xref: /linux/arch/mips/kernel/i8253.c (revision a208f37a465e222218974ab20a31b42b7b4893b2)
1 /*
2  * i8253.c  8253/PIT functions
3  *
4  */
5 #include <linux/clockchips.h>
6 #include <linux/init.h>
7 #include <linux/interrupt.h>
8 #include <linux/jiffies.h>
9 #include <linux/module.h>
10 #include <linux/spinlock.h>
11 
12 #include <asm/delay.h>
13 #include <asm/i8253.h>
14 #include <asm/io.h>
15 #include <asm/time.h>
16 
17 DEFINE_SPINLOCK(i8253_lock);
18 EXPORT_SYMBOL(i8253_lock);
19 
20 /*
21  * Initialize the PIT timer.
22  *
23  * This is also called after resume to bring the PIT into operation again.
24  */
25 static void init_pit_timer(enum clock_event_mode mode,
26 			   struct clock_event_device *evt)
27 {
28 	spin_lock(&i8253_lock);
29 
30 	switch(mode) {
31 	case CLOCK_EVT_MODE_PERIODIC:
32 		/* binary, mode 2, LSB/MSB, ch 0 */
33 		outb_p(0x34, PIT_MODE);
34 		outb_p(LATCH & 0xff , PIT_CH0);	/* LSB */
35 		outb(LATCH >> 8 , PIT_CH0);	/* MSB */
36 		break;
37 
38 	case CLOCK_EVT_MODE_SHUTDOWN:
39 	case CLOCK_EVT_MODE_UNUSED:
40 		if (evt->mode == CLOCK_EVT_MODE_PERIODIC ||
41 		    evt->mode == CLOCK_EVT_MODE_ONESHOT) {
42 			outb_p(0x30, PIT_MODE);
43 			outb_p(0, PIT_CH0);
44 			outb_p(0, PIT_CH0);
45 		}
46 		break;
47 
48 	case CLOCK_EVT_MODE_ONESHOT:
49 		/* One shot setup */
50 		outb_p(0x38, PIT_MODE);
51 		break;
52 
53 	case CLOCK_EVT_MODE_RESUME:
54 		/* Nothing to do here */
55 		break;
56 	}
57 	spin_unlock(&i8253_lock);
58 }
59 
60 /*
61  * Program the next event in oneshot mode
62  *
63  * Delta is given in PIT ticks
64  */
65 static int pit_next_event(unsigned long delta, struct clock_event_device *evt)
66 {
67 	spin_lock(&i8253_lock);
68 	outb_p(delta & 0xff , PIT_CH0);	/* LSB */
69 	outb(delta >> 8 , PIT_CH0);	/* MSB */
70 	spin_unlock(&i8253_lock);
71 
72 	return 0;
73 }
74 
75 /*
76  * On UP the PIT can serve all of the possible timer functions. On SMP systems
77  * it can be solely used for the global tick.
78  *
79  * The profiling and update capabilites are switched off once the local apic is
80  * registered. This mechanism replaces the previous #ifdef LOCAL_APIC -
81  * !using_apic_timer decisions in do_timer_interrupt_hook()
82  */
83 static struct clock_event_device pit_clockevent = {
84 	.name		= "pit",
85 	.features	= CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
86 	.set_mode	= init_pit_timer,
87 	.set_next_event = pit_next_event,
88 	.irq		= 0,
89 };
90 
91 static irqreturn_t timer_interrupt(int irq, void *dev_id)
92 {
93 	pit_clockevent.event_handler(&pit_clockevent);
94 
95 	return IRQ_HANDLED;
96 }
97 
98 static struct irqaction irq0  = {
99 	.handler = timer_interrupt,
100 	.flags = IRQF_DISABLED | IRQF_NOBALANCING,
101 	.mask = CPU_MASK_NONE,
102 	.name = "timer"
103 };
104 
105 /*
106  * Initialize the conversion factor and the min/max deltas of the clock event
107  * structure and register the clock event source with the framework.
108  */
109 void __init setup_pit_timer(void)
110 {
111 	struct clock_event_device *cd = &pit_clockevent;
112 	unsigned int cpu = smp_processor_id();
113 
114 	/*
115 	 * Start pit with the boot cpu mask and make it global after the
116 	 * IO_APIC has been initialized.
117 	 */
118 	cd->cpumask = cpumask_of_cpu(cpu);
119 	clockevent_set_clock(cd, CLOCK_TICK_RATE);
120 	cd->max_delta_ns = clockevent_delta2ns(0x7FFF, cd);
121 	cd->min_delta_ns = clockevent_delta2ns(0xF, cd);
122 	clockevents_register_device(cd);
123 
124 	irq0.mask = cpumask_of_cpu(cpu);
125 	setup_irq(0, &irq0);
126 }
127 
128 /*
129  * Since the PIT overflows every tick, its not very useful
130  * to just read by itself. So use jiffies to emulate a free
131  * running counter:
132  */
133 static cycle_t pit_read(void)
134 {
135 	unsigned long flags;
136 	int count;
137 	u32 jifs;
138 	static int old_count;
139 	static u32 old_jifs;
140 
141 	spin_lock_irqsave(&i8253_lock, flags);
142 	/*
143 	 * Although our caller may have the read side of xtime_lock,
144 	 * this is now a seqlock, and we are cheating in this routine
145 	 * by having side effects on state that we cannot undo if
146 	 * there is a collision on the seqlock and our caller has to
147 	 * retry.  (Namely, old_jifs and old_count.)  So we must treat
148 	 * jiffies as volatile despite the lock.  We read jiffies
149 	 * before latching the timer count to guarantee that although
150 	 * the jiffies value might be older than the count (that is,
151 	 * the counter may underflow between the last point where
152 	 * jiffies was incremented and the point where we latch the
153 	 * count), it cannot be newer.
154 	 */
155 	jifs = jiffies;
156 	outb_p(0x00, PIT_MODE);	/* latch the count ASAP */
157 	count = inb_p(PIT_CH0);	/* read the latched count */
158 	count |= inb_p(PIT_CH0) << 8;
159 
160 	/* VIA686a test code... reset the latch if count > max + 1 */
161 	if (count > LATCH) {
162 		outb_p(0x34, PIT_MODE);
163 		outb_p(LATCH & 0xff, PIT_CH0);
164 		outb(LATCH >> 8, PIT_CH0);
165 		count = LATCH - 1;
166 	}
167 
168 	/*
169 	 * It's possible for count to appear to go the wrong way for a
170 	 * couple of reasons:
171 	 *
172 	 *  1. The timer counter underflows, but we haven't handled the
173 	 *     resulting interrupt and incremented jiffies yet.
174 	 *  2. Hardware problem with the timer, not giving us continuous time,
175 	 *     the counter does small "jumps" upwards on some Pentium systems,
176 	 *     (see c't 95/10 page 335 for Neptun bug.)
177 	 *
178 	 * Previous attempts to handle these cases intelligently were
179 	 * buggy, so we just do the simple thing now.
180 	 */
181 	if (count > old_count && jifs == old_jifs) {
182 		count = old_count;
183 	}
184 	old_count = count;
185 	old_jifs = jifs;
186 
187 	spin_unlock_irqrestore(&i8253_lock, flags);
188 
189 	count = (LATCH - 1) - count;
190 
191 	return (cycle_t)(jifs * LATCH) + count;
192 }
193 
194 static struct clocksource clocksource_pit = {
195 	.name	= "pit",
196 	.rating = 110,
197 	.read	= pit_read,
198 	.mask	= CLOCKSOURCE_MASK(32),
199 	.mult	= 0,
200 	.shift	= 20,
201 };
202 
203 static int __init init_pit_clocksource(void)
204 {
205 	if (num_possible_cpus() > 1) /* PIT does not scale! */
206 		return 0;
207 
208 	clocksource_pit.mult = clocksource_hz2mult(CLOCK_TICK_RATE, 20);
209 	return clocksource_register(&clocksource_pit);
210 }
211 arch_initcall(init_pit_clocksource);
212