1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Processor capabilities determination functions. 4 * 5 * Copyright (C) xxxx the Anonymous 6 * Copyright (C) 1994 - 2006 Ralf Baechle 7 * Copyright (C) 2003, 2004 Maciej W. Rozycki 8 * Copyright (C) 2001, 2004, 2011, 2012 MIPS Technologies, Inc. 9 */ 10 #include <linux/init.h> 11 #include <linux/kernel.h> 12 #include <linux/ptrace.h> 13 #include <linux/smp.h> 14 #include <linux/stddef.h> 15 #include <linux/export.h> 16 17 #include <asm/bugs.h> 18 #include <asm/cpu.h> 19 #include <asm/cpu-features.h> 20 #include <asm/cpu-type.h> 21 #include <asm/fpu.h> 22 #include <asm/mipsregs.h> 23 #include <asm/mipsmtregs.h> 24 #include <asm/msa.h> 25 #include <asm/watch.h> 26 #include <asm/elf.h> 27 #include <asm/pgtable-bits.h> 28 #include <asm/spram.h> 29 #include <linux/uaccess.h> 30 31 #include <asm/mach-loongson64/cpucfg-emul.h> 32 33 /* Hardware capabilities */ 34 unsigned int elf_hwcap __read_mostly; 35 EXPORT_SYMBOL_GPL(elf_hwcap); 36 37 #ifdef CONFIG_MIPS_FP_SUPPORT 38 39 /* 40 * Get the FPU Implementation/Revision. 41 */ 42 static inline unsigned long cpu_get_fpu_id(void) 43 { 44 unsigned long tmp, fpu_id; 45 46 tmp = read_c0_status(); 47 __enable_fpu(FPU_AS_IS); 48 fpu_id = read_32bit_cp1_register(CP1_REVISION); 49 write_c0_status(tmp); 50 return fpu_id; 51 } 52 53 /* 54 * Check if the CPU has an external FPU. 55 */ 56 static inline int __cpu_has_fpu(void) 57 { 58 return (cpu_get_fpu_id() & FPIR_IMP_MASK) != FPIR_IMP_NONE; 59 } 60 61 /* 62 * Determine the FCSR mask for FPU hardware. 63 */ 64 static inline void cpu_set_fpu_fcsr_mask(struct cpuinfo_mips *c) 65 { 66 unsigned long sr, mask, fcsr, fcsr0, fcsr1; 67 68 fcsr = c->fpu_csr31; 69 mask = FPU_CSR_ALL_X | FPU_CSR_ALL_E | FPU_CSR_ALL_S | FPU_CSR_RM; 70 71 sr = read_c0_status(); 72 __enable_fpu(FPU_AS_IS); 73 74 fcsr0 = fcsr & mask; 75 write_32bit_cp1_register(CP1_STATUS, fcsr0); 76 fcsr0 = read_32bit_cp1_register(CP1_STATUS); 77 78 fcsr1 = fcsr | ~mask; 79 write_32bit_cp1_register(CP1_STATUS, fcsr1); 80 fcsr1 = read_32bit_cp1_register(CP1_STATUS); 81 82 write_32bit_cp1_register(CP1_STATUS, fcsr); 83 84 write_c0_status(sr); 85 86 c->fpu_msk31 = ~(fcsr0 ^ fcsr1) & ~mask; 87 } 88 89 /* 90 * Determine the IEEE 754 NaN encodings and ABS.fmt/NEG.fmt execution modes 91 * supported by FPU hardware. 92 */ 93 static void cpu_set_fpu_2008(struct cpuinfo_mips *c) 94 { 95 if (c->isa_level & (MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1 | 96 MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 | 97 MIPS_CPU_ISA_M32R5 | MIPS_CPU_ISA_M64R5 | 98 MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6)) { 99 unsigned long sr, fir, fcsr, fcsr0, fcsr1; 100 101 sr = read_c0_status(); 102 __enable_fpu(FPU_AS_IS); 103 104 fir = read_32bit_cp1_register(CP1_REVISION); 105 if (fir & MIPS_FPIR_HAS2008) { 106 fcsr = read_32bit_cp1_register(CP1_STATUS); 107 108 /* 109 * MAC2008 toolchain never landed in real world, so we're only 110 * testing wether it can be disabled and don't try to enabled 111 * it. 112 */ 113 fcsr0 = fcsr & ~(FPU_CSR_ABS2008 | FPU_CSR_NAN2008 | FPU_CSR_MAC2008); 114 write_32bit_cp1_register(CP1_STATUS, fcsr0); 115 fcsr0 = read_32bit_cp1_register(CP1_STATUS); 116 117 fcsr1 = fcsr | FPU_CSR_ABS2008 | FPU_CSR_NAN2008; 118 write_32bit_cp1_register(CP1_STATUS, fcsr1); 119 fcsr1 = read_32bit_cp1_register(CP1_STATUS); 120 121 write_32bit_cp1_register(CP1_STATUS, fcsr); 122 123 if (c->isa_level & (MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2)) { 124 /* 125 * The bit for MAC2008 might be reused by R6 in future, 126 * so we only test for R2-R5. 127 */ 128 if (fcsr0 & FPU_CSR_MAC2008) 129 c->options |= MIPS_CPU_MAC_2008_ONLY; 130 } 131 132 if (!(fcsr0 & FPU_CSR_NAN2008)) 133 c->options |= MIPS_CPU_NAN_LEGACY; 134 if (fcsr1 & FPU_CSR_NAN2008) 135 c->options |= MIPS_CPU_NAN_2008; 136 137 if ((fcsr0 ^ fcsr1) & FPU_CSR_ABS2008) 138 c->fpu_msk31 &= ~FPU_CSR_ABS2008; 139 else 140 c->fpu_csr31 |= fcsr & FPU_CSR_ABS2008; 141 142 if ((fcsr0 ^ fcsr1) & FPU_CSR_NAN2008) 143 c->fpu_msk31 &= ~FPU_CSR_NAN2008; 144 else 145 c->fpu_csr31 |= fcsr & FPU_CSR_NAN2008; 146 } else { 147 c->options |= MIPS_CPU_NAN_LEGACY; 148 } 149 150 write_c0_status(sr); 151 } else { 152 c->options |= MIPS_CPU_NAN_LEGACY; 153 } 154 } 155 156 /* 157 * IEEE 754 conformance mode to use. Affects the NaN encoding and the 158 * ABS.fmt/NEG.fmt execution mode. 159 */ 160 static enum { STRICT, LEGACY, STD2008, RELAXED } ieee754 = STRICT; 161 162 /* 163 * Set the IEEE 754 NaN encodings and the ABS.fmt/NEG.fmt execution modes 164 * to support by the FPU emulator according to the IEEE 754 conformance 165 * mode selected. Note that "relaxed" straps the emulator so that it 166 * allows 2008-NaN binaries even for legacy processors. 167 */ 168 static void cpu_set_nofpu_2008(struct cpuinfo_mips *c) 169 { 170 c->options &= ~(MIPS_CPU_NAN_2008 | MIPS_CPU_NAN_LEGACY); 171 c->fpu_csr31 &= ~(FPU_CSR_ABS2008 | FPU_CSR_NAN2008); 172 c->fpu_msk31 &= ~(FPU_CSR_ABS2008 | FPU_CSR_NAN2008); 173 174 switch (ieee754) { 175 case STRICT: 176 if (c->isa_level & (MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1 | 177 MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 | 178 MIPS_CPU_ISA_M32R5 | MIPS_CPU_ISA_M64R5 | 179 MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6)) { 180 c->options |= MIPS_CPU_NAN_2008 | MIPS_CPU_NAN_LEGACY; 181 } else { 182 c->options |= MIPS_CPU_NAN_LEGACY; 183 c->fpu_msk31 |= FPU_CSR_ABS2008 | FPU_CSR_NAN2008; 184 } 185 break; 186 case LEGACY: 187 c->options |= MIPS_CPU_NAN_LEGACY; 188 c->fpu_msk31 |= FPU_CSR_ABS2008 | FPU_CSR_NAN2008; 189 break; 190 case STD2008: 191 c->options |= MIPS_CPU_NAN_2008; 192 c->fpu_csr31 |= FPU_CSR_ABS2008 | FPU_CSR_NAN2008; 193 c->fpu_msk31 |= FPU_CSR_ABS2008 | FPU_CSR_NAN2008; 194 break; 195 case RELAXED: 196 c->options |= MIPS_CPU_NAN_2008 | MIPS_CPU_NAN_LEGACY; 197 break; 198 } 199 } 200 201 /* 202 * Override the IEEE 754 NaN encoding and ABS.fmt/NEG.fmt execution mode 203 * according to the "ieee754=" parameter. 204 */ 205 static void cpu_set_nan_2008(struct cpuinfo_mips *c) 206 { 207 switch (ieee754) { 208 case STRICT: 209 mips_use_nan_legacy = !!cpu_has_nan_legacy; 210 mips_use_nan_2008 = !!cpu_has_nan_2008; 211 break; 212 case LEGACY: 213 mips_use_nan_legacy = !!cpu_has_nan_legacy; 214 mips_use_nan_2008 = !cpu_has_nan_legacy; 215 break; 216 case STD2008: 217 mips_use_nan_legacy = !cpu_has_nan_2008; 218 mips_use_nan_2008 = !!cpu_has_nan_2008; 219 break; 220 case RELAXED: 221 mips_use_nan_legacy = true; 222 mips_use_nan_2008 = true; 223 break; 224 } 225 } 226 227 /* 228 * IEEE 754 NaN encoding and ABS.fmt/NEG.fmt execution mode override 229 * settings: 230 * 231 * strict: accept binaries that request a NaN encoding supported by the FPU 232 * legacy: only accept legacy-NaN binaries 233 * 2008: only accept 2008-NaN binaries 234 * relaxed: accept any binaries regardless of whether supported by the FPU 235 */ 236 static int __init ieee754_setup(char *s) 237 { 238 if (!s) 239 return -1; 240 else if (!strcmp(s, "strict")) 241 ieee754 = STRICT; 242 else if (!strcmp(s, "legacy")) 243 ieee754 = LEGACY; 244 else if (!strcmp(s, "2008")) 245 ieee754 = STD2008; 246 else if (!strcmp(s, "relaxed")) 247 ieee754 = RELAXED; 248 else 249 return -1; 250 251 if (!(boot_cpu_data.options & MIPS_CPU_FPU)) 252 cpu_set_nofpu_2008(&boot_cpu_data); 253 cpu_set_nan_2008(&boot_cpu_data); 254 255 return 0; 256 } 257 258 early_param("ieee754", ieee754_setup); 259 260 /* 261 * Set the FIR feature flags for the FPU emulator. 262 */ 263 static void cpu_set_nofpu_id(struct cpuinfo_mips *c) 264 { 265 u32 value; 266 267 value = 0; 268 if (c->isa_level & (MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1 | 269 MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 | 270 MIPS_CPU_ISA_M32R5 | MIPS_CPU_ISA_M64R5 | 271 MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6)) 272 value |= MIPS_FPIR_D | MIPS_FPIR_S; 273 if (c->isa_level & (MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 | 274 MIPS_CPU_ISA_M32R5 | MIPS_CPU_ISA_M64R5 | 275 MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6)) 276 value |= MIPS_FPIR_F64 | MIPS_FPIR_L | MIPS_FPIR_W; 277 if (c->options & MIPS_CPU_NAN_2008) 278 value |= MIPS_FPIR_HAS2008; 279 c->fpu_id = value; 280 } 281 282 /* Determined FPU emulator mask to use for the boot CPU with "nofpu". */ 283 static unsigned int mips_nofpu_msk31; 284 285 /* 286 * Set options for FPU hardware. 287 */ 288 static void cpu_set_fpu_opts(struct cpuinfo_mips *c) 289 { 290 c->fpu_id = cpu_get_fpu_id(); 291 mips_nofpu_msk31 = c->fpu_msk31; 292 293 if (c->isa_level & (MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1 | 294 MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 | 295 MIPS_CPU_ISA_M32R5 | MIPS_CPU_ISA_M64R5 | 296 MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6)) { 297 if (c->fpu_id & MIPS_FPIR_3D) 298 c->ases |= MIPS_ASE_MIPS3D; 299 if (c->fpu_id & MIPS_FPIR_UFRP) 300 c->options |= MIPS_CPU_UFR; 301 if (c->fpu_id & MIPS_FPIR_FREP) 302 c->options |= MIPS_CPU_FRE; 303 } 304 305 cpu_set_fpu_fcsr_mask(c); 306 cpu_set_fpu_2008(c); 307 cpu_set_nan_2008(c); 308 } 309 310 /* 311 * Set options for the FPU emulator. 312 */ 313 static void cpu_set_nofpu_opts(struct cpuinfo_mips *c) 314 { 315 c->options &= ~MIPS_CPU_FPU; 316 c->fpu_msk31 = mips_nofpu_msk31; 317 318 cpu_set_nofpu_2008(c); 319 cpu_set_nan_2008(c); 320 cpu_set_nofpu_id(c); 321 } 322 323 static int mips_fpu_disabled; 324 325 static int __init fpu_disable(char *s) 326 { 327 cpu_set_nofpu_opts(&boot_cpu_data); 328 mips_fpu_disabled = 1; 329 330 return 1; 331 } 332 333 __setup("nofpu", fpu_disable); 334 335 #else /* !CONFIG_MIPS_FP_SUPPORT */ 336 337 #define mips_fpu_disabled 1 338 339 static inline unsigned long cpu_get_fpu_id(void) 340 { 341 return FPIR_IMP_NONE; 342 } 343 344 static inline int __cpu_has_fpu(void) 345 { 346 return 0; 347 } 348 349 static void cpu_set_fpu_opts(struct cpuinfo_mips *c) 350 { 351 /* no-op */ 352 } 353 354 static void cpu_set_nofpu_opts(struct cpuinfo_mips *c) 355 { 356 /* no-op */ 357 } 358 359 #endif /* CONFIG_MIPS_FP_SUPPORT */ 360 361 static inline unsigned long cpu_get_msa_id(void) 362 { 363 unsigned long status, msa_id; 364 365 status = read_c0_status(); 366 __enable_fpu(FPU_64BIT); 367 enable_msa(); 368 msa_id = read_msa_ir(); 369 disable_msa(); 370 write_c0_status(status); 371 return msa_id; 372 } 373 374 static int mips_dsp_disabled; 375 376 static int __init dsp_disable(char *s) 377 { 378 cpu_data[0].ases &= ~(MIPS_ASE_DSP | MIPS_ASE_DSP2P); 379 mips_dsp_disabled = 1; 380 381 return 1; 382 } 383 384 __setup("nodsp", dsp_disable); 385 386 static int mips_htw_disabled; 387 388 static int __init htw_disable(char *s) 389 { 390 mips_htw_disabled = 1; 391 cpu_data[0].options &= ~MIPS_CPU_HTW; 392 write_c0_pwctl(read_c0_pwctl() & 393 ~(1 << MIPS_PWCTL_PWEN_SHIFT)); 394 395 return 1; 396 } 397 398 __setup("nohtw", htw_disable); 399 400 static int mips_ftlb_disabled; 401 static int mips_has_ftlb_configured; 402 403 enum ftlb_flags { 404 FTLB_EN = 1 << 0, 405 FTLB_SET_PROB = 1 << 1, 406 }; 407 408 static int set_ftlb_enable(struct cpuinfo_mips *c, enum ftlb_flags flags); 409 410 static int __init ftlb_disable(char *s) 411 { 412 unsigned int config4, mmuextdef; 413 414 /* 415 * If the core hasn't done any FTLB configuration, there is nothing 416 * for us to do here. 417 */ 418 if (!mips_has_ftlb_configured) 419 return 1; 420 421 /* Disable it in the boot cpu */ 422 if (set_ftlb_enable(&cpu_data[0], 0)) { 423 pr_warn("Can't turn FTLB off\n"); 424 return 1; 425 } 426 427 config4 = read_c0_config4(); 428 429 /* Check that FTLB has been disabled */ 430 mmuextdef = config4 & MIPS_CONF4_MMUEXTDEF; 431 /* MMUSIZEEXT == VTLB ON, FTLB OFF */ 432 if (mmuextdef == MIPS_CONF4_MMUEXTDEF_FTLBSIZEEXT) { 433 /* This should never happen */ 434 pr_warn("FTLB could not be disabled!\n"); 435 return 1; 436 } 437 438 mips_ftlb_disabled = 1; 439 mips_has_ftlb_configured = 0; 440 441 /* 442 * noftlb is mainly used for debug purposes so print 443 * an informative message instead of using pr_debug() 444 */ 445 pr_info("FTLB has been disabled\n"); 446 447 /* 448 * Some of these bits are duplicated in the decode_config4. 449 * MIPS_CONF4_MMUEXTDEF_MMUSIZEEXT is the only possible case 450 * once FTLB has been disabled so undo what decode_config4 did. 451 */ 452 cpu_data[0].tlbsize -= cpu_data[0].tlbsizeftlbways * 453 cpu_data[0].tlbsizeftlbsets; 454 cpu_data[0].tlbsizeftlbsets = 0; 455 cpu_data[0].tlbsizeftlbways = 0; 456 457 return 1; 458 } 459 460 __setup("noftlb", ftlb_disable); 461 462 /* 463 * Check if the CPU has per tc perf counters 464 */ 465 static inline void cpu_set_mt_per_tc_perf(struct cpuinfo_mips *c) 466 { 467 if (read_c0_config7() & MTI_CONF7_PTC) 468 c->options |= MIPS_CPU_MT_PER_TC_PERF_COUNTERS; 469 } 470 471 static inline void check_errata(void) 472 { 473 struct cpuinfo_mips *c = ¤t_cpu_data; 474 475 switch (current_cpu_type()) { 476 case CPU_34K: 477 /* 478 * Erratum "RPS May Cause Incorrect Instruction Execution" 479 * This code only handles VPE0, any SMP/RTOS code 480 * making use of VPE1 will be responsable for that VPE. 481 */ 482 if ((c->processor_id & PRID_REV_MASK) <= PRID_REV_34K_V1_0_2) 483 write_c0_config7(read_c0_config7() | MIPS_CONF7_RPS); 484 break; 485 default: 486 break; 487 } 488 } 489 490 void __init check_bugs32(void) 491 { 492 check_errata(); 493 } 494 495 /* 496 * Probe whether cpu has config register by trying to play with 497 * alternate cache bit and see whether it matters. 498 * It's used by cpu_probe to distinguish between R3000A and R3081. 499 */ 500 static inline int cpu_has_confreg(void) 501 { 502 #ifdef CONFIG_CPU_R3000 503 extern unsigned long r3k_cache_size(unsigned long); 504 unsigned long size1, size2; 505 unsigned long cfg = read_c0_conf(); 506 507 size1 = r3k_cache_size(ST0_ISC); 508 write_c0_conf(cfg ^ R30XX_CONF_AC); 509 size2 = r3k_cache_size(ST0_ISC); 510 write_c0_conf(cfg); 511 return size1 != size2; 512 #else 513 return 0; 514 #endif 515 } 516 517 static inline void set_elf_platform(int cpu, const char *plat) 518 { 519 if (cpu == 0) 520 __elf_platform = plat; 521 } 522 523 static inline void set_elf_base_platform(const char *plat) 524 { 525 if (__elf_base_platform == NULL) { 526 __elf_base_platform = plat; 527 } 528 } 529 530 static inline void cpu_probe_vmbits(struct cpuinfo_mips *c) 531 { 532 #ifdef __NEED_VMBITS_PROBE 533 write_c0_entryhi(0x3fffffffffffe000ULL); 534 back_to_back_c0_hazard(); 535 c->vmbits = fls64(read_c0_entryhi() & 0x3fffffffffffe000ULL); 536 #endif 537 } 538 539 static void set_isa(struct cpuinfo_mips *c, unsigned int isa) 540 { 541 switch (isa) { 542 case MIPS_CPU_ISA_M64R5: 543 c->isa_level |= MIPS_CPU_ISA_M32R5 | MIPS_CPU_ISA_M64R5; 544 set_elf_base_platform("mips64r5"); 545 fallthrough; 546 case MIPS_CPU_ISA_M64R2: 547 c->isa_level |= MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2; 548 set_elf_base_platform("mips64r2"); 549 fallthrough; 550 case MIPS_CPU_ISA_M64R1: 551 c->isa_level |= MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1; 552 set_elf_base_platform("mips64"); 553 fallthrough; 554 case MIPS_CPU_ISA_V: 555 c->isa_level |= MIPS_CPU_ISA_V; 556 set_elf_base_platform("mips5"); 557 fallthrough; 558 case MIPS_CPU_ISA_IV: 559 c->isa_level |= MIPS_CPU_ISA_IV; 560 set_elf_base_platform("mips4"); 561 fallthrough; 562 case MIPS_CPU_ISA_III: 563 c->isa_level |= MIPS_CPU_ISA_II | MIPS_CPU_ISA_III; 564 set_elf_base_platform("mips3"); 565 break; 566 567 /* R6 incompatible with everything else */ 568 case MIPS_CPU_ISA_M64R6: 569 c->isa_level |= MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6; 570 set_elf_base_platform("mips64r6"); 571 fallthrough; 572 case MIPS_CPU_ISA_M32R6: 573 c->isa_level |= MIPS_CPU_ISA_M32R6; 574 set_elf_base_platform("mips32r6"); 575 /* Break here so we don't add incompatible ISAs */ 576 break; 577 case MIPS_CPU_ISA_M32R5: 578 c->isa_level |= MIPS_CPU_ISA_M32R5; 579 set_elf_base_platform("mips32r5"); 580 fallthrough; 581 case MIPS_CPU_ISA_M32R2: 582 c->isa_level |= MIPS_CPU_ISA_M32R2; 583 set_elf_base_platform("mips32r2"); 584 fallthrough; 585 case MIPS_CPU_ISA_M32R1: 586 c->isa_level |= MIPS_CPU_ISA_M32R1; 587 set_elf_base_platform("mips32"); 588 fallthrough; 589 case MIPS_CPU_ISA_II: 590 c->isa_level |= MIPS_CPU_ISA_II; 591 set_elf_base_platform("mips2"); 592 break; 593 } 594 } 595 596 static char unknown_isa[] = KERN_ERR \ 597 "Unsupported ISA type, c0.config0: %d."; 598 599 static unsigned int calculate_ftlb_probability(struct cpuinfo_mips *c) 600 { 601 602 unsigned int probability = c->tlbsize / c->tlbsizevtlb; 603 604 /* 605 * 0 = All TLBWR instructions go to FTLB 606 * 1 = 15:1: For every 16 TBLWR instructions, 15 go to the 607 * FTLB and 1 goes to the VTLB. 608 * 2 = 7:1: As above with 7:1 ratio. 609 * 3 = 3:1: As above with 3:1 ratio. 610 * 611 * Use the linear midpoint as the probability threshold. 612 */ 613 if (probability >= 12) 614 return 1; 615 else if (probability >= 6) 616 return 2; 617 else 618 /* 619 * So FTLB is less than 4 times bigger than VTLB. 620 * A 3:1 ratio can still be useful though. 621 */ 622 return 3; 623 } 624 625 static int set_ftlb_enable(struct cpuinfo_mips *c, enum ftlb_flags flags) 626 { 627 unsigned int config; 628 629 /* It's implementation dependent how the FTLB can be enabled */ 630 switch (c->cputype) { 631 case CPU_PROAPTIV: 632 case CPU_P5600: 633 case CPU_P6600: 634 /* proAptiv & related cores use Config6 to enable the FTLB */ 635 config = read_c0_config6(); 636 637 if (flags & FTLB_EN) 638 config |= MIPS_CONF6_MTI_FTLBEN; 639 else 640 config &= ~MIPS_CONF6_MTI_FTLBEN; 641 642 if (flags & FTLB_SET_PROB) { 643 config &= ~(3 << MIPS_CONF6_MTI_FTLBP_SHIFT); 644 config |= calculate_ftlb_probability(c) 645 << MIPS_CONF6_MTI_FTLBP_SHIFT; 646 } 647 648 write_c0_config6(config); 649 back_to_back_c0_hazard(); 650 break; 651 case CPU_I6400: 652 case CPU_I6500: 653 /* There's no way to disable the FTLB */ 654 if (!(flags & FTLB_EN)) 655 return 1; 656 return 0; 657 case CPU_LOONGSON64: 658 /* Flush ITLB, DTLB, VTLB and FTLB */ 659 write_c0_diag(LOONGSON_DIAG_ITLB | LOONGSON_DIAG_DTLB | 660 LOONGSON_DIAG_VTLB | LOONGSON_DIAG_FTLB); 661 /* Loongson-3 cores use Config6 to enable the FTLB */ 662 config = read_c0_config6(); 663 if (flags & FTLB_EN) 664 /* Enable FTLB */ 665 write_c0_config6(config & ~MIPS_CONF6_LOONGSON_FTLBDIS); 666 else 667 /* Disable FTLB */ 668 write_c0_config6(config | MIPS_CONF6_LOONGSON_FTLBDIS); 669 break; 670 default: 671 return 1; 672 } 673 674 return 0; 675 } 676 677 static int mm_config(struct cpuinfo_mips *c) 678 { 679 unsigned int config0, update, mm; 680 681 config0 = read_c0_config(); 682 mm = config0 & MIPS_CONF_MM; 683 684 /* 685 * It's implementation dependent what type of write-merge is supported 686 * and whether it can be enabled/disabled. If it is settable lets make 687 * the merging allowed by default. Some platforms might have 688 * write-through caching unsupported. In this case just ignore the 689 * CP0.Config.MM bit field value. 690 */ 691 switch (c->cputype) { 692 case CPU_24K: 693 case CPU_34K: 694 case CPU_74K: 695 case CPU_P5600: 696 case CPU_P6600: 697 c->options |= MIPS_CPU_MM_FULL; 698 update = MIPS_CONF_MM_FULL; 699 break; 700 case CPU_1004K: 701 case CPU_1074K: 702 case CPU_INTERAPTIV: 703 case CPU_PROAPTIV: 704 mm = 0; 705 fallthrough; 706 default: 707 update = 0; 708 break; 709 } 710 711 if (update) { 712 config0 = (config0 & ~MIPS_CONF_MM) | update; 713 write_c0_config(config0); 714 } else if (mm == MIPS_CONF_MM_SYSAD) { 715 c->options |= MIPS_CPU_MM_SYSAD; 716 } else if (mm == MIPS_CONF_MM_FULL) { 717 c->options |= MIPS_CPU_MM_FULL; 718 } 719 720 return 0; 721 } 722 723 static inline unsigned int decode_config0(struct cpuinfo_mips *c) 724 { 725 unsigned int config0; 726 int isa, mt; 727 728 config0 = read_c0_config(); 729 730 /* 731 * Look for Standard TLB or Dual VTLB and FTLB 732 */ 733 mt = config0 & MIPS_CONF_MT; 734 if (mt == MIPS_CONF_MT_TLB) 735 c->options |= MIPS_CPU_TLB; 736 else if (mt == MIPS_CONF_MT_FTLB) 737 c->options |= MIPS_CPU_TLB | MIPS_CPU_FTLB; 738 739 isa = (config0 & MIPS_CONF_AT) >> 13; 740 switch (isa) { 741 case 0: 742 switch ((config0 & MIPS_CONF_AR) >> 10) { 743 case 0: 744 set_isa(c, MIPS_CPU_ISA_M32R1); 745 break; 746 case 1: 747 set_isa(c, MIPS_CPU_ISA_M32R2); 748 break; 749 case 2: 750 set_isa(c, MIPS_CPU_ISA_M32R6); 751 break; 752 default: 753 goto unknown; 754 } 755 break; 756 case 2: 757 switch ((config0 & MIPS_CONF_AR) >> 10) { 758 case 0: 759 set_isa(c, MIPS_CPU_ISA_M64R1); 760 break; 761 case 1: 762 set_isa(c, MIPS_CPU_ISA_M64R2); 763 break; 764 case 2: 765 set_isa(c, MIPS_CPU_ISA_M64R6); 766 break; 767 default: 768 goto unknown; 769 } 770 break; 771 default: 772 goto unknown; 773 } 774 775 return config0 & MIPS_CONF_M; 776 777 unknown: 778 panic(unknown_isa, config0); 779 } 780 781 static inline unsigned int decode_config1(struct cpuinfo_mips *c) 782 { 783 unsigned int config1; 784 785 config1 = read_c0_config1(); 786 787 if (config1 & MIPS_CONF1_MD) 788 c->ases |= MIPS_ASE_MDMX; 789 if (config1 & MIPS_CONF1_PC) 790 c->options |= MIPS_CPU_PERF; 791 if (config1 & MIPS_CONF1_WR) 792 c->options |= MIPS_CPU_WATCH; 793 if (config1 & MIPS_CONF1_CA) 794 c->ases |= MIPS_ASE_MIPS16; 795 if (config1 & MIPS_CONF1_EP) 796 c->options |= MIPS_CPU_EJTAG; 797 if (config1 & MIPS_CONF1_FP) { 798 c->options |= MIPS_CPU_FPU; 799 c->options |= MIPS_CPU_32FPR; 800 } 801 if (cpu_has_tlb) { 802 c->tlbsize = ((config1 & MIPS_CONF1_TLBS) >> 25) + 1; 803 c->tlbsizevtlb = c->tlbsize; 804 c->tlbsizeftlbsets = 0; 805 } 806 807 return config1 & MIPS_CONF_M; 808 } 809 810 static inline unsigned int decode_config2(struct cpuinfo_mips *c) 811 { 812 unsigned int config2; 813 814 config2 = read_c0_config2(); 815 816 if (config2 & MIPS_CONF2_SL) 817 c->scache.flags &= ~MIPS_CACHE_NOT_PRESENT; 818 819 return config2 & MIPS_CONF_M; 820 } 821 822 static inline unsigned int decode_config3(struct cpuinfo_mips *c) 823 { 824 unsigned int config3; 825 826 config3 = read_c0_config3(); 827 828 if (config3 & MIPS_CONF3_SM) { 829 c->ases |= MIPS_ASE_SMARTMIPS; 830 c->options |= MIPS_CPU_RIXI | MIPS_CPU_CTXTC; 831 } 832 if (config3 & MIPS_CONF3_RXI) 833 c->options |= MIPS_CPU_RIXI; 834 if (config3 & MIPS_CONF3_CTXTC) 835 c->options |= MIPS_CPU_CTXTC; 836 if (config3 & MIPS_CONF3_DSP) 837 c->ases |= MIPS_ASE_DSP; 838 if (config3 & MIPS_CONF3_DSP2P) { 839 c->ases |= MIPS_ASE_DSP2P; 840 if (cpu_has_mips_r6) 841 c->ases |= MIPS_ASE_DSP3; 842 } 843 if (config3 & MIPS_CONF3_VINT) 844 c->options |= MIPS_CPU_VINT; 845 if (config3 & MIPS_CONF3_VEIC) 846 c->options |= MIPS_CPU_VEIC; 847 if (config3 & MIPS_CONF3_LPA) 848 c->options |= MIPS_CPU_LPA; 849 if (config3 & MIPS_CONF3_MT) 850 c->ases |= MIPS_ASE_MIPSMT; 851 if (config3 & MIPS_CONF3_ULRI) 852 c->options |= MIPS_CPU_ULRI; 853 if (config3 & MIPS_CONF3_ISA) 854 c->options |= MIPS_CPU_MICROMIPS; 855 if (config3 & MIPS_CONF3_VZ) 856 c->ases |= MIPS_ASE_VZ; 857 if (config3 & MIPS_CONF3_SC) 858 c->options |= MIPS_CPU_SEGMENTS; 859 if (config3 & MIPS_CONF3_BI) 860 c->options |= MIPS_CPU_BADINSTR; 861 if (config3 & MIPS_CONF3_BP) 862 c->options |= MIPS_CPU_BADINSTRP; 863 if (config3 & MIPS_CONF3_MSA) 864 c->ases |= MIPS_ASE_MSA; 865 if (config3 & MIPS_CONF3_PW) { 866 c->htw_seq = 0; 867 c->options |= MIPS_CPU_HTW; 868 } 869 if (config3 & MIPS_CONF3_CDMM) 870 c->options |= MIPS_CPU_CDMM; 871 if (config3 & MIPS_CONF3_SP) 872 c->options |= MIPS_CPU_SP; 873 874 return config3 & MIPS_CONF_M; 875 } 876 877 static inline unsigned int decode_config4(struct cpuinfo_mips *c) 878 { 879 unsigned int config4; 880 unsigned int newcf4; 881 unsigned int mmuextdef; 882 unsigned int ftlb_page = MIPS_CONF4_FTLBPAGESIZE; 883 unsigned long asid_mask; 884 885 config4 = read_c0_config4(); 886 887 if (cpu_has_tlb) { 888 if (((config4 & MIPS_CONF4_IE) >> 29) == 2) 889 c->options |= MIPS_CPU_TLBINV; 890 891 /* 892 * R6 has dropped the MMUExtDef field from config4. 893 * On R6 the fields always describe the FTLB, and only if it is 894 * present according to Config.MT. 895 */ 896 if (!cpu_has_mips_r6) 897 mmuextdef = config4 & MIPS_CONF4_MMUEXTDEF; 898 else if (cpu_has_ftlb) 899 mmuextdef = MIPS_CONF4_MMUEXTDEF_VTLBSIZEEXT; 900 else 901 mmuextdef = 0; 902 903 switch (mmuextdef) { 904 case MIPS_CONF4_MMUEXTDEF_MMUSIZEEXT: 905 c->tlbsize += (config4 & MIPS_CONF4_MMUSIZEEXT) * 0x40; 906 c->tlbsizevtlb = c->tlbsize; 907 break; 908 case MIPS_CONF4_MMUEXTDEF_VTLBSIZEEXT: 909 c->tlbsizevtlb += 910 ((config4 & MIPS_CONF4_VTLBSIZEEXT) >> 911 MIPS_CONF4_VTLBSIZEEXT_SHIFT) * 0x40; 912 c->tlbsize = c->tlbsizevtlb; 913 ftlb_page = MIPS_CONF4_VFTLBPAGESIZE; 914 fallthrough; 915 case MIPS_CONF4_MMUEXTDEF_FTLBSIZEEXT: 916 if (mips_ftlb_disabled) 917 break; 918 newcf4 = (config4 & ~ftlb_page) | 919 (page_size_ftlb(mmuextdef) << 920 MIPS_CONF4_FTLBPAGESIZE_SHIFT); 921 write_c0_config4(newcf4); 922 back_to_back_c0_hazard(); 923 config4 = read_c0_config4(); 924 if (config4 != newcf4) { 925 pr_err("PAGE_SIZE 0x%lx is not supported by FTLB (config4=0x%x)\n", 926 PAGE_SIZE, config4); 927 /* Switch FTLB off */ 928 set_ftlb_enable(c, 0); 929 mips_ftlb_disabled = 1; 930 break; 931 } 932 c->tlbsizeftlbsets = 1 << 933 ((config4 & MIPS_CONF4_FTLBSETS) >> 934 MIPS_CONF4_FTLBSETS_SHIFT); 935 c->tlbsizeftlbways = ((config4 & MIPS_CONF4_FTLBWAYS) >> 936 MIPS_CONF4_FTLBWAYS_SHIFT) + 2; 937 c->tlbsize += c->tlbsizeftlbways * c->tlbsizeftlbsets; 938 mips_has_ftlb_configured = 1; 939 break; 940 } 941 } 942 943 c->kscratch_mask = (config4 & MIPS_CONF4_KSCREXIST) 944 >> MIPS_CONF4_KSCREXIST_SHIFT; 945 946 asid_mask = MIPS_ENTRYHI_ASID; 947 if (config4 & MIPS_CONF4_AE) 948 asid_mask |= MIPS_ENTRYHI_ASIDX; 949 set_cpu_asid_mask(c, asid_mask); 950 951 /* 952 * Warn if the computed ASID mask doesn't match the mask the kernel 953 * is built for. This may indicate either a serious problem or an 954 * easy optimisation opportunity, but either way should be addressed. 955 */ 956 WARN_ON(asid_mask != cpu_asid_mask(c)); 957 958 return config4 & MIPS_CONF_M; 959 } 960 961 static inline unsigned int decode_config5(struct cpuinfo_mips *c) 962 { 963 unsigned int config5, max_mmid_width; 964 unsigned long asid_mask; 965 966 config5 = read_c0_config5(); 967 config5 &= ~(MIPS_CONF5_UFR | MIPS_CONF5_UFE); 968 969 if (cpu_has_mips_r6) { 970 if (!__builtin_constant_p(cpu_has_mmid) || cpu_has_mmid) 971 config5 |= MIPS_CONF5_MI; 972 else 973 config5 &= ~MIPS_CONF5_MI; 974 } 975 976 write_c0_config5(config5); 977 978 if (config5 & MIPS_CONF5_EVA) 979 c->options |= MIPS_CPU_EVA; 980 if (config5 & MIPS_CONF5_MRP) 981 c->options |= MIPS_CPU_MAAR; 982 if (config5 & MIPS_CONF5_LLB) 983 c->options |= MIPS_CPU_RW_LLB; 984 if (config5 & MIPS_CONF5_MVH) 985 c->options |= MIPS_CPU_MVH; 986 if (cpu_has_mips_r6 && (config5 & MIPS_CONF5_VP)) 987 c->options |= MIPS_CPU_VP; 988 if (config5 & MIPS_CONF5_CA2) 989 c->ases |= MIPS_ASE_MIPS16E2; 990 991 if (config5 & MIPS_CONF5_CRCP) 992 elf_hwcap |= HWCAP_MIPS_CRC32; 993 994 if (cpu_has_mips_r6) { 995 /* Ensure the write to config5 above takes effect */ 996 back_to_back_c0_hazard(); 997 998 /* Check whether we successfully enabled MMID support */ 999 config5 = read_c0_config5(); 1000 if (config5 & MIPS_CONF5_MI) 1001 c->options |= MIPS_CPU_MMID; 1002 1003 /* 1004 * Warn if we've hardcoded cpu_has_mmid to a value unsuitable 1005 * for the CPU we're running on, or if CPUs in an SMP system 1006 * have inconsistent MMID support. 1007 */ 1008 WARN_ON(!!cpu_has_mmid != !!(config5 & MIPS_CONF5_MI)); 1009 1010 if (cpu_has_mmid) { 1011 write_c0_memorymapid(~0ul); 1012 back_to_back_c0_hazard(); 1013 asid_mask = read_c0_memorymapid(); 1014 1015 /* 1016 * We maintain a bitmap to track MMID allocation, and 1017 * need a sensible upper bound on the size of that 1018 * bitmap. The initial CPU with MMID support (I6500) 1019 * supports 16 bit MMIDs, which gives us an 8KiB 1020 * bitmap. The architecture recommends that hardware 1021 * support 32 bit MMIDs, which would give us a 512MiB 1022 * bitmap - that's too big in most cases. 1023 * 1024 * Cap MMID width at 16 bits for now & we can revisit 1025 * this if & when hardware supports anything wider. 1026 */ 1027 max_mmid_width = 16; 1028 if (asid_mask > GENMASK(max_mmid_width - 1, 0)) { 1029 pr_info("Capping MMID width at %d bits", 1030 max_mmid_width); 1031 asid_mask = GENMASK(max_mmid_width - 1, 0); 1032 } 1033 1034 set_cpu_asid_mask(c, asid_mask); 1035 } 1036 } 1037 1038 return config5 & MIPS_CONF_M; 1039 } 1040 1041 static void decode_configs(struct cpuinfo_mips *c) 1042 { 1043 int ok; 1044 1045 /* MIPS32 or MIPS64 compliant CPU. */ 1046 c->options = MIPS_CPU_4KEX | MIPS_CPU_4K_CACHE | MIPS_CPU_COUNTER | 1047 MIPS_CPU_DIVEC | MIPS_CPU_LLSC | MIPS_CPU_MCHECK; 1048 1049 c->scache.flags = MIPS_CACHE_NOT_PRESENT; 1050 1051 /* Enable FTLB if present and not disabled */ 1052 set_ftlb_enable(c, mips_ftlb_disabled ? 0 : FTLB_EN); 1053 1054 ok = decode_config0(c); /* Read Config registers. */ 1055 BUG_ON(!ok); /* Arch spec violation! */ 1056 if (ok) 1057 ok = decode_config1(c); 1058 if (ok) 1059 ok = decode_config2(c); 1060 if (ok) 1061 ok = decode_config3(c); 1062 if (ok) 1063 ok = decode_config4(c); 1064 if (ok) 1065 ok = decode_config5(c); 1066 1067 /* Probe the EBase.WG bit */ 1068 if (cpu_has_mips_r2_r6) { 1069 u64 ebase; 1070 unsigned int status; 1071 1072 /* {read,write}_c0_ebase_64() may be UNDEFINED prior to r6 */ 1073 ebase = cpu_has_mips64r6 ? read_c0_ebase_64() 1074 : (s32)read_c0_ebase(); 1075 if (ebase & MIPS_EBASE_WG) { 1076 /* WG bit already set, we can avoid the clumsy probe */ 1077 c->options |= MIPS_CPU_EBASE_WG; 1078 } else { 1079 /* Its UNDEFINED to change EBase while BEV=0 */ 1080 status = read_c0_status(); 1081 write_c0_status(status | ST0_BEV); 1082 irq_enable_hazard(); 1083 /* 1084 * On pre-r6 cores, this may well clobber the upper bits 1085 * of EBase. This is hard to avoid without potentially 1086 * hitting UNDEFINED dm*c0 behaviour if EBase is 32-bit. 1087 */ 1088 if (cpu_has_mips64r6) 1089 write_c0_ebase_64(ebase | MIPS_EBASE_WG); 1090 else 1091 write_c0_ebase(ebase | MIPS_EBASE_WG); 1092 back_to_back_c0_hazard(); 1093 /* Restore BEV */ 1094 write_c0_status(status); 1095 if (read_c0_ebase() & MIPS_EBASE_WG) { 1096 c->options |= MIPS_CPU_EBASE_WG; 1097 write_c0_ebase(ebase); 1098 } 1099 } 1100 } 1101 1102 /* configure the FTLB write probability */ 1103 set_ftlb_enable(c, (mips_ftlb_disabled ? 0 : FTLB_EN) | FTLB_SET_PROB); 1104 1105 mips_probe_watch_registers(c); 1106 1107 #ifndef CONFIG_MIPS_CPS 1108 if (cpu_has_mips_r2_r6) { 1109 unsigned int core; 1110 1111 core = get_ebase_cpunum(); 1112 if (cpu_has_mipsmt) 1113 core >>= fls(core_nvpes()) - 1; 1114 cpu_set_core(c, core); 1115 } 1116 #endif 1117 } 1118 1119 /* 1120 * Probe for certain guest capabilities by writing config bits and reading back. 1121 * Finally write back the original value. 1122 */ 1123 #define probe_gc0_config(name, maxconf, bits) \ 1124 do { \ 1125 unsigned int tmp; \ 1126 tmp = read_gc0_##name(); \ 1127 write_gc0_##name(tmp | (bits)); \ 1128 back_to_back_c0_hazard(); \ 1129 maxconf = read_gc0_##name(); \ 1130 write_gc0_##name(tmp); \ 1131 } while (0) 1132 1133 /* 1134 * Probe for dynamic guest capabilities by changing certain config bits and 1135 * reading back to see if they change. Finally write back the original value. 1136 */ 1137 #define probe_gc0_config_dyn(name, maxconf, dynconf, bits) \ 1138 do { \ 1139 maxconf = read_gc0_##name(); \ 1140 write_gc0_##name(maxconf ^ (bits)); \ 1141 back_to_back_c0_hazard(); \ 1142 dynconf = maxconf ^ read_gc0_##name(); \ 1143 write_gc0_##name(maxconf); \ 1144 maxconf |= dynconf; \ 1145 } while (0) 1146 1147 static inline unsigned int decode_guest_config0(struct cpuinfo_mips *c) 1148 { 1149 unsigned int config0; 1150 1151 probe_gc0_config(config, config0, MIPS_CONF_M); 1152 1153 if (config0 & MIPS_CONF_M) 1154 c->guest.conf |= BIT(1); 1155 return config0 & MIPS_CONF_M; 1156 } 1157 1158 static inline unsigned int decode_guest_config1(struct cpuinfo_mips *c) 1159 { 1160 unsigned int config1, config1_dyn; 1161 1162 probe_gc0_config_dyn(config1, config1, config1_dyn, 1163 MIPS_CONF_M | MIPS_CONF1_PC | MIPS_CONF1_WR | 1164 MIPS_CONF1_FP); 1165 1166 if (config1 & MIPS_CONF1_FP) 1167 c->guest.options |= MIPS_CPU_FPU; 1168 if (config1_dyn & MIPS_CONF1_FP) 1169 c->guest.options_dyn |= MIPS_CPU_FPU; 1170 1171 if (config1 & MIPS_CONF1_WR) 1172 c->guest.options |= MIPS_CPU_WATCH; 1173 if (config1_dyn & MIPS_CONF1_WR) 1174 c->guest.options_dyn |= MIPS_CPU_WATCH; 1175 1176 if (config1 & MIPS_CONF1_PC) 1177 c->guest.options |= MIPS_CPU_PERF; 1178 if (config1_dyn & MIPS_CONF1_PC) 1179 c->guest.options_dyn |= MIPS_CPU_PERF; 1180 1181 if (config1 & MIPS_CONF_M) 1182 c->guest.conf |= BIT(2); 1183 return config1 & MIPS_CONF_M; 1184 } 1185 1186 static inline unsigned int decode_guest_config2(struct cpuinfo_mips *c) 1187 { 1188 unsigned int config2; 1189 1190 probe_gc0_config(config2, config2, MIPS_CONF_M); 1191 1192 if (config2 & MIPS_CONF_M) 1193 c->guest.conf |= BIT(3); 1194 return config2 & MIPS_CONF_M; 1195 } 1196 1197 static inline unsigned int decode_guest_config3(struct cpuinfo_mips *c) 1198 { 1199 unsigned int config3, config3_dyn; 1200 1201 probe_gc0_config_dyn(config3, config3, config3_dyn, 1202 MIPS_CONF_M | MIPS_CONF3_MSA | MIPS_CONF3_ULRI | 1203 MIPS_CONF3_CTXTC); 1204 1205 if (config3 & MIPS_CONF3_CTXTC) 1206 c->guest.options |= MIPS_CPU_CTXTC; 1207 if (config3_dyn & MIPS_CONF3_CTXTC) 1208 c->guest.options_dyn |= MIPS_CPU_CTXTC; 1209 1210 if (config3 & MIPS_CONF3_PW) 1211 c->guest.options |= MIPS_CPU_HTW; 1212 1213 if (config3 & MIPS_CONF3_ULRI) 1214 c->guest.options |= MIPS_CPU_ULRI; 1215 1216 if (config3 & MIPS_CONF3_SC) 1217 c->guest.options |= MIPS_CPU_SEGMENTS; 1218 1219 if (config3 & MIPS_CONF3_BI) 1220 c->guest.options |= MIPS_CPU_BADINSTR; 1221 if (config3 & MIPS_CONF3_BP) 1222 c->guest.options |= MIPS_CPU_BADINSTRP; 1223 1224 if (config3 & MIPS_CONF3_MSA) 1225 c->guest.ases |= MIPS_ASE_MSA; 1226 if (config3_dyn & MIPS_CONF3_MSA) 1227 c->guest.ases_dyn |= MIPS_ASE_MSA; 1228 1229 if (config3 & MIPS_CONF_M) 1230 c->guest.conf |= BIT(4); 1231 return config3 & MIPS_CONF_M; 1232 } 1233 1234 static inline unsigned int decode_guest_config4(struct cpuinfo_mips *c) 1235 { 1236 unsigned int config4; 1237 1238 probe_gc0_config(config4, config4, 1239 MIPS_CONF_M | MIPS_CONF4_KSCREXIST); 1240 1241 c->guest.kscratch_mask = (config4 & MIPS_CONF4_KSCREXIST) 1242 >> MIPS_CONF4_KSCREXIST_SHIFT; 1243 1244 if (config4 & MIPS_CONF_M) 1245 c->guest.conf |= BIT(5); 1246 return config4 & MIPS_CONF_M; 1247 } 1248 1249 static inline unsigned int decode_guest_config5(struct cpuinfo_mips *c) 1250 { 1251 unsigned int config5, config5_dyn; 1252 1253 probe_gc0_config_dyn(config5, config5, config5_dyn, 1254 MIPS_CONF_M | MIPS_CONF5_MVH | MIPS_CONF5_MRP); 1255 1256 if (config5 & MIPS_CONF5_MRP) 1257 c->guest.options |= MIPS_CPU_MAAR; 1258 if (config5_dyn & MIPS_CONF5_MRP) 1259 c->guest.options_dyn |= MIPS_CPU_MAAR; 1260 1261 if (config5 & MIPS_CONF5_LLB) 1262 c->guest.options |= MIPS_CPU_RW_LLB; 1263 1264 if (config5 & MIPS_CONF5_MVH) 1265 c->guest.options |= MIPS_CPU_MVH; 1266 1267 if (config5 & MIPS_CONF_M) 1268 c->guest.conf |= BIT(6); 1269 return config5 & MIPS_CONF_M; 1270 } 1271 1272 static inline void decode_guest_configs(struct cpuinfo_mips *c) 1273 { 1274 unsigned int ok; 1275 1276 ok = decode_guest_config0(c); 1277 if (ok) 1278 ok = decode_guest_config1(c); 1279 if (ok) 1280 ok = decode_guest_config2(c); 1281 if (ok) 1282 ok = decode_guest_config3(c); 1283 if (ok) 1284 ok = decode_guest_config4(c); 1285 if (ok) 1286 decode_guest_config5(c); 1287 } 1288 1289 static inline void cpu_probe_guestctl0(struct cpuinfo_mips *c) 1290 { 1291 unsigned int guestctl0, temp; 1292 1293 guestctl0 = read_c0_guestctl0(); 1294 1295 if (guestctl0 & MIPS_GCTL0_G0E) 1296 c->options |= MIPS_CPU_GUESTCTL0EXT; 1297 if (guestctl0 & MIPS_GCTL0_G1) 1298 c->options |= MIPS_CPU_GUESTCTL1; 1299 if (guestctl0 & MIPS_GCTL0_G2) 1300 c->options |= MIPS_CPU_GUESTCTL2; 1301 if (!(guestctl0 & MIPS_GCTL0_RAD)) { 1302 c->options |= MIPS_CPU_GUESTID; 1303 1304 /* 1305 * Probe for Direct Root to Guest (DRG). Set GuestCtl1.RID = 0 1306 * first, otherwise all data accesses will be fully virtualised 1307 * as if they were performed by guest mode. 1308 */ 1309 write_c0_guestctl1(0); 1310 tlbw_use_hazard(); 1311 1312 write_c0_guestctl0(guestctl0 | MIPS_GCTL0_DRG); 1313 back_to_back_c0_hazard(); 1314 temp = read_c0_guestctl0(); 1315 1316 if (temp & MIPS_GCTL0_DRG) { 1317 write_c0_guestctl0(guestctl0); 1318 c->options |= MIPS_CPU_DRG; 1319 } 1320 } 1321 } 1322 1323 static inline void cpu_probe_guestctl1(struct cpuinfo_mips *c) 1324 { 1325 if (cpu_has_guestid) { 1326 /* determine the number of bits of GuestID available */ 1327 write_c0_guestctl1(MIPS_GCTL1_ID); 1328 back_to_back_c0_hazard(); 1329 c->guestid_mask = (read_c0_guestctl1() & MIPS_GCTL1_ID) 1330 >> MIPS_GCTL1_ID_SHIFT; 1331 write_c0_guestctl1(0); 1332 } 1333 } 1334 1335 static inline void cpu_probe_gtoffset(struct cpuinfo_mips *c) 1336 { 1337 /* determine the number of bits of GTOffset available */ 1338 write_c0_gtoffset(0xffffffff); 1339 back_to_back_c0_hazard(); 1340 c->gtoffset_mask = read_c0_gtoffset(); 1341 write_c0_gtoffset(0); 1342 } 1343 1344 static inline void cpu_probe_vz(struct cpuinfo_mips *c) 1345 { 1346 cpu_probe_guestctl0(c); 1347 if (cpu_has_guestctl1) 1348 cpu_probe_guestctl1(c); 1349 1350 cpu_probe_gtoffset(c); 1351 1352 decode_guest_configs(c); 1353 } 1354 1355 #define R4K_OPTS (MIPS_CPU_TLB | MIPS_CPU_4KEX | MIPS_CPU_4K_CACHE \ 1356 | MIPS_CPU_COUNTER) 1357 1358 static inline void cpu_probe_legacy(struct cpuinfo_mips *c, unsigned int cpu) 1359 { 1360 switch (c->processor_id & PRID_IMP_MASK) { 1361 case PRID_IMP_R2000: 1362 c->cputype = CPU_R2000; 1363 __cpu_name[cpu] = "R2000"; 1364 c->fpu_msk31 |= FPU_CSR_CONDX | FPU_CSR_FS; 1365 c->options = MIPS_CPU_TLB | MIPS_CPU_3K_CACHE | 1366 MIPS_CPU_NOFPUEX; 1367 if (__cpu_has_fpu()) 1368 c->options |= MIPS_CPU_FPU; 1369 c->tlbsize = 64; 1370 break; 1371 case PRID_IMP_R3000: 1372 if ((c->processor_id & PRID_REV_MASK) == PRID_REV_R3000A) { 1373 if (cpu_has_confreg()) { 1374 c->cputype = CPU_R3081E; 1375 __cpu_name[cpu] = "R3081"; 1376 } else { 1377 c->cputype = CPU_R3000A; 1378 __cpu_name[cpu] = "R3000A"; 1379 } 1380 } else { 1381 c->cputype = CPU_R3000; 1382 __cpu_name[cpu] = "R3000"; 1383 } 1384 c->fpu_msk31 |= FPU_CSR_CONDX | FPU_CSR_FS; 1385 c->options = MIPS_CPU_TLB | MIPS_CPU_3K_CACHE | 1386 MIPS_CPU_NOFPUEX; 1387 if (__cpu_has_fpu()) 1388 c->options |= MIPS_CPU_FPU; 1389 c->tlbsize = 64; 1390 break; 1391 case PRID_IMP_R4000: 1392 if (read_c0_config() & CONF_SC) { 1393 if ((c->processor_id & PRID_REV_MASK) >= 1394 PRID_REV_R4400) { 1395 c->cputype = CPU_R4400PC; 1396 __cpu_name[cpu] = "R4400PC"; 1397 } else { 1398 c->cputype = CPU_R4000PC; 1399 __cpu_name[cpu] = "R4000PC"; 1400 } 1401 } else { 1402 int cca = read_c0_config() & CONF_CM_CMASK; 1403 int mc; 1404 1405 /* 1406 * SC and MC versions can't be reliably told apart, 1407 * but only the latter support coherent caching 1408 * modes so assume the firmware has set the KSEG0 1409 * coherency attribute reasonably (if uncached, we 1410 * assume SC). 1411 */ 1412 switch (cca) { 1413 case CONF_CM_CACHABLE_CE: 1414 case CONF_CM_CACHABLE_COW: 1415 case CONF_CM_CACHABLE_CUW: 1416 mc = 1; 1417 break; 1418 default: 1419 mc = 0; 1420 break; 1421 } 1422 if ((c->processor_id & PRID_REV_MASK) >= 1423 PRID_REV_R4400) { 1424 c->cputype = mc ? CPU_R4400MC : CPU_R4400SC; 1425 __cpu_name[cpu] = mc ? "R4400MC" : "R4400SC"; 1426 } else { 1427 c->cputype = mc ? CPU_R4000MC : CPU_R4000SC; 1428 __cpu_name[cpu] = mc ? "R4000MC" : "R4000SC"; 1429 } 1430 } 1431 1432 set_isa(c, MIPS_CPU_ISA_III); 1433 c->fpu_msk31 |= FPU_CSR_CONDX; 1434 c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR | 1435 MIPS_CPU_WATCH | MIPS_CPU_VCE | 1436 MIPS_CPU_LLSC; 1437 c->tlbsize = 48; 1438 break; 1439 case PRID_IMP_VR41XX: 1440 set_isa(c, MIPS_CPU_ISA_III); 1441 c->fpu_msk31 |= FPU_CSR_CONDX; 1442 c->options = R4K_OPTS; 1443 c->tlbsize = 32; 1444 switch (c->processor_id & 0xf0) { 1445 case PRID_REV_VR4111: 1446 c->cputype = CPU_VR4111; 1447 __cpu_name[cpu] = "NEC VR4111"; 1448 break; 1449 case PRID_REV_VR4121: 1450 c->cputype = CPU_VR4121; 1451 __cpu_name[cpu] = "NEC VR4121"; 1452 break; 1453 case PRID_REV_VR4122: 1454 if ((c->processor_id & 0xf) < 0x3) { 1455 c->cputype = CPU_VR4122; 1456 __cpu_name[cpu] = "NEC VR4122"; 1457 } else { 1458 c->cputype = CPU_VR4181A; 1459 __cpu_name[cpu] = "NEC VR4181A"; 1460 } 1461 break; 1462 case PRID_REV_VR4130: 1463 if ((c->processor_id & 0xf) < 0x4) { 1464 c->cputype = CPU_VR4131; 1465 __cpu_name[cpu] = "NEC VR4131"; 1466 } else { 1467 c->cputype = CPU_VR4133; 1468 c->options |= MIPS_CPU_LLSC; 1469 __cpu_name[cpu] = "NEC VR4133"; 1470 } 1471 break; 1472 default: 1473 printk(KERN_INFO "Unexpected CPU of NEC VR4100 series\n"); 1474 c->cputype = CPU_VR41XX; 1475 __cpu_name[cpu] = "NEC Vr41xx"; 1476 break; 1477 } 1478 break; 1479 case PRID_IMP_R4600: 1480 c->cputype = CPU_R4600; 1481 __cpu_name[cpu] = "R4600"; 1482 set_isa(c, MIPS_CPU_ISA_III); 1483 c->fpu_msk31 |= FPU_CSR_CONDX; 1484 c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR | 1485 MIPS_CPU_LLSC; 1486 c->tlbsize = 48; 1487 break; 1488 #if 0 1489 case PRID_IMP_R4650: 1490 /* 1491 * This processor doesn't have an MMU, so it's not 1492 * "real easy" to run Linux on it. It is left purely 1493 * for documentation. Commented out because it shares 1494 * it's c0_prid id number with the TX3900. 1495 */ 1496 c->cputype = CPU_R4650; 1497 __cpu_name[cpu] = "R4650"; 1498 set_isa(c, MIPS_CPU_ISA_III); 1499 c->fpu_msk31 |= FPU_CSR_CONDX; 1500 c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_LLSC; 1501 c->tlbsize = 48; 1502 break; 1503 #endif 1504 case PRID_IMP_TX39: 1505 c->fpu_msk31 |= FPU_CSR_CONDX | FPU_CSR_FS; 1506 c->options = MIPS_CPU_TLB | MIPS_CPU_TX39_CACHE; 1507 1508 if ((c->processor_id & 0xf0) == (PRID_REV_TX3927 & 0xf0)) { 1509 c->cputype = CPU_TX3927; 1510 __cpu_name[cpu] = "TX3927"; 1511 c->tlbsize = 64; 1512 } else { 1513 switch (c->processor_id & PRID_REV_MASK) { 1514 case PRID_REV_TX3912: 1515 c->cputype = CPU_TX3912; 1516 __cpu_name[cpu] = "TX3912"; 1517 c->tlbsize = 32; 1518 break; 1519 case PRID_REV_TX3922: 1520 c->cputype = CPU_TX3922; 1521 __cpu_name[cpu] = "TX3922"; 1522 c->tlbsize = 64; 1523 break; 1524 } 1525 } 1526 break; 1527 case PRID_IMP_R4700: 1528 c->cputype = CPU_R4700; 1529 __cpu_name[cpu] = "R4700"; 1530 set_isa(c, MIPS_CPU_ISA_III); 1531 c->fpu_msk31 |= FPU_CSR_CONDX; 1532 c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR | 1533 MIPS_CPU_LLSC; 1534 c->tlbsize = 48; 1535 break; 1536 case PRID_IMP_TX49: 1537 c->cputype = CPU_TX49XX; 1538 __cpu_name[cpu] = "R49XX"; 1539 set_isa(c, MIPS_CPU_ISA_III); 1540 c->fpu_msk31 |= FPU_CSR_CONDX; 1541 c->options = R4K_OPTS | MIPS_CPU_LLSC; 1542 if (!(c->processor_id & 0x08)) 1543 c->options |= MIPS_CPU_FPU | MIPS_CPU_32FPR; 1544 c->tlbsize = 48; 1545 break; 1546 case PRID_IMP_R5000: 1547 c->cputype = CPU_R5000; 1548 __cpu_name[cpu] = "R5000"; 1549 set_isa(c, MIPS_CPU_ISA_IV); 1550 c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR | 1551 MIPS_CPU_LLSC; 1552 c->tlbsize = 48; 1553 break; 1554 case PRID_IMP_R5500: 1555 c->cputype = CPU_R5500; 1556 __cpu_name[cpu] = "R5500"; 1557 set_isa(c, MIPS_CPU_ISA_IV); 1558 c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR | 1559 MIPS_CPU_WATCH | MIPS_CPU_LLSC; 1560 c->tlbsize = 48; 1561 break; 1562 case PRID_IMP_NEVADA: 1563 c->cputype = CPU_NEVADA; 1564 __cpu_name[cpu] = "Nevada"; 1565 set_isa(c, MIPS_CPU_ISA_IV); 1566 c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR | 1567 MIPS_CPU_DIVEC | MIPS_CPU_LLSC; 1568 c->tlbsize = 48; 1569 break; 1570 case PRID_IMP_RM7000: 1571 c->cputype = CPU_RM7000; 1572 __cpu_name[cpu] = "RM7000"; 1573 set_isa(c, MIPS_CPU_ISA_IV); 1574 c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR | 1575 MIPS_CPU_LLSC; 1576 /* 1577 * Undocumented RM7000: Bit 29 in the info register of 1578 * the RM7000 v2.0 indicates if the TLB has 48 or 64 1579 * entries. 1580 * 1581 * 29 1 => 64 entry JTLB 1582 * 0 => 48 entry JTLB 1583 */ 1584 c->tlbsize = (read_c0_info() & (1 << 29)) ? 64 : 48; 1585 break; 1586 case PRID_IMP_R10000: 1587 c->cputype = CPU_R10000; 1588 __cpu_name[cpu] = "R10000"; 1589 set_isa(c, MIPS_CPU_ISA_IV); 1590 c->options = MIPS_CPU_TLB | MIPS_CPU_4K_CACHE | MIPS_CPU_4KEX | 1591 MIPS_CPU_FPU | MIPS_CPU_32FPR | 1592 MIPS_CPU_COUNTER | MIPS_CPU_WATCH | 1593 MIPS_CPU_LLSC; 1594 c->tlbsize = 64; 1595 break; 1596 case PRID_IMP_R12000: 1597 c->cputype = CPU_R12000; 1598 __cpu_name[cpu] = "R12000"; 1599 set_isa(c, MIPS_CPU_ISA_IV); 1600 c->options = MIPS_CPU_TLB | MIPS_CPU_4K_CACHE | MIPS_CPU_4KEX | 1601 MIPS_CPU_FPU | MIPS_CPU_32FPR | 1602 MIPS_CPU_COUNTER | MIPS_CPU_WATCH | 1603 MIPS_CPU_LLSC | MIPS_CPU_BP_GHIST; 1604 c->tlbsize = 64; 1605 break; 1606 case PRID_IMP_R14000: 1607 if (((c->processor_id >> 4) & 0x0f) > 2) { 1608 c->cputype = CPU_R16000; 1609 __cpu_name[cpu] = "R16000"; 1610 } else { 1611 c->cputype = CPU_R14000; 1612 __cpu_name[cpu] = "R14000"; 1613 } 1614 set_isa(c, MIPS_CPU_ISA_IV); 1615 c->options = MIPS_CPU_TLB | MIPS_CPU_4K_CACHE | MIPS_CPU_4KEX | 1616 MIPS_CPU_FPU | MIPS_CPU_32FPR | 1617 MIPS_CPU_COUNTER | MIPS_CPU_WATCH | 1618 MIPS_CPU_LLSC | MIPS_CPU_BP_GHIST; 1619 c->tlbsize = 64; 1620 break; 1621 case PRID_IMP_LOONGSON_64C: /* Loongson-2/3 */ 1622 switch (c->processor_id & PRID_REV_MASK) { 1623 case PRID_REV_LOONGSON2E: 1624 c->cputype = CPU_LOONGSON2EF; 1625 __cpu_name[cpu] = "ICT Loongson-2"; 1626 set_elf_platform(cpu, "loongson2e"); 1627 set_isa(c, MIPS_CPU_ISA_III); 1628 c->fpu_msk31 |= FPU_CSR_CONDX; 1629 break; 1630 case PRID_REV_LOONGSON2F: 1631 c->cputype = CPU_LOONGSON2EF; 1632 __cpu_name[cpu] = "ICT Loongson-2"; 1633 set_elf_platform(cpu, "loongson2f"); 1634 set_isa(c, MIPS_CPU_ISA_III); 1635 c->fpu_msk31 |= FPU_CSR_CONDX; 1636 break; 1637 case PRID_REV_LOONGSON3A_R1: 1638 c->cputype = CPU_LOONGSON64; 1639 __cpu_name[cpu] = "ICT Loongson-3"; 1640 set_elf_platform(cpu, "loongson3a"); 1641 set_isa(c, MIPS_CPU_ISA_M64R1); 1642 c->ases |= (MIPS_ASE_LOONGSON_MMI | MIPS_ASE_LOONGSON_CAM | 1643 MIPS_ASE_LOONGSON_EXT); 1644 break; 1645 case PRID_REV_LOONGSON3B_R1: 1646 case PRID_REV_LOONGSON3B_R2: 1647 c->cputype = CPU_LOONGSON64; 1648 __cpu_name[cpu] = "ICT Loongson-3"; 1649 set_elf_platform(cpu, "loongson3b"); 1650 set_isa(c, MIPS_CPU_ISA_M64R1); 1651 c->ases |= (MIPS_ASE_LOONGSON_MMI | MIPS_ASE_LOONGSON_CAM | 1652 MIPS_ASE_LOONGSON_EXT); 1653 break; 1654 } 1655 1656 c->options = R4K_OPTS | 1657 MIPS_CPU_FPU | MIPS_CPU_LLSC | 1658 MIPS_CPU_32FPR; 1659 c->tlbsize = 64; 1660 set_cpu_asid_mask(c, MIPS_ENTRYHI_ASID); 1661 c->writecombine = _CACHE_UNCACHED_ACCELERATED; 1662 break; 1663 case PRID_IMP_LOONGSON_32: /* Loongson-1 */ 1664 decode_configs(c); 1665 1666 c->cputype = CPU_LOONGSON32; 1667 1668 switch (c->processor_id & PRID_REV_MASK) { 1669 case PRID_REV_LOONGSON1B: 1670 __cpu_name[cpu] = "Loongson 1B"; 1671 break; 1672 } 1673 1674 break; 1675 } 1676 } 1677 1678 static inline void cpu_probe_mips(struct cpuinfo_mips *c, unsigned int cpu) 1679 { 1680 c->writecombine = _CACHE_UNCACHED_ACCELERATED; 1681 switch (c->processor_id & PRID_IMP_MASK) { 1682 case PRID_IMP_QEMU_GENERIC: 1683 c->writecombine = _CACHE_UNCACHED; 1684 c->cputype = CPU_QEMU_GENERIC; 1685 __cpu_name[cpu] = "MIPS GENERIC QEMU"; 1686 break; 1687 case PRID_IMP_4KC: 1688 c->cputype = CPU_4KC; 1689 c->writecombine = _CACHE_UNCACHED; 1690 __cpu_name[cpu] = "MIPS 4Kc"; 1691 break; 1692 case PRID_IMP_4KEC: 1693 case PRID_IMP_4KECR2: 1694 c->cputype = CPU_4KEC; 1695 c->writecombine = _CACHE_UNCACHED; 1696 __cpu_name[cpu] = "MIPS 4KEc"; 1697 break; 1698 case PRID_IMP_4KSC: 1699 case PRID_IMP_4KSD: 1700 c->cputype = CPU_4KSC; 1701 c->writecombine = _CACHE_UNCACHED; 1702 __cpu_name[cpu] = "MIPS 4KSc"; 1703 break; 1704 case PRID_IMP_5KC: 1705 c->cputype = CPU_5KC; 1706 c->writecombine = _CACHE_UNCACHED; 1707 __cpu_name[cpu] = "MIPS 5Kc"; 1708 break; 1709 case PRID_IMP_5KE: 1710 c->cputype = CPU_5KE; 1711 c->writecombine = _CACHE_UNCACHED; 1712 __cpu_name[cpu] = "MIPS 5KE"; 1713 break; 1714 case PRID_IMP_20KC: 1715 c->cputype = CPU_20KC; 1716 c->writecombine = _CACHE_UNCACHED; 1717 __cpu_name[cpu] = "MIPS 20Kc"; 1718 break; 1719 case PRID_IMP_24K: 1720 c->cputype = CPU_24K; 1721 c->writecombine = _CACHE_UNCACHED; 1722 __cpu_name[cpu] = "MIPS 24Kc"; 1723 break; 1724 case PRID_IMP_24KE: 1725 c->cputype = CPU_24K; 1726 c->writecombine = _CACHE_UNCACHED; 1727 __cpu_name[cpu] = "MIPS 24KEc"; 1728 break; 1729 case PRID_IMP_25KF: 1730 c->cputype = CPU_25KF; 1731 c->writecombine = _CACHE_UNCACHED; 1732 __cpu_name[cpu] = "MIPS 25Kc"; 1733 break; 1734 case PRID_IMP_34K: 1735 c->cputype = CPU_34K; 1736 c->writecombine = _CACHE_UNCACHED; 1737 __cpu_name[cpu] = "MIPS 34Kc"; 1738 cpu_set_mt_per_tc_perf(c); 1739 break; 1740 case PRID_IMP_74K: 1741 c->cputype = CPU_74K; 1742 c->writecombine = _CACHE_UNCACHED; 1743 __cpu_name[cpu] = "MIPS 74Kc"; 1744 break; 1745 case PRID_IMP_M14KC: 1746 c->cputype = CPU_M14KC; 1747 c->writecombine = _CACHE_UNCACHED; 1748 __cpu_name[cpu] = "MIPS M14Kc"; 1749 break; 1750 case PRID_IMP_M14KEC: 1751 c->cputype = CPU_M14KEC; 1752 c->writecombine = _CACHE_UNCACHED; 1753 __cpu_name[cpu] = "MIPS M14KEc"; 1754 break; 1755 case PRID_IMP_1004K: 1756 c->cputype = CPU_1004K; 1757 c->writecombine = _CACHE_UNCACHED; 1758 __cpu_name[cpu] = "MIPS 1004Kc"; 1759 cpu_set_mt_per_tc_perf(c); 1760 break; 1761 case PRID_IMP_1074K: 1762 c->cputype = CPU_1074K; 1763 c->writecombine = _CACHE_UNCACHED; 1764 __cpu_name[cpu] = "MIPS 1074Kc"; 1765 break; 1766 case PRID_IMP_INTERAPTIV_UP: 1767 c->cputype = CPU_INTERAPTIV; 1768 __cpu_name[cpu] = "MIPS interAptiv"; 1769 cpu_set_mt_per_tc_perf(c); 1770 break; 1771 case PRID_IMP_INTERAPTIV_MP: 1772 c->cputype = CPU_INTERAPTIV; 1773 __cpu_name[cpu] = "MIPS interAptiv (multi)"; 1774 cpu_set_mt_per_tc_perf(c); 1775 break; 1776 case PRID_IMP_PROAPTIV_UP: 1777 c->cputype = CPU_PROAPTIV; 1778 __cpu_name[cpu] = "MIPS proAptiv"; 1779 break; 1780 case PRID_IMP_PROAPTIV_MP: 1781 c->cputype = CPU_PROAPTIV; 1782 __cpu_name[cpu] = "MIPS proAptiv (multi)"; 1783 break; 1784 case PRID_IMP_P5600: 1785 c->cputype = CPU_P5600; 1786 __cpu_name[cpu] = "MIPS P5600"; 1787 break; 1788 case PRID_IMP_P6600: 1789 c->cputype = CPU_P6600; 1790 __cpu_name[cpu] = "MIPS P6600"; 1791 break; 1792 case PRID_IMP_I6400: 1793 c->cputype = CPU_I6400; 1794 __cpu_name[cpu] = "MIPS I6400"; 1795 break; 1796 case PRID_IMP_I6500: 1797 c->cputype = CPU_I6500; 1798 __cpu_name[cpu] = "MIPS I6500"; 1799 break; 1800 case PRID_IMP_M5150: 1801 c->cputype = CPU_M5150; 1802 __cpu_name[cpu] = "MIPS M5150"; 1803 break; 1804 case PRID_IMP_M6250: 1805 c->cputype = CPU_M6250; 1806 __cpu_name[cpu] = "MIPS M6250"; 1807 break; 1808 } 1809 1810 decode_configs(c); 1811 1812 spram_config(); 1813 1814 mm_config(c); 1815 1816 switch (__get_cpu_type(c->cputype)) { 1817 case CPU_M5150: 1818 case CPU_P5600: 1819 set_isa(c, MIPS_CPU_ISA_M32R5); 1820 break; 1821 case CPU_I6500: 1822 c->options |= MIPS_CPU_SHARED_FTLB_ENTRIES; 1823 fallthrough; 1824 case CPU_I6400: 1825 c->options |= MIPS_CPU_SHARED_FTLB_RAM; 1826 fallthrough; 1827 default: 1828 break; 1829 } 1830 } 1831 1832 static inline void cpu_probe_alchemy(struct cpuinfo_mips *c, unsigned int cpu) 1833 { 1834 decode_configs(c); 1835 switch (c->processor_id & PRID_IMP_MASK) { 1836 case PRID_IMP_AU1_REV1: 1837 case PRID_IMP_AU1_REV2: 1838 c->cputype = CPU_ALCHEMY; 1839 switch ((c->processor_id >> 24) & 0xff) { 1840 case 0: 1841 __cpu_name[cpu] = "Au1000"; 1842 break; 1843 case 1: 1844 __cpu_name[cpu] = "Au1500"; 1845 break; 1846 case 2: 1847 __cpu_name[cpu] = "Au1100"; 1848 break; 1849 case 3: 1850 __cpu_name[cpu] = "Au1550"; 1851 break; 1852 case 4: 1853 __cpu_name[cpu] = "Au1200"; 1854 if ((c->processor_id & PRID_REV_MASK) == 2) 1855 __cpu_name[cpu] = "Au1250"; 1856 break; 1857 case 5: 1858 __cpu_name[cpu] = "Au1210"; 1859 break; 1860 default: 1861 __cpu_name[cpu] = "Au1xxx"; 1862 break; 1863 } 1864 break; 1865 } 1866 } 1867 1868 static inline void cpu_probe_sibyte(struct cpuinfo_mips *c, unsigned int cpu) 1869 { 1870 decode_configs(c); 1871 1872 c->writecombine = _CACHE_UNCACHED_ACCELERATED; 1873 switch (c->processor_id & PRID_IMP_MASK) { 1874 case PRID_IMP_SB1: 1875 c->cputype = CPU_SB1; 1876 __cpu_name[cpu] = "SiByte SB1"; 1877 /* FPU in pass1 is known to have issues. */ 1878 if ((c->processor_id & PRID_REV_MASK) < 0x02) 1879 c->options &= ~(MIPS_CPU_FPU | MIPS_CPU_32FPR); 1880 break; 1881 case PRID_IMP_SB1A: 1882 c->cputype = CPU_SB1A; 1883 __cpu_name[cpu] = "SiByte SB1A"; 1884 break; 1885 } 1886 } 1887 1888 static inline void cpu_probe_sandcraft(struct cpuinfo_mips *c, unsigned int cpu) 1889 { 1890 decode_configs(c); 1891 switch (c->processor_id & PRID_IMP_MASK) { 1892 case PRID_IMP_SR71000: 1893 c->cputype = CPU_SR71000; 1894 __cpu_name[cpu] = "Sandcraft SR71000"; 1895 c->scache.ways = 8; 1896 c->tlbsize = 64; 1897 break; 1898 } 1899 } 1900 1901 static inline void cpu_probe_nxp(struct cpuinfo_mips *c, unsigned int cpu) 1902 { 1903 decode_configs(c); 1904 switch (c->processor_id & PRID_IMP_MASK) { 1905 case PRID_IMP_PR4450: 1906 c->cputype = CPU_PR4450; 1907 __cpu_name[cpu] = "Philips PR4450"; 1908 set_isa(c, MIPS_CPU_ISA_M32R1); 1909 break; 1910 } 1911 } 1912 1913 static inline void cpu_probe_broadcom(struct cpuinfo_mips *c, unsigned int cpu) 1914 { 1915 decode_configs(c); 1916 switch (c->processor_id & PRID_IMP_MASK) { 1917 case PRID_IMP_BMIPS32_REV4: 1918 case PRID_IMP_BMIPS32_REV8: 1919 c->cputype = CPU_BMIPS32; 1920 __cpu_name[cpu] = "Broadcom BMIPS32"; 1921 set_elf_platform(cpu, "bmips32"); 1922 break; 1923 case PRID_IMP_BMIPS3300: 1924 case PRID_IMP_BMIPS3300_ALT: 1925 case PRID_IMP_BMIPS3300_BUG: 1926 c->cputype = CPU_BMIPS3300; 1927 __cpu_name[cpu] = "Broadcom BMIPS3300"; 1928 set_elf_platform(cpu, "bmips3300"); 1929 break; 1930 case PRID_IMP_BMIPS43XX: { 1931 int rev = c->processor_id & PRID_REV_MASK; 1932 1933 if (rev >= PRID_REV_BMIPS4380_LO && 1934 rev <= PRID_REV_BMIPS4380_HI) { 1935 c->cputype = CPU_BMIPS4380; 1936 __cpu_name[cpu] = "Broadcom BMIPS4380"; 1937 set_elf_platform(cpu, "bmips4380"); 1938 c->options |= MIPS_CPU_RIXI; 1939 } else { 1940 c->cputype = CPU_BMIPS4350; 1941 __cpu_name[cpu] = "Broadcom BMIPS4350"; 1942 set_elf_platform(cpu, "bmips4350"); 1943 } 1944 break; 1945 } 1946 case PRID_IMP_BMIPS5000: 1947 case PRID_IMP_BMIPS5200: 1948 c->cputype = CPU_BMIPS5000; 1949 if ((c->processor_id & PRID_IMP_MASK) == PRID_IMP_BMIPS5200) 1950 __cpu_name[cpu] = "Broadcom BMIPS5200"; 1951 else 1952 __cpu_name[cpu] = "Broadcom BMIPS5000"; 1953 set_elf_platform(cpu, "bmips5000"); 1954 c->options |= MIPS_CPU_ULRI | MIPS_CPU_RIXI; 1955 break; 1956 } 1957 } 1958 1959 static inline void cpu_probe_cavium(struct cpuinfo_mips *c, unsigned int cpu) 1960 { 1961 decode_configs(c); 1962 switch (c->processor_id & PRID_IMP_MASK) { 1963 case PRID_IMP_CAVIUM_CN38XX: 1964 case PRID_IMP_CAVIUM_CN31XX: 1965 case PRID_IMP_CAVIUM_CN30XX: 1966 c->cputype = CPU_CAVIUM_OCTEON; 1967 __cpu_name[cpu] = "Cavium Octeon"; 1968 goto platform; 1969 case PRID_IMP_CAVIUM_CN58XX: 1970 case PRID_IMP_CAVIUM_CN56XX: 1971 case PRID_IMP_CAVIUM_CN50XX: 1972 case PRID_IMP_CAVIUM_CN52XX: 1973 c->cputype = CPU_CAVIUM_OCTEON_PLUS; 1974 __cpu_name[cpu] = "Cavium Octeon+"; 1975 platform: 1976 set_elf_platform(cpu, "octeon"); 1977 break; 1978 case PRID_IMP_CAVIUM_CN61XX: 1979 case PRID_IMP_CAVIUM_CN63XX: 1980 case PRID_IMP_CAVIUM_CN66XX: 1981 case PRID_IMP_CAVIUM_CN68XX: 1982 case PRID_IMP_CAVIUM_CNF71XX: 1983 c->cputype = CPU_CAVIUM_OCTEON2; 1984 __cpu_name[cpu] = "Cavium Octeon II"; 1985 set_elf_platform(cpu, "octeon2"); 1986 break; 1987 case PRID_IMP_CAVIUM_CN70XX: 1988 case PRID_IMP_CAVIUM_CN73XX: 1989 case PRID_IMP_CAVIUM_CNF75XX: 1990 case PRID_IMP_CAVIUM_CN78XX: 1991 c->cputype = CPU_CAVIUM_OCTEON3; 1992 __cpu_name[cpu] = "Cavium Octeon III"; 1993 set_elf_platform(cpu, "octeon3"); 1994 break; 1995 default: 1996 printk(KERN_INFO "Unknown Octeon chip!\n"); 1997 c->cputype = CPU_UNKNOWN; 1998 break; 1999 } 2000 } 2001 2002 #ifdef CONFIG_CPU_LOONGSON64 2003 #include <loongson_regs.h> 2004 2005 static inline void decode_cpucfg(struct cpuinfo_mips *c) 2006 { 2007 u32 cfg1 = read_cpucfg(LOONGSON_CFG1); 2008 u32 cfg2 = read_cpucfg(LOONGSON_CFG2); 2009 u32 cfg3 = read_cpucfg(LOONGSON_CFG3); 2010 2011 if (cfg1 & LOONGSON_CFG1_MMI) 2012 c->ases |= MIPS_ASE_LOONGSON_MMI; 2013 2014 if (cfg2 & LOONGSON_CFG2_LEXT1) 2015 c->ases |= MIPS_ASE_LOONGSON_EXT; 2016 2017 if (cfg2 & LOONGSON_CFG2_LEXT2) 2018 c->ases |= MIPS_ASE_LOONGSON_EXT2; 2019 2020 if (cfg2 & LOONGSON_CFG2_LSPW) 2021 c->options |= MIPS_CPU_LDPTE; 2022 2023 if (cfg3 & LOONGSON_CFG3_LCAMP) 2024 c->ases |= MIPS_ASE_LOONGSON_CAM; 2025 } 2026 2027 static inline void cpu_probe_loongson(struct cpuinfo_mips *c, unsigned int cpu) 2028 { 2029 decode_configs(c); 2030 2031 switch (c->processor_id & PRID_IMP_MASK) { 2032 case PRID_IMP_LOONGSON_64R: /* Loongson-64 Reduced */ 2033 switch (c->processor_id & PRID_REV_MASK) { 2034 case PRID_REV_LOONGSON2K_R1_0: 2035 case PRID_REV_LOONGSON2K_R1_1: 2036 case PRID_REV_LOONGSON2K_R1_2: 2037 case PRID_REV_LOONGSON2K_R1_3: 2038 c->cputype = CPU_LOONGSON64; 2039 __cpu_name[cpu] = "Loongson-2K"; 2040 set_elf_platform(cpu, "gs264e"); 2041 set_isa(c, MIPS_CPU_ISA_M64R2); 2042 break; 2043 } 2044 c->writecombine = _CACHE_UNCACHED_ACCELERATED; 2045 c->ases |= (MIPS_ASE_LOONGSON_MMI | MIPS_ASE_LOONGSON_EXT | 2046 MIPS_ASE_LOONGSON_EXT2); 2047 break; 2048 case PRID_IMP_LOONGSON_64C: /* Loongson-3 Classic */ 2049 switch (c->processor_id & PRID_REV_MASK) { 2050 case PRID_REV_LOONGSON3A_R2_0: 2051 case PRID_REV_LOONGSON3A_R2_1: 2052 c->cputype = CPU_LOONGSON64; 2053 __cpu_name[cpu] = "ICT Loongson-3"; 2054 set_elf_platform(cpu, "loongson3a"); 2055 set_isa(c, MIPS_CPU_ISA_M64R2); 2056 break; 2057 case PRID_REV_LOONGSON3A_R3_0: 2058 case PRID_REV_LOONGSON3A_R3_1: 2059 c->cputype = CPU_LOONGSON64; 2060 __cpu_name[cpu] = "ICT Loongson-3"; 2061 set_elf_platform(cpu, "loongson3a"); 2062 set_isa(c, MIPS_CPU_ISA_M64R2); 2063 break; 2064 } 2065 /* 2066 * Loongson-3 Classic did not implement MIPS standard TLBINV 2067 * but implemented TLBINVF and EHINV. As currently we're only 2068 * using these two features, enable MIPS_CPU_TLBINV as well. 2069 * 2070 * Also some early Loongson-3A2000 had wrong TLB type in Config 2071 * register, we correct it here. 2072 */ 2073 c->options |= MIPS_CPU_FTLB | MIPS_CPU_TLBINV | MIPS_CPU_LDPTE; 2074 c->writecombine = _CACHE_UNCACHED_ACCELERATED; 2075 c->ases |= (MIPS_ASE_LOONGSON_MMI | MIPS_ASE_LOONGSON_CAM | 2076 MIPS_ASE_LOONGSON_EXT | MIPS_ASE_LOONGSON_EXT2); 2077 break; 2078 case PRID_IMP_LOONGSON_64G: 2079 c->cputype = CPU_LOONGSON64; 2080 __cpu_name[cpu] = "ICT Loongson-3"; 2081 set_elf_platform(cpu, "loongson3a"); 2082 set_isa(c, MIPS_CPU_ISA_M64R2); 2083 decode_cpucfg(c); 2084 c->writecombine = _CACHE_UNCACHED_ACCELERATED; 2085 break; 2086 default: 2087 panic("Unknown Loongson Processor ID!"); 2088 break; 2089 } 2090 } 2091 #else 2092 static inline void cpu_probe_loongson(struct cpuinfo_mips *c, unsigned int cpu) { } 2093 #endif 2094 2095 static inline void cpu_probe_ingenic(struct cpuinfo_mips *c, unsigned int cpu) 2096 { 2097 decode_configs(c); 2098 2099 /* 2100 * XBurst misses a config2 register, so config3 decode was skipped in 2101 * decode_configs(). 2102 */ 2103 decode_config3(c); 2104 2105 /* XBurst does not implement the CP0 counter. */ 2106 c->options &= ~MIPS_CPU_COUNTER; 2107 BUG_ON(!__builtin_constant_p(cpu_has_counter) || cpu_has_counter); 2108 2109 switch (c->processor_id & PRID_IMP_MASK) { 2110 case PRID_IMP_XBURST_REV1: 2111 2112 /* 2113 * The XBurst core by default attempts to avoid branch target 2114 * buffer lookups by detecting & special casing loops. This 2115 * feature will cause BogoMIPS and lpj calculate in error. 2116 * Set cp0 config7 bit 4 to disable this feature. 2117 */ 2118 set_c0_config7(MIPS_CONF7_BTB_LOOP_EN); 2119 2120 switch (c->processor_id & PRID_COMP_MASK) { 2121 2122 /* 2123 * The config0 register in the XBurst CPUs with a processor ID of 2124 * PRID_COMP_INGENIC_D0 report themselves as MIPS32r2 compatible, 2125 * but they don't actually support this ISA. 2126 */ 2127 case PRID_COMP_INGENIC_D0: 2128 c->isa_level &= ~MIPS_CPU_ISA_M32R2; 2129 break; 2130 2131 /* 2132 * The config0 register in the XBurst CPUs with a processor ID of 2133 * PRID_COMP_INGENIC_D1 has an abandoned huge page tlb mode, this 2134 * mode is not compatible with the MIPS standard, it will cause 2135 * tlbmiss and into an infinite loop (line 21 in the tlb-funcs.S) 2136 * when starting the init process. After chip reset, the default 2137 * is HPTLB mode, Write 0xa9000000 to cp0 register 5 sel 4 to 2138 * switch back to VTLB mode to prevent getting stuck. 2139 */ 2140 case PRID_COMP_INGENIC_D1: 2141 write_c0_page_ctrl(XBURST_PAGECTRL_HPTLB_DIS); 2142 break; 2143 2144 default: 2145 break; 2146 } 2147 fallthrough; 2148 case PRID_IMP_XBURST_REV2: 2149 c->cputype = CPU_XBURST; 2150 c->writecombine = _CACHE_UNCACHED_ACCELERATED; 2151 __cpu_name[cpu] = "Ingenic XBurst"; 2152 break; 2153 2154 default: 2155 panic("Unknown Ingenic Processor ID!"); 2156 break; 2157 } 2158 } 2159 2160 static inline void cpu_probe_netlogic(struct cpuinfo_mips *c, int cpu) 2161 { 2162 decode_configs(c); 2163 2164 if ((c->processor_id & PRID_IMP_MASK) == PRID_IMP_NETLOGIC_AU13XX) { 2165 c->cputype = CPU_ALCHEMY; 2166 __cpu_name[cpu] = "Au1300"; 2167 /* following stuff is not for Alchemy */ 2168 return; 2169 } 2170 2171 c->options = (MIPS_CPU_TLB | 2172 MIPS_CPU_4KEX | 2173 MIPS_CPU_COUNTER | 2174 MIPS_CPU_DIVEC | 2175 MIPS_CPU_WATCH | 2176 MIPS_CPU_EJTAG | 2177 MIPS_CPU_LLSC); 2178 2179 switch (c->processor_id & PRID_IMP_MASK) { 2180 case PRID_IMP_NETLOGIC_XLP2XX: 2181 case PRID_IMP_NETLOGIC_XLP9XX: 2182 case PRID_IMP_NETLOGIC_XLP5XX: 2183 c->cputype = CPU_XLP; 2184 __cpu_name[cpu] = "Broadcom XLPII"; 2185 break; 2186 2187 case PRID_IMP_NETLOGIC_XLP8XX: 2188 case PRID_IMP_NETLOGIC_XLP3XX: 2189 c->cputype = CPU_XLP; 2190 __cpu_name[cpu] = "Netlogic XLP"; 2191 break; 2192 2193 case PRID_IMP_NETLOGIC_XLR732: 2194 case PRID_IMP_NETLOGIC_XLR716: 2195 case PRID_IMP_NETLOGIC_XLR532: 2196 case PRID_IMP_NETLOGIC_XLR308: 2197 case PRID_IMP_NETLOGIC_XLR532C: 2198 case PRID_IMP_NETLOGIC_XLR516C: 2199 case PRID_IMP_NETLOGIC_XLR508C: 2200 case PRID_IMP_NETLOGIC_XLR308C: 2201 c->cputype = CPU_XLR; 2202 __cpu_name[cpu] = "Netlogic XLR"; 2203 break; 2204 2205 case PRID_IMP_NETLOGIC_XLS608: 2206 case PRID_IMP_NETLOGIC_XLS408: 2207 case PRID_IMP_NETLOGIC_XLS404: 2208 case PRID_IMP_NETLOGIC_XLS208: 2209 case PRID_IMP_NETLOGIC_XLS204: 2210 case PRID_IMP_NETLOGIC_XLS108: 2211 case PRID_IMP_NETLOGIC_XLS104: 2212 case PRID_IMP_NETLOGIC_XLS616B: 2213 case PRID_IMP_NETLOGIC_XLS608B: 2214 case PRID_IMP_NETLOGIC_XLS416B: 2215 case PRID_IMP_NETLOGIC_XLS412B: 2216 case PRID_IMP_NETLOGIC_XLS408B: 2217 case PRID_IMP_NETLOGIC_XLS404B: 2218 c->cputype = CPU_XLR; 2219 __cpu_name[cpu] = "Netlogic XLS"; 2220 break; 2221 2222 default: 2223 pr_info("Unknown Netlogic chip id [%02x]!\n", 2224 c->processor_id); 2225 c->cputype = CPU_XLR; 2226 break; 2227 } 2228 2229 if (c->cputype == CPU_XLP) { 2230 set_isa(c, MIPS_CPU_ISA_M64R2); 2231 c->options |= (MIPS_CPU_FPU | MIPS_CPU_ULRI | MIPS_CPU_MCHECK); 2232 /* This will be updated again after all threads are woken up */ 2233 c->tlbsize = ((read_c0_config6() >> 16) & 0xffff) + 1; 2234 } else { 2235 set_isa(c, MIPS_CPU_ISA_M64R1); 2236 c->tlbsize = ((read_c0_config1() >> 25) & 0x3f) + 1; 2237 } 2238 c->kscratch_mask = 0xf; 2239 } 2240 2241 #ifdef CONFIG_64BIT 2242 /* For use by uaccess.h */ 2243 u64 __ua_limit; 2244 EXPORT_SYMBOL(__ua_limit); 2245 #endif 2246 2247 const char *__cpu_name[NR_CPUS]; 2248 const char *__elf_platform; 2249 const char *__elf_base_platform; 2250 2251 void cpu_probe(void) 2252 { 2253 struct cpuinfo_mips *c = ¤t_cpu_data; 2254 unsigned int cpu = smp_processor_id(); 2255 2256 /* 2257 * Set a default elf platform, cpu probe may later 2258 * overwrite it with a more precise value 2259 */ 2260 set_elf_platform(cpu, "mips"); 2261 2262 c->processor_id = PRID_IMP_UNKNOWN; 2263 c->fpu_id = FPIR_IMP_NONE; 2264 c->cputype = CPU_UNKNOWN; 2265 c->writecombine = _CACHE_UNCACHED; 2266 2267 c->fpu_csr31 = FPU_CSR_RN; 2268 c->fpu_msk31 = FPU_CSR_RSVD | FPU_CSR_ABS2008 | FPU_CSR_NAN2008; 2269 2270 c->processor_id = read_c0_prid(); 2271 switch (c->processor_id & PRID_COMP_MASK) { 2272 case PRID_COMP_LEGACY: 2273 cpu_probe_legacy(c, cpu); 2274 break; 2275 case PRID_COMP_MIPS: 2276 cpu_probe_mips(c, cpu); 2277 break; 2278 case PRID_COMP_ALCHEMY: 2279 cpu_probe_alchemy(c, cpu); 2280 break; 2281 case PRID_COMP_SIBYTE: 2282 cpu_probe_sibyte(c, cpu); 2283 break; 2284 case PRID_COMP_BROADCOM: 2285 cpu_probe_broadcom(c, cpu); 2286 break; 2287 case PRID_COMP_SANDCRAFT: 2288 cpu_probe_sandcraft(c, cpu); 2289 break; 2290 case PRID_COMP_NXP: 2291 cpu_probe_nxp(c, cpu); 2292 break; 2293 case PRID_COMP_CAVIUM: 2294 cpu_probe_cavium(c, cpu); 2295 break; 2296 case PRID_COMP_LOONGSON: 2297 cpu_probe_loongson(c, cpu); 2298 break; 2299 case PRID_COMP_INGENIC_D0: 2300 case PRID_COMP_INGENIC_D1: 2301 case PRID_COMP_INGENIC_E1: 2302 cpu_probe_ingenic(c, cpu); 2303 break; 2304 case PRID_COMP_NETLOGIC: 2305 cpu_probe_netlogic(c, cpu); 2306 break; 2307 } 2308 2309 BUG_ON(!__cpu_name[cpu]); 2310 BUG_ON(c->cputype == CPU_UNKNOWN); 2311 2312 /* 2313 * Platform code can force the cpu type to optimize code 2314 * generation. In that case be sure the cpu type is correctly 2315 * manually setup otherwise it could trigger some nasty bugs. 2316 */ 2317 BUG_ON(current_cpu_type() != c->cputype); 2318 2319 if (cpu_has_rixi) { 2320 /* Enable the RIXI exceptions */ 2321 set_c0_pagegrain(PG_IEC); 2322 back_to_back_c0_hazard(); 2323 /* Verify the IEC bit is set */ 2324 if (read_c0_pagegrain() & PG_IEC) 2325 c->options |= MIPS_CPU_RIXIEX; 2326 } 2327 2328 if (mips_fpu_disabled) 2329 c->options &= ~MIPS_CPU_FPU; 2330 2331 if (mips_dsp_disabled) 2332 c->ases &= ~(MIPS_ASE_DSP | MIPS_ASE_DSP2P); 2333 2334 if (mips_htw_disabled) { 2335 c->options &= ~MIPS_CPU_HTW; 2336 write_c0_pwctl(read_c0_pwctl() & 2337 ~(1 << MIPS_PWCTL_PWEN_SHIFT)); 2338 } 2339 2340 if (c->options & MIPS_CPU_FPU) 2341 cpu_set_fpu_opts(c); 2342 else 2343 cpu_set_nofpu_opts(c); 2344 2345 if (cpu_has_bp_ghist) 2346 write_c0_r10k_diag(read_c0_r10k_diag() | 2347 R10K_DIAG_E_GHIST); 2348 2349 if (cpu_has_mips_r2_r6) { 2350 c->srsets = ((read_c0_srsctl() >> 26) & 0x0f) + 1; 2351 /* R2 has Performance Counter Interrupt indicator */ 2352 c->options |= MIPS_CPU_PCI; 2353 } 2354 else 2355 c->srsets = 1; 2356 2357 if (cpu_has_mips_r6) 2358 elf_hwcap |= HWCAP_MIPS_R6; 2359 2360 if (cpu_has_msa) { 2361 c->msa_id = cpu_get_msa_id(); 2362 WARN(c->msa_id & MSA_IR_WRPF, 2363 "Vector register partitioning unimplemented!"); 2364 elf_hwcap |= HWCAP_MIPS_MSA; 2365 } 2366 2367 if (cpu_has_mips16) 2368 elf_hwcap |= HWCAP_MIPS_MIPS16; 2369 2370 if (cpu_has_mdmx) 2371 elf_hwcap |= HWCAP_MIPS_MDMX; 2372 2373 if (cpu_has_mips3d) 2374 elf_hwcap |= HWCAP_MIPS_MIPS3D; 2375 2376 if (cpu_has_smartmips) 2377 elf_hwcap |= HWCAP_MIPS_SMARTMIPS; 2378 2379 if (cpu_has_dsp) 2380 elf_hwcap |= HWCAP_MIPS_DSP; 2381 2382 if (cpu_has_dsp2) 2383 elf_hwcap |= HWCAP_MIPS_DSP2; 2384 2385 if (cpu_has_dsp3) 2386 elf_hwcap |= HWCAP_MIPS_DSP3; 2387 2388 if (cpu_has_mips16e2) 2389 elf_hwcap |= HWCAP_MIPS_MIPS16E2; 2390 2391 if (cpu_has_loongson_mmi) 2392 elf_hwcap |= HWCAP_LOONGSON_MMI; 2393 2394 if (cpu_has_loongson_ext) 2395 elf_hwcap |= HWCAP_LOONGSON_EXT; 2396 2397 if (cpu_has_loongson_ext2) 2398 elf_hwcap |= HWCAP_LOONGSON_EXT2; 2399 2400 if (cpu_has_vz) 2401 cpu_probe_vz(c); 2402 2403 cpu_probe_vmbits(c); 2404 2405 /* Synthesize CPUCFG data if running on Loongson processors; 2406 * no-op otherwise. 2407 * 2408 * This looks at previously probed features, so keep this at bottom. 2409 */ 2410 loongson3_cpucfg_synthesize_data(c); 2411 2412 #ifdef CONFIG_64BIT 2413 if (cpu == 0) 2414 __ua_limit = ~((1ull << cpu_vmbits) - 1); 2415 #endif 2416 } 2417 2418 void cpu_report(void) 2419 { 2420 struct cpuinfo_mips *c = ¤t_cpu_data; 2421 2422 pr_info("CPU%d revision is: %08x (%s)\n", 2423 smp_processor_id(), c->processor_id, cpu_name_string()); 2424 if (c->options & MIPS_CPU_FPU) 2425 printk(KERN_INFO "FPU revision is: %08x\n", c->fpu_id); 2426 if (cpu_has_msa) 2427 pr_info("MSA revision is: %08x\n", c->msa_id); 2428 } 2429 2430 void cpu_set_cluster(struct cpuinfo_mips *cpuinfo, unsigned int cluster) 2431 { 2432 /* Ensure the core number fits in the field */ 2433 WARN_ON(cluster > (MIPS_GLOBALNUMBER_CLUSTER >> 2434 MIPS_GLOBALNUMBER_CLUSTER_SHF)); 2435 2436 cpuinfo->globalnumber &= ~MIPS_GLOBALNUMBER_CLUSTER; 2437 cpuinfo->globalnumber |= cluster << MIPS_GLOBALNUMBER_CLUSTER_SHF; 2438 } 2439 2440 void cpu_set_core(struct cpuinfo_mips *cpuinfo, unsigned int core) 2441 { 2442 /* Ensure the core number fits in the field */ 2443 WARN_ON(core > (MIPS_GLOBALNUMBER_CORE >> MIPS_GLOBALNUMBER_CORE_SHF)); 2444 2445 cpuinfo->globalnumber &= ~MIPS_GLOBALNUMBER_CORE; 2446 cpuinfo->globalnumber |= core << MIPS_GLOBALNUMBER_CORE_SHF; 2447 } 2448 2449 void cpu_set_vpe_id(struct cpuinfo_mips *cpuinfo, unsigned int vpe) 2450 { 2451 /* Ensure the VP(E) ID fits in the field */ 2452 WARN_ON(vpe > (MIPS_GLOBALNUMBER_VP >> MIPS_GLOBALNUMBER_VP_SHF)); 2453 2454 /* Ensure we're not using VP(E)s without support */ 2455 WARN_ON(vpe && !IS_ENABLED(CONFIG_MIPS_MT_SMP) && 2456 !IS_ENABLED(CONFIG_CPU_MIPSR6)); 2457 2458 cpuinfo->globalnumber &= ~MIPS_GLOBALNUMBER_VP; 2459 cpuinfo->globalnumber |= vpe << MIPS_GLOBALNUMBER_VP_SHF; 2460 } 2461