406 } 407 /* Not one of ours: let kernel handle it */ 408 goto no_kprobe; 409 } 410 411 set_current_kprobe(p, regs, kcb); 412 kcb->kprobe_status = KPROBE_HIT_ACTIVE; 413 414 if (p->pre_handler && p->pre_handler(p, regs)) { 415 /* handler has already set things up, so skip ss setup */ 416 return 1; 417 } 418 419 ss_probe: 420 prepare_singlestep(p, regs, kcb); 421 if (kcb->flags & SKIP_DELAYSLOT) { 422 kcb->kprobe_status = KPROBE_HIT_SSDONE; 423 if (p->post_handler) 424 p->post_handler(p, regs, 0); 425 resume_execution(p, regs, kcb); 426 preempt_enable_no_resched(); 427 } else 428 kcb->kprobe_status = KPROBE_HIT_SS; 429 430 return 1; 431 432 no_kprobe: 433 preempt_enable_no_resched(); 434 return ret; 435 436 } 437 438 static inline int post_kprobe_handler(struct pt_regs *regs) 439 { 440 struct kprobe *cur = kprobe_running(); 441 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 442 443 if (!cur) 444 return 0; 445 446 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) { 447 kcb->kprobe_status = KPROBE_HIT_SSDONE; 448 cur->post_handler(cur, regs, 0); 449 } 450 451 resume_execution(cur, regs, kcb); 452 453 regs->cp0_status |= kcb->kprobe_saved_SR; 454 455 /* Restore back the original saved kprobes variables and continue. */ 456 if (kcb->kprobe_status == KPROBE_REENTER) { 457 restore_previous_kprobe(kcb); 458 goto out; 459 } 460 reset_current_kprobe(); 461 out: 462 preempt_enable_no_resched(); 463 464 return 1; 465 } 466 467 static inline int kprobe_fault_handler(struct pt_regs *regs, int trapnr) 468 { 469 struct kprobe *cur = kprobe_running(); 470 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 471 472 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr)) 473 return 1; 474 475 if (kcb->kprobe_status & KPROBE_HIT_SS) { 476 resume_execution(cur, regs, kcb); 477 regs->cp0_status |= kcb->kprobe_old_SR; 478 479 reset_current_kprobe(); 480 preempt_enable_no_resched(); 481 } 482 return 0; 483 } 484 485 /* 486 * Wrapper routine for handling exceptions. 487 */ 488 int __kprobes kprobe_exceptions_notify(struct notifier_block *self, 489 unsigned long val, void *data) 490 { 491 492 struct die_args *args = (struct die_args *)data; 493 int ret = NOTIFY_DONE; 494 495 switch (val) { 496 case DIE_BREAK: 497 if (kprobe_handler(args->regs)) 498 ret = NOTIFY_STOP; 499 break; 500 case DIE_SSTEPBP: 501 if (post_kprobe_handler(args->regs)) 502 ret = NOTIFY_STOP; 503 break; 504 505 case DIE_PAGE_FAULT: 506 /* kprobe_running() needs smp_processor_id() */ 507 preempt_disable(); 508 509 if (kprobe_running() 510 && kprobe_fault_handler(args->regs, args->trapnr)) 511 ret = NOTIFY_STOP; 512 preempt_enable(); 513 break; 514 default: 515 break; 516 } 517 return ret; 518 } 519 520 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs) 521 { 522 struct jprobe *jp = container_of(p, struct jprobe, kp); 523 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 524 525 kcb->jprobe_saved_regs = *regs; 526 kcb->jprobe_saved_sp = regs->regs[29]; 527 528 memcpy(kcb->jprobes_stack, (void *)kcb->jprobe_saved_sp, 529 MIN_JPROBES_STACK_SIZE(kcb->jprobe_saved_sp)); 530 531 regs->cp0_epc = (unsigned long)(jp->entry); 532 533 return 1; 534 } 535 536 /* Defined in the inline asm below. */ 537 void jprobe_return_end(void); 538 539 void __kprobes jprobe_return(void) 540 { 541 /* Assembler quirk necessitates this '0,code' business. */ 542 asm volatile( 543 "break 0,%0\n\t" 544 ".globl jprobe_return_end\n" 545 "jprobe_return_end:\n" 546 : : "n" (BRK_KPROBE_BP) : "memory"); 547 } 548 549 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs) 550 { 551 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 552 553 if (regs->cp0_epc >= (unsigned long)jprobe_return && 554 regs->cp0_epc <= (unsigned long)jprobe_return_end) { 555 *regs = kcb->jprobe_saved_regs; 556 memcpy((void *)kcb->jprobe_saved_sp, kcb->jprobes_stack, 557 MIN_JPROBES_STACK_SIZE(kcb->jprobe_saved_sp)); 558 preempt_enable_no_resched(); 559 560 return 1; 561 } 562 return 0; 563 } 564 565 /* 566 * Function return probe trampoline: 567 * - init_kprobes() establishes a probepoint here 568 * - When the probed function returns, this probe causes the 569 * handlers to fire 570 */ 571 static void __used kretprobe_trampoline_holder(void) 572 { 573 asm volatile( 574 ".set push\n\t" 575 /* Keep the assembler from reordering and placing JR here. */ 576 ".set noreorder\n\t" 577 "nop\n\t" 578 ".global kretprobe_trampoline\n" 579 "kretprobe_trampoline:\n\t" 580 "nop\n\t" 581 ".set pop" 582 : : : "memory"); 583 } 584 585 void kretprobe_trampoline(void); 586 587 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri, 588 struct pt_regs *regs) 589 { 590 ri->ret_addr = (kprobe_opcode_t *) regs->regs[31]; 591 592 /* Replace the return addr with trampoline addr */ 593 regs->regs[31] = (unsigned long)kretprobe_trampoline; 594 } 595 596 /* 597 * Called when the probe at kretprobe trampoline is hit 598 */ 599 static int __kprobes trampoline_probe_handler(struct kprobe *p, 600 struct pt_regs *regs) 601 { 602 struct kretprobe_instance *ri = NULL; 603 struct hlist_head *head, empty_rp; 604 struct hlist_node *tmp; 605 unsigned long flags, orig_ret_address = 0; 606 unsigned long trampoline_address = (unsigned long)kretprobe_trampoline; 607 608 INIT_HLIST_HEAD(&empty_rp); 609 kretprobe_hash_lock(current, &head, &flags); 610 611 /* 612 * It is possible to have multiple instances associated with a given 613 * task either because an multiple functions in the call path 614 * have a return probe installed on them, and/or more than one return 615 * return probe was registered for a target function. 616 * 617 * We can handle this because: 618 * - instances are always inserted at the head of the list 619 * - when multiple return probes are registered for the same 620 * function, the first instance's ret_addr will point to the 621 * real return address, and all the rest will point to 622 * kretprobe_trampoline 623 */ 624 hlist_for_each_entry_safe(ri, tmp, head, hlist) { 625 if (ri->task != current) 626 /* another task is sharing our hash bucket */ 627 continue; 628 629 if (ri->rp && ri->rp->handler) 630 ri->rp->handler(ri, regs); 631 632 orig_ret_address = (unsigned long)ri->ret_addr; 633 recycle_rp_inst(ri, &empty_rp); 634 635 if (orig_ret_address != trampoline_address) 636 /* 637 * This is the real return address. Any other 638 * instances associated with this task are for 639 * other calls deeper on the call stack 640 */ 641 break; 642 } 643 644 kretprobe_assert(ri, orig_ret_address, trampoline_address); 645 instruction_pointer(regs) = orig_ret_address; 646 647 reset_current_kprobe(); 648 kretprobe_hash_unlock(current, &flags); 649 preempt_enable_no_resched(); 650 651 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) { 652 hlist_del(&ri->hlist); 653 kfree(ri); 654 } 655 /* 656 * By returning a non-zero value, we are telling 657 * kprobe_handler() that we don't want the post_handler 658 * to run (and have re-enabled preemption) 659 */ 660 return 1; 661 } 662 663 int __kprobes arch_trampoline_kprobe(struct kprobe *p) 664 { 665 if (p->addr == (kprobe_opcode_t *)kretprobe_trampoline) 666 return 1; 667 668 return 0; 669 } 670 671 static struct kprobe trampoline_p = { 672 .addr = (kprobe_opcode_t *)kretprobe_trampoline, 673 .pre_handler = trampoline_probe_handler 674 }; 675 676 int __init arch_init_kprobes(void) 677 { 678 return register_kprobe(&trampoline_p); 679 } 680