xref: /linux/arch/mips/kernel/elf.c (revision a8fe58cec351c25e09c393bf46117c0c47b5a17c)
1 /*
2  * Copyright (C) 2014 Imagination Technologies
3  * Author: Paul Burton <paul.burton@imgtec.com>
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License as published by the
7  * Free Software Foundation;  either version 2 of the  License, or (at your
8  * option) any later version.
9  */
10 
11 #include <linux/elf.h>
12 #include <linux/sched.h>
13 
14 #include <asm/cpu-info.h>
15 
16 /* Whether to accept legacy-NaN and 2008-NaN user binaries.  */
17 bool mips_use_nan_legacy;
18 bool mips_use_nan_2008;
19 
20 /* FPU modes */
21 enum {
22 	FP_FRE,
23 	FP_FR0,
24 	FP_FR1,
25 };
26 
27 /**
28  * struct mode_req - ABI FPU mode requirements
29  * @single:	The program being loaded needs an FPU but it will only issue
30  *		single precision instructions meaning that it can execute in
31  *		either FR0 or FR1.
32  * @soft:	The soft(-float) requirement means that the program being
33  *		loaded needs has no FPU dependency at all (i.e. it has no
34  *		FPU instructions).
35  * @fr1:	The program being loaded depends on FPU being in FR=1 mode.
36  * @frdefault:	The program being loaded depends on the default FPU mode.
37  *		That is FR0 for O32 and FR1 for N32/N64.
38  * @fre:	The program being loaded depends on FPU with FRE=1. This mode is
39  *		a bridge which uses FR=1 whilst still being able to maintain
40  *		full compatibility with pre-existing code using the O32 FP32
41  *		ABI.
42  *
43  * More information about the FP ABIs can be found here:
44  *
45  * https://dmz-portal.mips.com/wiki/MIPS_O32_ABI_-_FR0_and_FR1_Interlinking#10.4.1._Basic_mode_set-up
46  *
47  */
48 
49 struct mode_req {
50 	bool single;
51 	bool soft;
52 	bool fr1;
53 	bool frdefault;
54 	bool fre;
55 };
56 
57 static const struct mode_req fpu_reqs[] = {
58 	[MIPS_ABI_FP_ANY]    = { true,  true,  true,  true,  true  },
59 	[MIPS_ABI_FP_DOUBLE] = { false, false, false, true,  true  },
60 	[MIPS_ABI_FP_SINGLE] = { true,  false, false, false, false },
61 	[MIPS_ABI_FP_SOFT]   = { false, true,  false, false, false },
62 	[MIPS_ABI_FP_OLD_64] = { false, false, false, false, false },
63 	[MIPS_ABI_FP_XX]     = { false, false, true,  true,  true  },
64 	[MIPS_ABI_FP_64]     = { false, false, true,  false, false },
65 	[MIPS_ABI_FP_64A]    = { false, false, true,  false, true  }
66 };
67 
68 /*
69  * Mode requirements when .MIPS.abiflags is not present in the ELF.
70  * Not present means that everything is acceptable except FR1.
71  */
72 static struct mode_req none_req = { true, true, false, true, true };
73 
74 int arch_elf_pt_proc(void *_ehdr, void *_phdr, struct file *elf,
75 		     bool is_interp, struct arch_elf_state *state)
76 {
77 	union {
78 		struct elf32_hdr e32;
79 		struct elf64_hdr e64;
80 	} *ehdr = _ehdr;
81 	struct elf32_phdr *phdr32 = _phdr;
82 	struct elf64_phdr *phdr64 = _phdr;
83 	struct mips_elf_abiflags_v0 abiflags;
84 	bool elf32;
85 	u32 flags;
86 	int ret;
87 
88 	elf32 = ehdr->e32.e_ident[EI_CLASS] == ELFCLASS32;
89 	flags = elf32 ? ehdr->e32.e_flags : ehdr->e64.e_flags;
90 
91 	/* Lets see if this is an O32 ELF */
92 	if (elf32) {
93 		if (flags & EF_MIPS_FP64) {
94 			/*
95 			 * Set MIPS_ABI_FP_OLD_64 for EF_MIPS_FP64. We will override it
96 			 * later if needed
97 			 */
98 			if (is_interp)
99 				state->interp_fp_abi = MIPS_ABI_FP_OLD_64;
100 			else
101 				state->fp_abi = MIPS_ABI_FP_OLD_64;
102 		}
103 		if (phdr32->p_type != PT_MIPS_ABIFLAGS)
104 			return 0;
105 
106 		if (phdr32->p_filesz < sizeof(abiflags))
107 			return -EINVAL;
108 
109 		ret = kernel_read(elf, phdr32->p_offset,
110 				  (char *)&abiflags,
111 				  sizeof(abiflags));
112 	} else {
113 		if (phdr64->p_type != PT_MIPS_ABIFLAGS)
114 			return 0;
115 		if (phdr64->p_filesz < sizeof(abiflags))
116 			return -EINVAL;
117 
118 		ret = kernel_read(elf, phdr64->p_offset,
119 				  (char *)&abiflags,
120 				  sizeof(abiflags));
121 	}
122 
123 	if (ret < 0)
124 		return ret;
125 	if (ret != sizeof(abiflags))
126 		return -EIO;
127 
128 	/* Record the required FP ABIs for use by mips_check_elf */
129 	if (is_interp)
130 		state->interp_fp_abi = abiflags.fp_abi;
131 	else
132 		state->fp_abi = abiflags.fp_abi;
133 
134 	return 0;
135 }
136 
137 int arch_check_elf(void *_ehdr, bool has_interpreter, void *_interp_ehdr,
138 		   struct arch_elf_state *state)
139 {
140 	union {
141 		struct elf32_hdr e32;
142 		struct elf64_hdr e64;
143 	} *ehdr = _ehdr;
144 	union {
145 		struct elf32_hdr e32;
146 		struct elf64_hdr e64;
147 	} *iehdr = _interp_ehdr;
148 	struct mode_req prog_req, interp_req;
149 	int fp_abi, interp_fp_abi, abi0, abi1, max_abi;
150 	bool elf32;
151 	u32 flags;
152 
153 	elf32 = ehdr->e32.e_ident[EI_CLASS] == ELFCLASS32;
154 	flags = elf32 ? ehdr->e32.e_flags : ehdr->e64.e_flags;
155 
156 	/*
157 	 * Determine the NaN personality, reject the binary if not allowed.
158 	 * Also ensure that any interpreter matches the executable.
159 	 */
160 	if (flags & EF_MIPS_NAN2008) {
161 		if (mips_use_nan_2008)
162 			state->nan_2008 = 1;
163 		else
164 			return -ENOEXEC;
165 	} else {
166 		if (mips_use_nan_legacy)
167 			state->nan_2008 = 0;
168 		else
169 			return -ENOEXEC;
170 	}
171 	if (has_interpreter) {
172 		bool ielf32;
173 		u32 iflags;
174 
175 		ielf32 = iehdr->e32.e_ident[EI_CLASS] == ELFCLASS32;
176 		iflags = ielf32 ? iehdr->e32.e_flags : iehdr->e64.e_flags;
177 
178 		if ((flags ^ iflags) & EF_MIPS_NAN2008)
179 			return -ELIBBAD;
180 	}
181 
182 	if (!config_enabled(CONFIG_MIPS_O32_FP64_SUPPORT))
183 		return 0;
184 
185 	fp_abi = state->fp_abi;
186 
187 	if (has_interpreter) {
188 		interp_fp_abi = state->interp_fp_abi;
189 
190 		abi0 = min(fp_abi, interp_fp_abi);
191 		abi1 = max(fp_abi, interp_fp_abi);
192 	} else {
193 		abi0 = abi1 = fp_abi;
194 	}
195 
196 	if (elf32 && !(flags & EF_MIPS_ABI2)) {
197 		/* Default to a mode capable of running code expecting FR=0 */
198 		state->overall_fp_mode = cpu_has_mips_r6 ? FP_FRE : FP_FR0;
199 
200 		/* Allow all ABIs we know about */
201 		max_abi = MIPS_ABI_FP_64A;
202 	} else {
203 		/* MIPS64 code always uses FR=1, thus the default is easy */
204 		state->overall_fp_mode = FP_FR1;
205 
206 		/* Disallow access to the various FPXX & FP64 ABIs */
207 		max_abi = MIPS_ABI_FP_SOFT;
208 	}
209 
210 	if ((abi0 > max_abi && abi0 != MIPS_ABI_FP_UNKNOWN) ||
211 	    (abi1 > max_abi && abi1 != MIPS_ABI_FP_UNKNOWN))
212 		return -ELIBBAD;
213 
214 	/* It's time to determine the FPU mode requirements */
215 	prog_req = (abi0 == MIPS_ABI_FP_UNKNOWN) ? none_req : fpu_reqs[abi0];
216 	interp_req = (abi1 == MIPS_ABI_FP_UNKNOWN) ? none_req : fpu_reqs[abi1];
217 
218 	/*
219 	 * Check whether the program's and interp's ABIs have a matching FPU
220 	 * mode requirement.
221 	 */
222 	prog_req.single = interp_req.single && prog_req.single;
223 	prog_req.soft = interp_req.soft && prog_req.soft;
224 	prog_req.fr1 = interp_req.fr1 && prog_req.fr1;
225 	prog_req.frdefault = interp_req.frdefault && prog_req.frdefault;
226 	prog_req.fre = interp_req.fre && prog_req.fre;
227 
228 	/*
229 	 * Determine the desired FPU mode
230 	 *
231 	 * Decision making:
232 	 *
233 	 * - We want FR_FRE if FRE=1 and both FR=1 and FR=0 are false. This
234 	 *   means that we have a combination of program and interpreter
235 	 *   that inherently require the hybrid FP mode.
236 	 * - If FR1 and FRDEFAULT is true, that means we hit the any-abi or
237 	 *   fpxx case. This is because, in any-ABI (or no-ABI) we have no FPU
238 	 *   instructions so we don't care about the mode. We will simply use
239 	 *   the one preferred by the hardware. In fpxx case, that ABI can
240 	 *   handle both FR=1 and FR=0, so, again, we simply choose the one
241 	 *   preferred by the hardware. Next, if we only use single-precision
242 	 *   FPU instructions, and the default ABI FPU mode is not good
243 	 *   (ie single + any ABI combination), we set again the FPU mode to the
244 	 *   one is preferred by the hardware. Next, if we know that the code
245 	 *   will only use single-precision instructions, shown by single being
246 	 *   true but frdefault being false, then we again set the FPU mode to
247 	 *   the one that is preferred by the hardware.
248 	 * - We want FP_FR1 if that's the only matching mode and the default one
249 	 *   is not good.
250 	 * - Return with -ELIBADD if we can't find a matching FPU mode.
251 	 */
252 	if (prog_req.fre && !prog_req.frdefault && !prog_req.fr1)
253 		state->overall_fp_mode = FP_FRE;
254 	else if ((prog_req.fr1 && prog_req.frdefault) ||
255 		 (prog_req.single && !prog_req.frdefault))
256 		/* Make sure 64-bit MIPS III/IV/64R1 will not pick FR1 */
257 		state->overall_fp_mode = ((current_cpu_data.fpu_id & MIPS_FPIR_F64) &&
258 					  cpu_has_mips_r2_r6) ?
259 					  FP_FR1 : FP_FR0;
260 	else if (prog_req.fr1)
261 		state->overall_fp_mode = FP_FR1;
262 	else  if (!prog_req.fre && !prog_req.frdefault &&
263 		  !prog_req.fr1 && !prog_req.single && !prog_req.soft)
264 		return -ELIBBAD;
265 
266 	return 0;
267 }
268 
269 static inline void set_thread_fp_mode(int hybrid, int regs32)
270 {
271 	if (hybrid)
272 		set_thread_flag(TIF_HYBRID_FPREGS);
273 	else
274 		clear_thread_flag(TIF_HYBRID_FPREGS);
275 	if (regs32)
276 		set_thread_flag(TIF_32BIT_FPREGS);
277 	else
278 		clear_thread_flag(TIF_32BIT_FPREGS);
279 }
280 
281 void mips_set_personality_fp(struct arch_elf_state *state)
282 {
283 	/*
284 	 * This function is only ever called for O32 ELFs so we should
285 	 * not be worried about N32/N64 binaries.
286 	 */
287 
288 	if (!config_enabled(CONFIG_MIPS_O32_FP64_SUPPORT))
289 		return;
290 
291 	switch (state->overall_fp_mode) {
292 	case FP_FRE:
293 		set_thread_fp_mode(1, 0);
294 		break;
295 	case FP_FR0:
296 		set_thread_fp_mode(0, 1);
297 		break;
298 	case FP_FR1:
299 		set_thread_fp_mode(0, 0);
300 		break;
301 	default:
302 		BUG();
303 	}
304 }
305 
306 /*
307  * Select the IEEE 754 NaN encoding and ABS.fmt/NEG.fmt execution mode
308  * in FCSR according to the ELF NaN personality.
309  */
310 void mips_set_personality_nan(struct arch_elf_state *state)
311 {
312 	struct cpuinfo_mips *c = &boot_cpu_data;
313 	struct task_struct *t = current;
314 
315 	t->thread.fpu.fcr31 = c->fpu_csr31;
316 	switch (state->nan_2008) {
317 	case 0:
318 		break;
319 	case 1:
320 		if (!(c->fpu_msk31 & FPU_CSR_NAN2008))
321 			t->thread.fpu.fcr31 |= FPU_CSR_NAN2008;
322 		if (!(c->fpu_msk31 & FPU_CSR_ABS2008))
323 			t->thread.fpu.fcr31 |= FPU_CSR_ABS2008;
324 		break;
325 	default:
326 		BUG();
327 	}
328 }
329