xref: /linux/arch/mips/kernel/i8253.c (revision 98366c20a275e957416e9516db5dcb7195b4e101)
1 /*
2  * i8253.c  8253/PIT functions
3  *
4  */
5 #include <linux/clockchips.h>
6 #include <linux/init.h>
7 #include <linux/interrupt.h>
8 #include <linux/jiffies.h>
9 #include <linux/module.h>
10 #include <linux/spinlock.h>
11 
12 #include <asm/delay.h>
13 #include <asm/i8253.h>
14 #include <asm/io.h>
15 #include <asm/time.h>
16 
17 DEFINE_SPINLOCK(i8253_lock);
18 
19 /*
20  * Initialize the PIT timer.
21  *
22  * This is also called after resume to bring the PIT into operation again.
23  */
24 static void init_pit_timer(enum clock_event_mode mode,
25 			   struct clock_event_device *evt)
26 {
27 	unsigned long flags;
28 
29 	spin_lock_irqsave(&i8253_lock, flags);
30 
31 	switch(mode) {
32 	case CLOCK_EVT_MODE_PERIODIC:
33 		/* binary, mode 2, LSB/MSB, ch 0 */
34 		outb_p(0x34, PIT_MODE);
35 		outb_p(LATCH & 0xff , PIT_CH0);	/* LSB */
36 		outb(LATCH >> 8 , PIT_CH0);	/* MSB */
37 		break;
38 
39 	case CLOCK_EVT_MODE_SHUTDOWN:
40 	case CLOCK_EVT_MODE_UNUSED:
41 		if (evt->mode == CLOCK_EVT_MODE_PERIODIC ||
42 		    evt->mode == CLOCK_EVT_MODE_ONESHOT) {
43 			outb_p(0x30, PIT_MODE);
44 			outb_p(0, PIT_CH0);
45 			outb_p(0, PIT_CH0);
46 		}
47 		break;
48 
49 	case CLOCK_EVT_MODE_ONESHOT:
50 		/* One shot setup */
51 		outb_p(0x38, PIT_MODE);
52 		break;
53 
54 	case CLOCK_EVT_MODE_RESUME:
55 		/* Nothing to do here */
56 		break;
57 	}
58 	spin_unlock_irqrestore(&i8253_lock, flags);
59 }
60 
61 /*
62  * Program the next event in oneshot mode
63  *
64  * Delta is given in PIT ticks
65  */
66 static int pit_next_event(unsigned long delta, struct clock_event_device *evt)
67 {
68 	unsigned long flags;
69 
70 	spin_lock_irqsave(&i8253_lock, flags);
71 	outb_p(delta & 0xff , PIT_CH0);	/* LSB */
72 	outb(delta >> 8 , PIT_CH0);	/* MSB */
73 	spin_unlock_irqrestore(&i8253_lock, flags);
74 
75 	return 0;
76 }
77 
78 /*
79  * On UP the PIT can serve all of the possible timer functions. On SMP systems
80  * it can be solely used for the global tick.
81  *
82  * The profiling and update capabilites are switched off once the local apic is
83  * registered. This mechanism replaces the previous #ifdef LOCAL_APIC -
84  * !using_apic_timer decisions in do_timer_interrupt_hook()
85  */
86 struct clock_event_device pit_clockevent = {
87 	.name		= "pit",
88 	.features	= CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
89 	.set_mode	= init_pit_timer,
90 	.set_next_event = pit_next_event,
91 	.irq		= 0,
92 };
93 
94 static irqreturn_t timer_interrupt(int irq, void *dev_id)
95 {
96 	pit_clockevent.event_handler(&pit_clockevent);
97 
98 	return IRQ_HANDLED;
99 }
100 
101 static struct irqaction irq0  = {
102 	.handler = timer_interrupt,
103 	.flags = IRQF_DISABLED | IRQF_NOBALANCING,
104 	.mask = CPU_MASK_NONE,
105 	.name = "timer"
106 };
107 
108 /*
109  * Initialize the conversion factor and the min/max deltas of the clock event
110  * structure and register the clock event source with the framework.
111  */
112 void __init setup_pit_timer(void)
113 {
114 	struct clock_event_device *cd = &pit_clockevent;
115 	unsigned int cpu = smp_processor_id();
116 
117 	/*
118 	 * Start pit with the boot cpu mask and make it global after the
119 	 * IO_APIC has been initialized.
120 	 */
121 	cd->cpumask = cpumask_of_cpu(cpu);
122 	clockevent_set_clock(cd, CLOCK_TICK_RATE);
123 	cd->max_delta_ns = clockevent_delta2ns(0x7FFF, cd);
124 	cd->min_delta_ns = clockevent_delta2ns(0xF, cd);
125 	clockevents_register_device(cd);
126 
127 	irq0.mask = cpumask_of_cpu(cpu);
128 	setup_irq(0, &irq0);
129 }
130 
131 /*
132  * Since the PIT overflows every tick, its not very useful
133  * to just read by itself. So use jiffies to emulate a free
134  * running counter:
135  */
136 static cycle_t pit_read(void)
137 {
138 	unsigned long flags;
139 	int count;
140 	u32 jifs;
141 	static int old_count;
142 	static u32 old_jifs;
143 
144 	spin_lock_irqsave(&i8253_lock, flags);
145 	/*
146 	 * Although our caller may have the read side of xtime_lock,
147 	 * this is now a seqlock, and we are cheating in this routine
148 	 * by having side effects on state that we cannot undo if
149 	 * there is a collision on the seqlock and our caller has to
150 	 * retry.  (Namely, old_jifs and old_count.)  So we must treat
151 	 * jiffies as volatile despite the lock.  We read jiffies
152 	 * before latching the timer count to guarantee that although
153 	 * the jiffies value might be older than the count (that is,
154 	 * the counter may underflow between the last point where
155 	 * jiffies was incremented and the point where we latch the
156 	 * count), it cannot be newer.
157 	 */
158 	jifs = jiffies;
159 	outb_p(0x00, PIT_MODE);	/* latch the count ASAP */
160 	count = inb_p(PIT_CH0);	/* read the latched count */
161 	count |= inb_p(PIT_CH0) << 8;
162 
163 	/* VIA686a test code... reset the latch if count > max + 1 */
164 	if (count > LATCH) {
165 		outb_p(0x34, PIT_MODE);
166 		outb_p(LATCH & 0xff, PIT_CH0);
167 		outb(LATCH >> 8, PIT_CH0);
168 		count = LATCH - 1;
169 	}
170 
171 	/*
172 	 * It's possible for count to appear to go the wrong way for a
173 	 * couple of reasons:
174 	 *
175 	 *  1. The timer counter underflows, but we haven't handled the
176 	 *     resulting interrupt and incremented jiffies yet.
177 	 *  2. Hardware problem with the timer, not giving us continuous time,
178 	 *     the counter does small "jumps" upwards on some Pentium systems,
179 	 *     (see c't 95/10 page 335 for Neptun bug.)
180 	 *
181 	 * Previous attempts to handle these cases intelligently were
182 	 * buggy, so we just do the simple thing now.
183 	 */
184 	if (count > old_count && jifs == old_jifs) {
185 		count = old_count;
186 	}
187 	old_count = count;
188 	old_jifs = jifs;
189 
190 	spin_unlock_irqrestore(&i8253_lock, flags);
191 
192 	count = (LATCH - 1) - count;
193 
194 	return (cycle_t)(jifs * LATCH) + count;
195 }
196 
197 static struct clocksource clocksource_pit = {
198 	.name	= "pit",
199 	.rating = 110,
200 	.read	= pit_read,
201 	.mask	= CLOCKSOURCE_MASK(32),
202 	.mult	= 0,
203 	.shift	= 20,
204 };
205 
206 static int __init init_pit_clocksource(void)
207 {
208 	if (num_possible_cpus() > 1) /* PIT does not scale! */
209 		return 0;
210 
211 	clocksource_pit.mult = clocksource_hz2mult(CLOCK_TICK_RATE, 20);
212 	return clocksource_register(&clocksource_pit);
213 }
214 arch_initcall(init_pit_clocksource);
215