xref: /linux/arch/mips/kernel/elf.c (revision 2b64b2ed277ff23e785fbdb65098ee7e1252d64f)
1 /*
2  * Copyright (C) 2014 Imagination Technologies
3  * Author: Paul Burton <paul.burton@mips.com>
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License as published by the
7  * Free Software Foundation;  either version 2 of the  License, or (at your
8  * option) any later version.
9  */
10 
11 #include <linux/binfmts.h>
12 #include <linux/elf.h>
13 #include <linux/export.h>
14 #include <linux/sched.h>
15 
16 #include <asm/cpu-features.h>
17 #include <asm/cpu-info.h>
18 
19 #ifdef CONFIG_MIPS_FP_SUPPORT
20 
21 /* Whether to accept legacy-NaN and 2008-NaN user binaries.  */
22 bool mips_use_nan_legacy;
23 bool mips_use_nan_2008;
24 
25 /* FPU modes */
26 enum {
27 	FP_FRE,
28 	FP_FR0,
29 	FP_FR1,
30 };
31 
32 /**
33  * struct mode_req - ABI FPU mode requirements
34  * @single:	The program being loaded needs an FPU but it will only issue
35  *		single precision instructions meaning that it can execute in
36  *		either FR0 or FR1.
37  * @soft:	The soft(-float) requirement means that the program being
38  *		loaded needs has no FPU dependency at all (i.e. it has no
39  *		FPU instructions).
40  * @fr1:	The program being loaded depends on FPU being in FR=1 mode.
41  * @frdefault:	The program being loaded depends on the default FPU mode.
42  *		That is FR0 for O32 and FR1 for N32/N64.
43  * @fre:	The program being loaded depends on FPU with FRE=1. This mode is
44  *		a bridge which uses FR=1 whilst still being able to maintain
45  *		full compatibility with pre-existing code using the O32 FP32
46  *		ABI.
47  *
48  * More information about the FP ABIs can be found here:
49  *
50  * https://dmz-portal.mips.com/wiki/MIPS_O32_ABI_-_FR0_and_FR1_Interlinking#10.4.1._Basic_mode_set-up
51  *
52  */
53 
54 struct mode_req {
55 	bool single;
56 	bool soft;
57 	bool fr1;
58 	bool frdefault;
59 	bool fre;
60 };
61 
62 static const struct mode_req fpu_reqs[] = {
63 	[MIPS_ABI_FP_ANY]    = { true,  true,  true,  true,  true  },
64 	[MIPS_ABI_FP_DOUBLE] = { false, false, false, true,  true  },
65 	[MIPS_ABI_FP_SINGLE] = { true,  false, false, false, false },
66 	[MIPS_ABI_FP_SOFT]   = { false, true,  false, false, false },
67 	[MIPS_ABI_FP_OLD_64] = { false, false, false, false, false },
68 	[MIPS_ABI_FP_XX]     = { false, false, true,  true,  true  },
69 	[MIPS_ABI_FP_64]     = { false, false, true,  false, false },
70 	[MIPS_ABI_FP_64A]    = { false, false, true,  false, true  }
71 };
72 
73 /*
74  * Mode requirements when .MIPS.abiflags is not present in the ELF.
75  * Not present means that everything is acceptable except FR1.
76  */
77 static struct mode_req none_req = { true, true, false, true, true };
78 
79 int arch_elf_pt_proc(void *_ehdr, void *_phdr, struct file *elf,
80 		     bool is_interp, struct arch_elf_state *state)
81 {
82 	union {
83 		struct elf32_hdr e32;
84 		struct elf64_hdr e64;
85 	} *ehdr = _ehdr;
86 	struct elf32_phdr *phdr32 = _phdr;
87 	struct elf64_phdr *phdr64 = _phdr;
88 	struct mips_elf_abiflags_v0 abiflags;
89 	bool elf32;
90 	u32 flags;
91 	int ret;
92 	loff_t pos;
93 
94 	elf32 = ehdr->e32.e_ident[EI_CLASS] == ELFCLASS32;
95 	flags = elf32 ? ehdr->e32.e_flags : ehdr->e64.e_flags;
96 
97 	/* Let's see if this is an O32 ELF */
98 	if (elf32) {
99 		if (flags & EF_MIPS_FP64) {
100 			/*
101 			 * Set MIPS_ABI_FP_OLD_64 for EF_MIPS_FP64. We will override it
102 			 * later if needed
103 			 */
104 			if (is_interp)
105 				state->interp_fp_abi = MIPS_ABI_FP_OLD_64;
106 			else
107 				state->fp_abi = MIPS_ABI_FP_OLD_64;
108 		}
109 		if (phdr32->p_type != PT_MIPS_ABIFLAGS)
110 			return 0;
111 
112 		if (phdr32->p_filesz < sizeof(abiflags))
113 			return -EINVAL;
114 		pos = phdr32->p_offset;
115 	} else {
116 		if (phdr64->p_type != PT_MIPS_ABIFLAGS)
117 			return 0;
118 		if (phdr64->p_filesz < sizeof(abiflags))
119 			return -EINVAL;
120 		pos = phdr64->p_offset;
121 	}
122 
123 	ret = kernel_read(elf, &abiflags, sizeof(abiflags), &pos);
124 	if (ret < 0)
125 		return ret;
126 	if (ret != sizeof(abiflags))
127 		return -EIO;
128 
129 	/* Record the required FP ABIs for use by mips_check_elf */
130 	if (is_interp)
131 		state->interp_fp_abi = abiflags.fp_abi;
132 	else
133 		state->fp_abi = abiflags.fp_abi;
134 
135 	return 0;
136 }
137 
138 int arch_check_elf(void *_ehdr, bool has_interpreter, void *_interp_ehdr,
139 		   struct arch_elf_state *state)
140 {
141 	union {
142 		struct elf32_hdr e32;
143 		struct elf64_hdr e64;
144 	} *ehdr = _ehdr;
145 	union {
146 		struct elf32_hdr e32;
147 		struct elf64_hdr e64;
148 	} *iehdr = _interp_ehdr;
149 	struct mode_req prog_req, interp_req;
150 	int fp_abi, interp_fp_abi, abi0, abi1, max_abi;
151 	bool elf32;
152 	u32 flags;
153 
154 	elf32 = ehdr->e32.e_ident[EI_CLASS] == ELFCLASS32;
155 	flags = elf32 ? ehdr->e32.e_flags : ehdr->e64.e_flags;
156 
157 	/*
158 	 * Determine the NaN personality, reject the binary if not allowed.
159 	 * Also ensure that any interpreter matches the executable.
160 	 */
161 	if (flags & EF_MIPS_NAN2008) {
162 		if (mips_use_nan_2008)
163 			state->nan_2008 = 1;
164 		else
165 			return -ENOEXEC;
166 	} else {
167 		if (mips_use_nan_legacy)
168 			state->nan_2008 = 0;
169 		else
170 			return -ENOEXEC;
171 	}
172 	if (has_interpreter) {
173 		bool ielf32;
174 		u32 iflags;
175 
176 		ielf32 = iehdr->e32.e_ident[EI_CLASS] == ELFCLASS32;
177 		iflags = ielf32 ? iehdr->e32.e_flags : iehdr->e64.e_flags;
178 
179 		if ((flags ^ iflags) & EF_MIPS_NAN2008)
180 			return -ELIBBAD;
181 	}
182 
183 	if (!IS_ENABLED(CONFIG_MIPS_O32_FP64_SUPPORT))
184 		return 0;
185 
186 	fp_abi = state->fp_abi;
187 
188 	if (has_interpreter) {
189 		interp_fp_abi = state->interp_fp_abi;
190 
191 		abi0 = min(fp_abi, interp_fp_abi);
192 		abi1 = max(fp_abi, interp_fp_abi);
193 	} else {
194 		abi0 = abi1 = fp_abi;
195 	}
196 
197 	if (elf32 && !(flags & EF_MIPS_ABI2)) {
198 		/* Default to a mode capable of running code expecting FR=0 */
199 		state->overall_fp_mode = cpu_has_mips_r6 ? FP_FRE : FP_FR0;
200 
201 		/* Allow all ABIs we know about */
202 		max_abi = MIPS_ABI_FP_64A;
203 	} else {
204 		/* MIPS64 code always uses FR=1, thus the default is easy */
205 		state->overall_fp_mode = FP_FR1;
206 
207 		/* Disallow access to the various FPXX & FP64 ABIs */
208 		max_abi = MIPS_ABI_FP_SOFT;
209 	}
210 
211 	if ((abi0 > max_abi && abi0 != MIPS_ABI_FP_UNKNOWN) ||
212 	    (abi1 > max_abi && abi1 != MIPS_ABI_FP_UNKNOWN))
213 		return -ELIBBAD;
214 
215 	/* It's time to determine the FPU mode requirements */
216 	prog_req = (abi0 == MIPS_ABI_FP_UNKNOWN) ? none_req : fpu_reqs[abi0];
217 	interp_req = (abi1 == MIPS_ABI_FP_UNKNOWN) ? none_req : fpu_reqs[abi1];
218 
219 	/*
220 	 * Check whether the program's and interp's ABIs have a matching FPU
221 	 * mode requirement.
222 	 */
223 	prog_req.single = interp_req.single && prog_req.single;
224 	prog_req.soft = interp_req.soft && prog_req.soft;
225 	prog_req.fr1 = interp_req.fr1 && prog_req.fr1;
226 	prog_req.frdefault = interp_req.frdefault && prog_req.frdefault;
227 	prog_req.fre = interp_req.fre && prog_req.fre;
228 
229 	/*
230 	 * Determine the desired FPU mode
231 	 *
232 	 * Decision making:
233 	 *
234 	 * - We want FR_FRE if FRE=1 and both FR=1 and FR=0 are false. This
235 	 *   means that we have a combination of program and interpreter
236 	 *   that inherently require the hybrid FP mode.
237 	 * - If FR1 and FRDEFAULT is true, that means we hit the any-abi or
238 	 *   fpxx case. This is because, in any-ABI (or no-ABI) we have no FPU
239 	 *   instructions so we don't care about the mode. We will simply use
240 	 *   the one preferred by the hardware. In fpxx case, that ABI can
241 	 *   handle both FR=1 and FR=0, so, again, we simply choose the one
242 	 *   preferred by the hardware. Next, if we only use single-precision
243 	 *   FPU instructions, and the default ABI FPU mode is not good
244 	 *   (ie single + any ABI combination), we set again the FPU mode to the
245 	 *   one is preferred by the hardware. Next, if we know that the code
246 	 *   will only use single-precision instructions, shown by single being
247 	 *   true but frdefault being false, then we again set the FPU mode to
248 	 *   the one that is preferred by the hardware.
249 	 * - We want FP_FR1 if that's the only matching mode and the default one
250 	 *   is not good.
251 	 * - Return with -ELIBADD if we can't find a matching FPU mode.
252 	 */
253 	if (prog_req.fre && !prog_req.frdefault && !prog_req.fr1)
254 		state->overall_fp_mode = FP_FRE;
255 	else if ((prog_req.fr1 && prog_req.frdefault) ||
256 		 (prog_req.single && !prog_req.frdefault))
257 		/* Make sure 64-bit MIPS III/IV/64R1 will not pick FR1 */
258 		state->overall_fp_mode = ((raw_current_cpu_data.fpu_id & MIPS_FPIR_F64) &&
259 					  cpu_has_mips_r2_r6) ?
260 					  FP_FR1 : FP_FR0;
261 	else if (prog_req.fr1)
262 		state->overall_fp_mode = FP_FR1;
263 	else  if (!prog_req.fre && !prog_req.frdefault &&
264 		  !prog_req.fr1 && !prog_req.single && !prog_req.soft)
265 		return -ELIBBAD;
266 
267 	return 0;
268 }
269 
270 static inline void set_thread_fp_mode(int hybrid, int regs32)
271 {
272 	if (hybrid)
273 		set_thread_flag(TIF_HYBRID_FPREGS);
274 	else
275 		clear_thread_flag(TIF_HYBRID_FPREGS);
276 	if (regs32)
277 		set_thread_flag(TIF_32BIT_FPREGS);
278 	else
279 		clear_thread_flag(TIF_32BIT_FPREGS);
280 }
281 
282 void mips_set_personality_fp(struct arch_elf_state *state)
283 {
284 	/*
285 	 * This function is only ever called for O32 ELFs so we should
286 	 * not be worried about N32/N64 binaries.
287 	 */
288 
289 	if (!IS_ENABLED(CONFIG_MIPS_O32_FP64_SUPPORT))
290 		return;
291 
292 	switch (state->overall_fp_mode) {
293 	case FP_FRE:
294 		set_thread_fp_mode(1, 0);
295 		break;
296 	case FP_FR0:
297 		set_thread_fp_mode(0, 1);
298 		break;
299 	case FP_FR1:
300 		set_thread_fp_mode(0, 0);
301 		break;
302 	default:
303 		BUG();
304 	}
305 }
306 
307 /*
308  * Select the IEEE 754 NaN encoding and ABS.fmt/NEG.fmt execution mode
309  * in FCSR according to the ELF NaN personality.
310  */
311 void mips_set_personality_nan(struct arch_elf_state *state)
312 {
313 	struct cpuinfo_mips *c = &boot_cpu_data;
314 	struct task_struct *t = current;
315 
316 	t->thread.fpu.fcr31 = c->fpu_csr31;
317 	switch (state->nan_2008) {
318 	case 0:
319 		break;
320 	case 1:
321 		if (!(c->fpu_msk31 & FPU_CSR_NAN2008))
322 			t->thread.fpu.fcr31 |= FPU_CSR_NAN2008;
323 		if (!(c->fpu_msk31 & FPU_CSR_ABS2008))
324 			t->thread.fpu.fcr31 |= FPU_CSR_ABS2008;
325 		break;
326 	default:
327 		BUG();
328 	}
329 }
330 
331 #endif /* CONFIG_MIPS_FP_SUPPORT */
332 
333 int mips_elf_read_implies_exec(void *elf_ex, int exstack)
334 {
335 	if (exstack != EXSTACK_DISABLE_X) {
336 		/* The binary doesn't request a non-executable stack */
337 		return 1;
338 	}
339 
340 	if (!cpu_has_rixi) {
341 		/* The CPU doesn't support non-executable memory */
342 		return 1;
343 	}
344 
345 	return 0;
346 }
347 EXPORT_SYMBOL(mips_elf_read_implies_exec);
348