xref: /linux/arch/mips/kernel/i8253.c (revision 5f627f8e122a163ce53908d55e088247db31f1d7)
1 /*
2  * i8253.c  8253/PIT functions
3  *
4  */
5 #include <linux/clockchips.h>
6 #include <linux/init.h>
7 #include <linux/interrupt.h>
8 #include <linux/jiffies.h>
9 #include <linux/module.h>
10 #include <linux/spinlock.h>
11 
12 #include <asm/delay.h>
13 #include <asm/i8253.h>
14 #include <asm/io.h>
15 #include <asm/time.h>
16 
17 DEFINE_SPINLOCK(i8253_lock);
18 
19 /*
20  * Initialize the PIT timer.
21  *
22  * This is also called after resume to bring the PIT into operation again.
23  */
24 static void init_pit_timer(enum clock_event_mode mode,
25 			   struct clock_event_device *evt)
26 {
27 	spin_lock(&i8253_lock);
28 
29 	switch(mode) {
30 	case CLOCK_EVT_MODE_PERIODIC:
31 		/* binary, mode 2, LSB/MSB, ch 0 */
32 		outb_p(0x34, PIT_MODE);
33 		outb_p(LATCH & 0xff , PIT_CH0);	/* LSB */
34 		outb(LATCH >> 8 , PIT_CH0);	/* MSB */
35 		break;
36 
37 	case CLOCK_EVT_MODE_SHUTDOWN:
38 	case CLOCK_EVT_MODE_UNUSED:
39 		if (evt->mode == CLOCK_EVT_MODE_PERIODIC ||
40 		    evt->mode == CLOCK_EVT_MODE_ONESHOT) {
41 			outb_p(0x30, PIT_MODE);
42 			outb_p(0, PIT_CH0);
43 			outb_p(0, PIT_CH0);
44 		}
45 		break;
46 
47 	case CLOCK_EVT_MODE_ONESHOT:
48 		/* One shot setup */
49 		outb_p(0x38, PIT_MODE);
50 		break;
51 
52 	case CLOCK_EVT_MODE_RESUME:
53 		/* Nothing to do here */
54 		break;
55 	}
56 	spin_unlock(&i8253_lock);
57 }
58 
59 /*
60  * Program the next event in oneshot mode
61  *
62  * Delta is given in PIT ticks
63  */
64 static int pit_next_event(unsigned long delta, struct clock_event_device *evt)
65 {
66 	spin_lock(&i8253_lock);
67 	outb_p(delta & 0xff , PIT_CH0);	/* LSB */
68 	outb(delta >> 8 , PIT_CH0);	/* MSB */
69 	spin_unlock(&i8253_lock);
70 
71 	return 0;
72 }
73 
74 /*
75  * On UP the PIT can serve all of the possible timer functions. On SMP systems
76  * it can be solely used for the global tick.
77  *
78  * The profiling and update capabilites are switched off once the local apic is
79  * registered. This mechanism replaces the previous #ifdef LOCAL_APIC -
80  * !using_apic_timer decisions in do_timer_interrupt_hook()
81  */
82 struct clock_event_device pit_clockevent = {
83 	.name		= "pit",
84 	.features	= CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
85 	.set_mode	= init_pit_timer,
86 	.set_next_event = pit_next_event,
87 	.irq		= 0,
88 };
89 
90 static irqreturn_t timer_interrupt(int irq, void *dev_id)
91 {
92 	pit_clockevent.event_handler(&pit_clockevent);
93 
94 	return IRQ_HANDLED;
95 }
96 
97 static struct irqaction irq0  = {
98 	.handler = timer_interrupt,
99 	.flags = IRQF_DISABLED | IRQF_NOBALANCING,
100 	.mask = CPU_MASK_NONE,
101 	.name = "timer"
102 };
103 
104 /*
105  * Initialize the conversion factor and the min/max deltas of the clock event
106  * structure and register the clock event source with the framework.
107  */
108 void __init setup_pit_timer(void)
109 {
110 	struct clock_event_device *cd = &pit_clockevent;
111 	unsigned int cpu = smp_processor_id();
112 
113 	/*
114 	 * Start pit with the boot cpu mask and make it global after the
115 	 * IO_APIC has been initialized.
116 	 */
117 	cd->cpumask = cpumask_of_cpu(cpu);
118 	clockevent_set_clock(cd, CLOCK_TICK_RATE);
119 	cd->max_delta_ns = clockevent_delta2ns(0x7FFF, cd);
120 	cd->min_delta_ns = clockevent_delta2ns(0xF, cd);
121 	clockevents_register_device(cd);
122 
123 	irq0.mask = cpumask_of_cpu(cpu);
124 	setup_irq(0, &irq0);
125 }
126 
127 /*
128  * Since the PIT overflows every tick, its not very useful
129  * to just read by itself. So use jiffies to emulate a free
130  * running counter:
131  */
132 static cycle_t pit_read(void)
133 {
134 	unsigned long flags;
135 	int count;
136 	u32 jifs;
137 	static int old_count;
138 	static u32 old_jifs;
139 
140 	spin_lock_irqsave(&i8253_lock, flags);
141 	/*
142 	 * Although our caller may have the read side of xtime_lock,
143 	 * this is now a seqlock, and we are cheating in this routine
144 	 * by having side effects on state that we cannot undo if
145 	 * there is a collision on the seqlock and our caller has to
146 	 * retry.  (Namely, old_jifs and old_count.)  So we must treat
147 	 * jiffies as volatile despite the lock.  We read jiffies
148 	 * before latching the timer count to guarantee that although
149 	 * the jiffies value might be older than the count (that is,
150 	 * the counter may underflow between the last point where
151 	 * jiffies was incremented and the point where we latch the
152 	 * count), it cannot be newer.
153 	 */
154 	jifs = jiffies;
155 	outb_p(0x00, PIT_MODE);	/* latch the count ASAP */
156 	count = inb_p(PIT_CH0);	/* read the latched count */
157 	count |= inb_p(PIT_CH0) << 8;
158 
159 	/* VIA686a test code... reset the latch if count > max + 1 */
160 	if (count > LATCH) {
161 		outb_p(0x34, PIT_MODE);
162 		outb_p(LATCH & 0xff, PIT_CH0);
163 		outb(LATCH >> 8, PIT_CH0);
164 		count = LATCH - 1;
165 	}
166 
167 	/*
168 	 * It's possible for count to appear to go the wrong way for a
169 	 * couple of reasons:
170 	 *
171 	 *  1. The timer counter underflows, but we haven't handled the
172 	 *     resulting interrupt and incremented jiffies yet.
173 	 *  2. Hardware problem with the timer, not giving us continuous time,
174 	 *     the counter does small "jumps" upwards on some Pentium systems,
175 	 *     (see c't 95/10 page 335 for Neptun bug.)
176 	 *
177 	 * Previous attempts to handle these cases intelligently were
178 	 * buggy, so we just do the simple thing now.
179 	 */
180 	if (count > old_count && jifs == old_jifs) {
181 		count = old_count;
182 	}
183 	old_count = count;
184 	old_jifs = jifs;
185 
186 	spin_unlock_irqrestore(&i8253_lock, flags);
187 
188 	count = (LATCH - 1) - count;
189 
190 	return (cycle_t)(jifs * LATCH) + count;
191 }
192 
193 static struct clocksource clocksource_pit = {
194 	.name	= "pit",
195 	.rating = 110,
196 	.read	= pit_read,
197 	.mask	= CLOCKSOURCE_MASK(32),
198 	.mult	= 0,
199 	.shift	= 20,
200 };
201 
202 static int __init init_pit_clocksource(void)
203 {
204 	if (num_possible_cpus() > 1) /* PIT does not scale! */
205 		return 0;
206 
207 	clocksource_pit.mult = clocksource_hz2mult(CLOCK_TICK_RATE, 20);
208 	return clocksource_register(&clocksource_pit);
209 }
210 arch_initcall(init_pit_clocksource);
211