1 /* 2 * i8253.c 8253/PIT functions 3 * 4 */ 5 #include <linux/clockchips.h> 6 #include <linux/init.h> 7 #include <linux/interrupt.h> 8 #include <linux/jiffies.h> 9 #include <linux/module.h> 10 #include <linux/spinlock.h> 11 12 #include <asm/delay.h> 13 #include <asm/i8253.h> 14 #include <asm/io.h> 15 #include <asm/time.h> 16 17 DEFINE_SPINLOCK(i8253_lock); 18 EXPORT_SYMBOL(i8253_lock); 19 20 /* 21 * Initialize the PIT timer. 22 * 23 * This is also called after resume to bring the PIT into operation again. 24 */ 25 static void init_pit_timer(enum clock_event_mode mode, 26 struct clock_event_device *evt) 27 { 28 spin_lock(&i8253_lock); 29 30 switch(mode) { 31 case CLOCK_EVT_MODE_PERIODIC: 32 /* binary, mode 2, LSB/MSB, ch 0 */ 33 outb_p(0x34, PIT_MODE); 34 outb_p(LATCH & 0xff , PIT_CH0); /* LSB */ 35 outb(LATCH >> 8 , PIT_CH0); /* MSB */ 36 break; 37 38 case CLOCK_EVT_MODE_SHUTDOWN: 39 case CLOCK_EVT_MODE_UNUSED: 40 if (evt->mode == CLOCK_EVT_MODE_PERIODIC || 41 evt->mode == CLOCK_EVT_MODE_ONESHOT) { 42 outb_p(0x30, PIT_MODE); 43 outb_p(0, PIT_CH0); 44 outb_p(0, PIT_CH0); 45 } 46 break; 47 48 case CLOCK_EVT_MODE_ONESHOT: 49 /* One shot setup */ 50 outb_p(0x38, PIT_MODE); 51 break; 52 53 case CLOCK_EVT_MODE_RESUME: 54 /* Nothing to do here */ 55 break; 56 } 57 spin_unlock(&i8253_lock); 58 } 59 60 /* 61 * Program the next event in oneshot mode 62 * 63 * Delta is given in PIT ticks 64 */ 65 static int pit_next_event(unsigned long delta, struct clock_event_device *evt) 66 { 67 spin_lock(&i8253_lock); 68 outb_p(delta & 0xff , PIT_CH0); /* LSB */ 69 outb(delta >> 8 , PIT_CH0); /* MSB */ 70 spin_unlock(&i8253_lock); 71 72 return 0; 73 } 74 75 /* 76 * On UP the PIT can serve all of the possible timer functions. On SMP systems 77 * it can be solely used for the global tick. 78 * 79 * The profiling and update capabilites are switched off once the local apic is 80 * registered. This mechanism replaces the previous #ifdef LOCAL_APIC - 81 * !using_apic_timer decisions in do_timer_interrupt_hook() 82 */ 83 struct clock_event_device pit_clockevent = { 84 .name = "pit", 85 .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT, 86 .set_mode = init_pit_timer, 87 .set_next_event = pit_next_event, 88 .irq = 0, 89 }; 90 91 static irqreturn_t timer_interrupt(int irq, void *dev_id) 92 { 93 pit_clockevent.event_handler(&pit_clockevent); 94 95 return IRQ_HANDLED; 96 } 97 98 static struct irqaction irq0 = { 99 .handler = timer_interrupt, 100 .flags = IRQF_DISABLED | IRQF_NOBALANCING, 101 .mask = CPU_MASK_NONE, 102 .name = "timer" 103 }; 104 105 /* 106 * Initialize the conversion factor and the min/max deltas of the clock event 107 * structure and register the clock event source with the framework. 108 */ 109 void __init setup_pit_timer(void) 110 { 111 struct clock_event_device *cd = &pit_clockevent; 112 unsigned int cpu = smp_processor_id(); 113 114 /* 115 * Start pit with the boot cpu mask and make it global after the 116 * IO_APIC has been initialized. 117 */ 118 cd->cpumask = cpumask_of_cpu(cpu); 119 clockevent_set_clock(cd, CLOCK_TICK_RATE); 120 cd->max_delta_ns = clockevent_delta2ns(0x7FFF, cd); 121 cd->min_delta_ns = clockevent_delta2ns(0xF, cd); 122 clockevents_register_device(cd); 123 124 irq0.mask = cpumask_of_cpu(cpu); 125 setup_irq(0, &irq0); 126 } 127 128 /* 129 * Since the PIT overflows every tick, its not very useful 130 * to just read by itself. So use jiffies to emulate a free 131 * running counter: 132 */ 133 static cycle_t pit_read(void) 134 { 135 unsigned long flags; 136 int count; 137 u32 jifs; 138 static int old_count; 139 static u32 old_jifs; 140 141 spin_lock_irqsave(&i8253_lock, flags); 142 /* 143 * Although our caller may have the read side of xtime_lock, 144 * this is now a seqlock, and we are cheating in this routine 145 * by having side effects on state that we cannot undo if 146 * there is a collision on the seqlock and our caller has to 147 * retry. (Namely, old_jifs and old_count.) So we must treat 148 * jiffies as volatile despite the lock. We read jiffies 149 * before latching the timer count to guarantee that although 150 * the jiffies value might be older than the count (that is, 151 * the counter may underflow between the last point where 152 * jiffies was incremented and the point where we latch the 153 * count), it cannot be newer. 154 */ 155 jifs = jiffies; 156 outb_p(0x00, PIT_MODE); /* latch the count ASAP */ 157 count = inb_p(PIT_CH0); /* read the latched count */ 158 count |= inb_p(PIT_CH0) << 8; 159 160 /* VIA686a test code... reset the latch if count > max + 1 */ 161 if (count > LATCH) { 162 outb_p(0x34, PIT_MODE); 163 outb_p(LATCH & 0xff, PIT_CH0); 164 outb(LATCH >> 8, PIT_CH0); 165 count = LATCH - 1; 166 } 167 168 /* 169 * It's possible for count to appear to go the wrong way for a 170 * couple of reasons: 171 * 172 * 1. The timer counter underflows, but we haven't handled the 173 * resulting interrupt and incremented jiffies yet. 174 * 2. Hardware problem with the timer, not giving us continuous time, 175 * the counter does small "jumps" upwards on some Pentium systems, 176 * (see c't 95/10 page 335 for Neptun bug.) 177 * 178 * Previous attempts to handle these cases intelligently were 179 * buggy, so we just do the simple thing now. 180 */ 181 if (count > old_count && jifs == old_jifs) { 182 count = old_count; 183 } 184 old_count = count; 185 old_jifs = jifs; 186 187 spin_unlock_irqrestore(&i8253_lock, flags); 188 189 count = (LATCH - 1) - count; 190 191 return (cycle_t)(jifs * LATCH) + count; 192 } 193 194 static struct clocksource clocksource_pit = { 195 .name = "pit", 196 .rating = 110, 197 .read = pit_read, 198 .mask = CLOCKSOURCE_MASK(32), 199 .mult = 0, 200 .shift = 20, 201 }; 202 203 static int __init init_pit_clocksource(void) 204 { 205 if (num_possible_cpus() > 1) /* PIT does not scale! */ 206 return 0; 207 208 clocksource_pit.mult = clocksource_hz2mult(CLOCK_TICK_RATE, 20); 209 return clocksource_register(&clocksource_pit); 210 } 211 arch_initcall(init_pit_clocksource); 212