xref: /linux/arch/mips/kernel/kprobes.c (revision 005438a8eef063495ac059d128eea71b58de50e5)
1 /*
2  *  Kernel Probes (KProbes)
3  *  arch/mips/kernel/kprobes.c
4  *
5  *  Copyright 2006 Sony Corp.
6  *  Copyright 2010 Cavium Networks
7  *
8  *  Some portions copied from the powerpc version.
9  *
10  *   Copyright (C) IBM Corporation, 2002, 2004
11  *
12  *  This program is free software; you can redistribute it and/or modify
13  *  it under the terms of the GNU General Public License as published by
14  *  the Free Software Foundation; version 2 of the License.
15  *
16  *  This program is distributed in the hope that it will be useful,
17  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
18  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19  *  GNU General Public License for more details.
20  *
21  *  You should have received a copy of the GNU General Public License
22  *  along with this program; if not, write to the Free Software
23  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
24  */
25 
26 #include <linux/kprobes.h>
27 #include <linux/preempt.h>
28 #include <linux/uaccess.h>
29 #include <linux/kdebug.h>
30 #include <linux/slab.h>
31 
32 #include <asm/ptrace.h>
33 #include <asm/branch.h>
34 #include <asm/break.h>
35 #include <asm/inst.h>
36 
37 static const union mips_instruction breakpoint_insn = {
38 	.b_format = {
39 		.opcode = spec_op,
40 		.code = BRK_KPROBE_BP,
41 		.func = break_op
42 	}
43 };
44 
45 static const union mips_instruction breakpoint2_insn = {
46 	.b_format = {
47 		.opcode = spec_op,
48 		.code = BRK_KPROBE_SSTEPBP,
49 		.func = break_op
50 	}
51 };
52 
53 DEFINE_PER_CPU(struct kprobe *, current_kprobe);
54 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
55 
56 static int __kprobes insn_has_delayslot(union mips_instruction insn)
57 {
58 	switch (insn.i_format.opcode) {
59 
60 		/*
61 		 * This group contains:
62 		 * jr and jalr are in r_format format.
63 		 */
64 	case spec_op:
65 		switch (insn.r_format.func) {
66 		case jr_op:
67 		case jalr_op:
68 			break;
69 		default:
70 			goto insn_ok;
71 		}
72 
73 		/*
74 		 * This group contains:
75 		 * bltz_op, bgez_op, bltzl_op, bgezl_op,
76 		 * bltzal_op, bgezal_op, bltzall_op, bgezall_op.
77 		 */
78 	case bcond_op:
79 
80 		/*
81 		 * These are unconditional and in j_format.
82 		 */
83 	case jal_op:
84 	case j_op:
85 
86 		/*
87 		 * These are conditional and in i_format.
88 		 */
89 	case beq_op:
90 	case beql_op:
91 	case bne_op:
92 	case bnel_op:
93 	case blez_op:
94 	case blezl_op:
95 	case bgtz_op:
96 	case bgtzl_op:
97 
98 		/*
99 		 * These are the FPA/cp1 branch instructions.
100 		 */
101 	case cop1_op:
102 
103 #ifdef CONFIG_CPU_CAVIUM_OCTEON
104 	case lwc2_op: /* This is bbit0 on Octeon */
105 	case ldc2_op: /* This is bbit032 on Octeon */
106 	case swc2_op: /* This is bbit1 on Octeon */
107 	case sdc2_op: /* This is bbit132 on Octeon */
108 #endif
109 		return 1;
110 	default:
111 		break;
112 	}
113 insn_ok:
114 	return 0;
115 }
116 
117 /*
118  * insn_has_ll_or_sc function checks whether instruction is ll or sc
119  * one; putting breakpoint on top of atomic ll/sc pair is bad idea;
120  * so we need to prevent it and refuse kprobes insertion for such
121  * instructions; cannot do much about breakpoint in the middle of
122  * ll/sc pair; it is upto user to avoid those places
123  */
124 static int __kprobes insn_has_ll_or_sc(union mips_instruction insn)
125 {
126 	int ret = 0;
127 
128 	switch (insn.i_format.opcode) {
129 	case ll_op:
130 	case lld_op:
131 	case sc_op:
132 	case scd_op:
133 		ret = 1;
134 		break;
135 	default:
136 		break;
137 	}
138 	return ret;
139 }
140 
141 int __kprobes arch_prepare_kprobe(struct kprobe *p)
142 {
143 	union mips_instruction insn;
144 	union mips_instruction prev_insn;
145 	int ret = 0;
146 
147 	insn = p->addr[0];
148 
149 	if (insn_has_ll_or_sc(insn)) {
150 		pr_notice("Kprobes for ll and sc instructions are not"
151 			  "supported\n");
152 		ret = -EINVAL;
153 		goto out;
154 	}
155 
156 	if ((probe_kernel_read(&prev_insn, p->addr - 1,
157 				sizeof(mips_instruction)) == 0) &&
158 				insn_has_delayslot(prev_insn)) {
159 		pr_notice("Kprobes for branch delayslot are not supported\n");
160 		ret = -EINVAL;
161 		goto out;
162 	}
163 
164 	/* insn: must be on special executable page on mips. */
165 	p->ainsn.insn = get_insn_slot();
166 	if (!p->ainsn.insn) {
167 		ret = -ENOMEM;
168 		goto out;
169 	}
170 
171 	/*
172 	 * In the kprobe->ainsn.insn[] array we store the original
173 	 * instruction at index zero and a break trap instruction at
174 	 * index one.
175 	 *
176 	 * On MIPS arch if the instruction at probed address is a
177 	 * branch instruction, we need to execute the instruction at
178 	 * Branch Delayslot (BD) at the time of probe hit. As MIPS also
179 	 * doesn't have single stepping support, the BD instruction can
180 	 * not be executed in-line and it would be executed on SSOL slot
181 	 * using a normal breakpoint instruction in the next slot.
182 	 * So, read the instruction and save it for later execution.
183 	 */
184 	if (insn_has_delayslot(insn))
185 		memcpy(&p->ainsn.insn[0], p->addr + 1, sizeof(kprobe_opcode_t));
186 	else
187 		memcpy(&p->ainsn.insn[0], p->addr, sizeof(kprobe_opcode_t));
188 
189 	p->ainsn.insn[1] = breakpoint2_insn;
190 	p->opcode = *p->addr;
191 
192 out:
193 	return ret;
194 }
195 
196 void __kprobes arch_arm_kprobe(struct kprobe *p)
197 {
198 	*p->addr = breakpoint_insn;
199 	flush_insn_slot(p);
200 }
201 
202 void __kprobes arch_disarm_kprobe(struct kprobe *p)
203 {
204 	*p->addr = p->opcode;
205 	flush_insn_slot(p);
206 }
207 
208 void __kprobes arch_remove_kprobe(struct kprobe *p)
209 {
210 	if (p->ainsn.insn) {
211 		free_insn_slot(p->ainsn.insn, 0);
212 		p->ainsn.insn = NULL;
213 	}
214 }
215 
216 static void save_previous_kprobe(struct kprobe_ctlblk *kcb)
217 {
218 	kcb->prev_kprobe.kp = kprobe_running();
219 	kcb->prev_kprobe.status = kcb->kprobe_status;
220 	kcb->prev_kprobe.old_SR = kcb->kprobe_old_SR;
221 	kcb->prev_kprobe.saved_SR = kcb->kprobe_saved_SR;
222 	kcb->prev_kprobe.saved_epc = kcb->kprobe_saved_epc;
223 }
224 
225 static void restore_previous_kprobe(struct kprobe_ctlblk *kcb)
226 {
227 	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
228 	kcb->kprobe_status = kcb->prev_kprobe.status;
229 	kcb->kprobe_old_SR = kcb->prev_kprobe.old_SR;
230 	kcb->kprobe_saved_SR = kcb->prev_kprobe.saved_SR;
231 	kcb->kprobe_saved_epc = kcb->prev_kprobe.saved_epc;
232 }
233 
234 static void set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
235 			       struct kprobe_ctlblk *kcb)
236 {
237 	__this_cpu_write(current_kprobe, p);
238 	kcb->kprobe_saved_SR = kcb->kprobe_old_SR = (regs->cp0_status & ST0_IE);
239 	kcb->kprobe_saved_epc = regs->cp0_epc;
240 }
241 
242 /**
243  * evaluate_branch_instrucion -
244  *
245  * Evaluate the branch instruction at probed address during probe hit. The
246  * result of evaluation would be the updated epc. The insturction in delayslot
247  * would actually be single stepped using a normal breakpoint) on SSOL slot.
248  *
249  * The result is also saved in the kprobe control block for later use,
250  * in case we need to execute the delayslot instruction. The latter will be
251  * false for NOP instruction in dealyslot and the branch-likely instructions
252  * when the branch is taken. And for those cases we set a flag as
253  * SKIP_DELAYSLOT in the kprobe control block
254  */
255 static int evaluate_branch_instruction(struct kprobe *p, struct pt_regs *regs,
256 					struct kprobe_ctlblk *kcb)
257 {
258 	union mips_instruction insn = p->opcode;
259 	long epc;
260 	int ret = 0;
261 
262 	epc = regs->cp0_epc;
263 	if (epc & 3)
264 		goto unaligned;
265 
266 	if (p->ainsn.insn->word == 0)
267 		kcb->flags |= SKIP_DELAYSLOT;
268 	else
269 		kcb->flags &= ~SKIP_DELAYSLOT;
270 
271 	ret = __compute_return_epc_for_insn(regs, insn);
272 	if (ret < 0)
273 		return ret;
274 
275 	if (ret == BRANCH_LIKELY_TAKEN)
276 		kcb->flags |= SKIP_DELAYSLOT;
277 
278 	kcb->target_epc = regs->cp0_epc;
279 
280 	return 0;
281 
282 unaligned:
283 	pr_notice("%s: unaligned epc - sending SIGBUS.\n", current->comm);
284 	force_sig(SIGBUS, current);
285 	return -EFAULT;
286 
287 }
288 
289 static void prepare_singlestep(struct kprobe *p, struct pt_regs *regs,
290 						struct kprobe_ctlblk *kcb)
291 {
292 	int ret = 0;
293 
294 	regs->cp0_status &= ~ST0_IE;
295 
296 	/* single step inline if the instruction is a break */
297 	if (p->opcode.word == breakpoint_insn.word ||
298 	    p->opcode.word == breakpoint2_insn.word)
299 		regs->cp0_epc = (unsigned long)p->addr;
300 	else if (insn_has_delayslot(p->opcode)) {
301 		ret = evaluate_branch_instruction(p, regs, kcb);
302 		if (ret < 0) {
303 			pr_notice("Kprobes: Error in evaluating branch\n");
304 			return;
305 		}
306 	}
307 	regs->cp0_epc = (unsigned long)&p->ainsn.insn[0];
308 }
309 
310 /*
311  * Called after single-stepping.  p->addr is the address of the
312  * instruction whose first byte has been replaced by the "break 0"
313  * instruction.	 To avoid the SMP problems that can occur when we
314  * temporarily put back the original opcode to single-step, we
315  * single-stepped a copy of the instruction.  The address of this
316  * copy is p->ainsn.insn.
317  *
318  * This function prepares to return from the post-single-step
319  * breakpoint trap. In case of branch instructions, the target
320  * epc to be restored.
321  */
322 static void __kprobes resume_execution(struct kprobe *p,
323 				       struct pt_regs *regs,
324 				       struct kprobe_ctlblk *kcb)
325 {
326 	if (insn_has_delayslot(p->opcode))
327 		regs->cp0_epc = kcb->target_epc;
328 	else {
329 		unsigned long orig_epc = kcb->kprobe_saved_epc;
330 		regs->cp0_epc = orig_epc + 4;
331 	}
332 }
333 
334 static int __kprobes kprobe_handler(struct pt_regs *regs)
335 {
336 	struct kprobe *p;
337 	int ret = 0;
338 	kprobe_opcode_t *addr;
339 	struct kprobe_ctlblk *kcb;
340 
341 	addr = (kprobe_opcode_t *) regs->cp0_epc;
342 
343 	/*
344 	 * We don't want to be preempted for the entire
345 	 * duration of kprobe processing
346 	 */
347 	preempt_disable();
348 	kcb = get_kprobe_ctlblk();
349 
350 	/* Check we're not actually recursing */
351 	if (kprobe_running()) {
352 		p = get_kprobe(addr);
353 		if (p) {
354 			if (kcb->kprobe_status == KPROBE_HIT_SS &&
355 			    p->ainsn.insn->word == breakpoint_insn.word) {
356 				regs->cp0_status &= ~ST0_IE;
357 				regs->cp0_status |= kcb->kprobe_saved_SR;
358 				goto no_kprobe;
359 			}
360 			/*
361 			 * We have reentered the kprobe_handler(), since
362 			 * another probe was hit while within the handler.
363 			 * We here save the original kprobes variables and
364 			 * just single step on the instruction of the new probe
365 			 * without calling any user handlers.
366 			 */
367 			save_previous_kprobe(kcb);
368 			set_current_kprobe(p, regs, kcb);
369 			kprobes_inc_nmissed_count(p);
370 			prepare_singlestep(p, regs, kcb);
371 			kcb->kprobe_status = KPROBE_REENTER;
372 			if (kcb->flags & SKIP_DELAYSLOT) {
373 				resume_execution(p, regs, kcb);
374 				restore_previous_kprobe(kcb);
375 				preempt_enable_no_resched();
376 			}
377 			return 1;
378 		} else {
379 			if (addr->word != breakpoint_insn.word) {
380 				/*
381 				 * The breakpoint instruction was removed by
382 				 * another cpu right after we hit, no further
383 				 * handling of this interrupt is appropriate
384 				 */
385 				ret = 1;
386 				goto no_kprobe;
387 			}
388 			p = __this_cpu_read(current_kprobe);
389 			if (p->break_handler && p->break_handler(p, regs))
390 				goto ss_probe;
391 		}
392 		goto no_kprobe;
393 	}
394 
395 	p = get_kprobe(addr);
396 	if (!p) {
397 		if (addr->word != breakpoint_insn.word) {
398 			/*
399 			 * The breakpoint instruction was removed right
400 			 * after we hit it.  Another cpu has removed
401 			 * either a probepoint or a debugger breakpoint
402 			 * at this address.  In either case, no further
403 			 * handling of this interrupt is appropriate.
404 			 */
405 			ret = 1;
406 		}
407 		/* Not one of ours: let kernel handle it */
408 		goto no_kprobe;
409 	}
410 
411 	set_current_kprobe(p, regs, kcb);
412 	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
413 
414 	if (p->pre_handler && p->pre_handler(p, regs)) {
415 		/* handler has already set things up, so skip ss setup */
416 		return 1;
417 	}
418 
419 ss_probe:
420 	prepare_singlestep(p, regs, kcb);
421 	if (kcb->flags & SKIP_DELAYSLOT) {
422 		kcb->kprobe_status = KPROBE_HIT_SSDONE;
423 		if (p->post_handler)
424 			p->post_handler(p, regs, 0);
425 		resume_execution(p, regs, kcb);
426 		preempt_enable_no_resched();
427 	} else
428 		kcb->kprobe_status = KPROBE_HIT_SS;
429 
430 	return 1;
431 
432 no_kprobe:
433 	preempt_enable_no_resched();
434 	return ret;
435 
436 }
437 
438 static inline int post_kprobe_handler(struct pt_regs *regs)
439 {
440 	struct kprobe *cur = kprobe_running();
441 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
442 
443 	if (!cur)
444 		return 0;
445 
446 	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
447 		kcb->kprobe_status = KPROBE_HIT_SSDONE;
448 		cur->post_handler(cur, regs, 0);
449 	}
450 
451 	resume_execution(cur, regs, kcb);
452 
453 	regs->cp0_status |= kcb->kprobe_saved_SR;
454 
455 	/* Restore back the original saved kprobes variables and continue. */
456 	if (kcb->kprobe_status == KPROBE_REENTER) {
457 		restore_previous_kprobe(kcb);
458 		goto out;
459 	}
460 	reset_current_kprobe();
461 out:
462 	preempt_enable_no_resched();
463 
464 	return 1;
465 }
466 
467 static inline int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
468 {
469 	struct kprobe *cur = kprobe_running();
470 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
471 
472 	if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
473 		return 1;
474 
475 	if (kcb->kprobe_status & KPROBE_HIT_SS) {
476 		resume_execution(cur, regs, kcb);
477 		regs->cp0_status |= kcb->kprobe_old_SR;
478 
479 		reset_current_kprobe();
480 		preempt_enable_no_resched();
481 	}
482 	return 0;
483 }
484 
485 /*
486  * Wrapper routine for handling exceptions.
487  */
488 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
489 				       unsigned long val, void *data)
490 {
491 
492 	struct die_args *args = (struct die_args *)data;
493 	int ret = NOTIFY_DONE;
494 
495 	switch (val) {
496 	case DIE_BREAK:
497 		if (kprobe_handler(args->regs))
498 			ret = NOTIFY_STOP;
499 		break;
500 	case DIE_SSTEPBP:
501 		if (post_kprobe_handler(args->regs))
502 			ret = NOTIFY_STOP;
503 		break;
504 
505 	case DIE_PAGE_FAULT:
506 		/* kprobe_running() needs smp_processor_id() */
507 		preempt_disable();
508 
509 		if (kprobe_running()
510 		    && kprobe_fault_handler(args->regs, args->trapnr))
511 			ret = NOTIFY_STOP;
512 		preempt_enable();
513 		break;
514 	default:
515 		break;
516 	}
517 	return ret;
518 }
519 
520 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
521 {
522 	struct jprobe *jp = container_of(p, struct jprobe, kp);
523 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
524 
525 	kcb->jprobe_saved_regs = *regs;
526 	kcb->jprobe_saved_sp = regs->regs[29];
527 
528 	memcpy(kcb->jprobes_stack, (void *)kcb->jprobe_saved_sp,
529 	       MIN_JPROBES_STACK_SIZE(kcb->jprobe_saved_sp));
530 
531 	regs->cp0_epc = (unsigned long)(jp->entry);
532 
533 	return 1;
534 }
535 
536 /* Defined in the inline asm below. */
537 void jprobe_return_end(void);
538 
539 void __kprobes jprobe_return(void)
540 {
541 	/* Assembler quirk necessitates this '0,code' business.	 */
542 	asm volatile(
543 		"break 0,%0\n\t"
544 		".globl jprobe_return_end\n"
545 		"jprobe_return_end:\n"
546 		: : "n" (BRK_KPROBE_BP) : "memory");
547 }
548 
549 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
550 {
551 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
552 
553 	if (regs->cp0_epc >= (unsigned long)jprobe_return &&
554 	    regs->cp0_epc <= (unsigned long)jprobe_return_end) {
555 		*regs = kcb->jprobe_saved_regs;
556 		memcpy((void *)kcb->jprobe_saved_sp, kcb->jprobes_stack,
557 		       MIN_JPROBES_STACK_SIZE(kcb->jprobe_saved_sp));
558 		preempt_enable_no_resched();
559 
560 		return 1;
561 	}
562 	return 0;
563 }
564 
565 /*
566  * Function return probe trampoline:
567  *	- init_kprobes() establishes a probepoint here
568  *	- When the probed function returns, this probe causes the
569  *	  handlers to fire
570  */
571 static void __used kretprobe_trampoline_holder(void)
572 {
573 	asm volatile(
574 		".set push\n\t"
575 		/* Keep the assembler from reordering and placing JR here. */
576 		".set noreorder\n\t"
577 		"nop\n\t"
578 		".global kretprobe_trampoline\n"
579 		"kretprobe_trampoline:\n\t"
580 		"nop\n\t"
581 		".set pop"
582 		: : : "memory");
583 }
584 
585 void kretprobe_trampoline(void);
586 
587 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
588 				      struct pt_regs *regs)
589 {
590 	ri->ret_addr = (kprobe_opcode_t *) regs->regs[31];
591 
592 	/* Replace the return addr with trampoline addr */
593 	regs->regs[31] = (unsigned long)kretprobe_trampoline;
594 }
595 
596 /*
597  * Called when the probe at kretprobe trampoline is hit
598  */
599 static int __kprobes trampoline_probe_handler(struct kprobe *p,
600 						struct pt_regs *regs)
601 {
602 	struct kretprobe_instance *ri = NULL;
603 	struct hlist_head *head, empty_rp;
604 	struct hlist_node *tmp;
605 	unsigned long flags, orig_ret_address = 0;
606 	unsigned long trampoline_address = (unsigned long)kretprobe_trampoline;
607 
608 	INIT_HLIST_HEAD(&empty_rp);
609 	kretprobe_hash_lock(current, &head, &flags);
610 
611 	/*
612 	 * It is possible to have multiple instances associated with a given
613 	 * task either because an multiple functions in the call path
614 	 * have a return probe installed on them, and/or more than one return
615 	 * return probe was registered for a target function.
616 	 *
617 	 * We can handle this because:
618 	 *     - instances are always inserted at the head of the list
619 	 *     - when multiple return probes are registered for the same
620 	 *	 function, the first instance's ret_addr will point to the
621 	 *	 real return address, and all the rest will point to
622 	 *	 kretprobe_trampoline
623 	 */
624 	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
625 		if (ri->task != current)
626 			/* another task is sharing our hash bucket */
627 			continue;
628 
629 		if (ri->rp && ri->rp->handler)
630 			ri->rp->handler(ri, regs);
631 
632 		orig_ret_address = (unsigned long)ri->ret_addr;
633 		recycle_rp_inst(ri, &empty_rp);
634 
635 		if (orig_ret_address != trampoline_address)
636 			/*
637 			 * This is the real return address. Any other
638 			 * instances associated with this task are for
639 			 * other calls deeper on the call stack
640 			 */
641 			break;
642 	}
643 
644 	kretprobe_assert(ri, orig_ret_address, trampoline_address);
645 	instruction_pointer(regs) = orig_ret_address;
646 
647 	reset_current_kprobe();
648 	kretprobe_hash_unlock(current, &flags);
649 	preempt_enable_no_resched();
650 
651 	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
652 		hlist_del(&ri->hlist);
653 		kfree(ri);
654 	}
655 	/*
656 	 * By returning a non-zero value, we are telling
657 	 * kprobe_handler() that we don't want the post_handler
658 	 * to run (and have re-enabled preemption)
659 	 */
660 	return 1;
661 }
662 
663 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
664 {
665 	if (p->addr == (kprobe_opcode_t *)kretprobe_trampoline)
666 		return 1;
667 
668 	return 0;
669 }
670 
671 static struct kprobe trampoline_p = {
672 	.addr = (kprobe_opcode_t *)kretprobe_trampoline,
673 	.pre_handler = trampoline_probe_handler
674 };
675 
676 int __init arch_init_kprobes(void)
677 {
678 	return register_kprobe(&trampoline_p);
679 }
680