xref: /linux/arch/mips/kernel/cpu-probe.c (revision 15a1fbdcfb519c2bd291ed01c6c94e0b89537a77)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Processor capabilities determination functions.
4  *
5  * Copyright (C) xxxx  the Anonymous
6  * Copyright (C) 1994 - 2006 Ralf Baechle
7  * Copyright (C) 2003, 2004  Maciej W. Rozycki
8  * Copyright (C) 2001, 2004, 2011, 2012	 MIPS Technologies, Inc.
9  */
10 #include <linux/init.h>
11 #include <linux/kernel.h>
12 #include <linux/ptrace.h>
13 #include <linux/smp.h>
14 #include <linux/stddef.h>
15 #include <linux/export.h>
16 
17 #include <asm/bugs.h>
18 #include <asm/cpu.h>
19 #include <asm/cpu-features.h>
20 #include <asm/cpu-type.h>
21 #include <asm/fpu.h>
22 #include <asm/mipsregs.h>
23 #include <asm/mipsmtregs.h>
24 #include <asm/msa.h>
25 #include <asm/watch.h>
26 #include <asm/elf.h>
27 #include <asm/pgtable-bits.h>
28 #include <asm/spram.h>
29 #include <linux/uaccess.h>
30 
31 /* Hardware capabilities */
32 unsigned int elf_hwcap __read_mostly;
33 EXPORT_SYMBOL_GPL(elf_hwcap);
34 
35 #ifdef CONFIG_MIPS_FP_SUPPORT
36 
37 /*
38  * Get the FPU Implementation/Revision.
39  */
40 static inline unsigned long cpu_get_fpu_id(void)
41 {
42 	unsigned long tmp, fpu_id;
43 
44 	tmp = read_c0_status();
45 	__enable_fpu(FPU_AS_IS);
46 	fpu_id = read_32bit_cp1_register(CP1_REVISION);
47 	write_c0_status(tmp);
48 	return fpu_id;
49 }
50 
51 /*
52  * Check if the CPU has an external FPU.
53  */
54 static inline int __cpu_has_fpu(void)
55 {
56 	return (cpu_get_fpu_id() & FPIR_IMP_MASK) != FPIR_IMP_NONE;
57 }
58 
59 /*
60  * Determine the FCSR mask for FPU hardware.
61  */
62 static inline void cpu_set_fpu_fcsr_mask(struct cpuinfo_mips *c)
63 {
64 	unsigned long sr, mask, fcsr, fcsr0, fcsr1;
65 
66 	fcsr = c->fpu_csr31;
67 	mask = FPU_CSR_ALL_X | FPU_CSR_ALL_E | FPU_CSR_ALL_S | FPU_CSR_RM;
68 
69 	sr = read_c0_status();
70 	__enable_fpu(FPU_AS_IS);
71 
72 	fcsr0 = fcsr & mask;
73 	write_32bit_cp1_register(CP1_STATUS, fcsr0);
74 	fcsr0 = read_32bit_cp1_register(CP1_STATUS);
75 
76 	fcsr1 = fcsr | ~mask;
77 	write_32bit_cp1_register(CP1_STATUS, fcsr1);
78 	fcsr1 = read_32bit_cp1_register(CP1_STATUS);
79 
80 	write_32bit_cp1_register(CP1_STATUS, fcsr);
81 
82 	write_c0_status(sr);
83 
84 	c->fpu_msk31 = ~(fcsr0 ^ fcsr1) & ~mask;
85 }
86 
87 /*
88  * Determine the IEEE 754 NaN encodings and ABS.fmt/NEG.fmt execution modes
89  * supported by FPU hardware.
90  */
91 static void cpu_set_fpu_2008(struct cpuinfo_mips *c)
92 {
93 	if (c->isa_level & (MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1 |
94 			    MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 |
95 			    MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6)) {
96 		unsigned long sr, fir, fcsr, fcsr0, fcsr1;
97 
98 		sr = read_c0_status();
99 		__enable_fpu(FPU_AS_IS);
100 
101 		fir = read_32bit_cp1_register(CP1_REVISION);
102 		if (fir & MIPS_FPIR_HAS2008) {
103 			fcsr = read_32bit_cp1_register(CP1_STATUS);
104 
105 			/*
106 			 * MAC2008 toolchain never landed in real world, so we're only
107 			 * testing wether it can be disabled and don't try to enabled
108 			 * it.
109 			 */
110 			fcsr0 = fcsr & ~(FPU_CSR_ABS2008 | FPU_CSR_NAN2008 | FPU_CSR_MAC2008);
111 			write_32bit_cp1_register(CP1_STATUS, fcsr0);
112 			fcsr0 = read_32bit_cp1_register(CP1_STATUS);
113 
114 			fcsr1 = fcsr | FPU_CSR_ABS2008 | FPU_CSR_NAN2008;
115 			write_32bit_cp1_register(CP1_STATUS, fcsr1);
116 			fcsr1 = read_32bit_cp1_register(CP1_STATUS);
117 
118 			write_32bit_cp1_register(CP1_STATUS, fcsr);
119 
120 			if (c->isa_level & (MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2)) {
121 				/*
122 				 * The bit for MAC2008 might be reused by R6 in future,
123 				 * so we only test for R2-R5.
124 				 */
125 				if (fcsr0 & FPU_CSR_MAC2008)
126 					c->options |= MIPS_CPU_MAC_2008_ONLY;
127 			}
128 
129 			if (!(fcsr0 & FPU_CSR_NAN2008))
130 				c->options |= MIPS_CPU_NAN_LEGACY;
131 			if (fcsr1 & FPU_CSR_NAN2008)
132 				c->options |= MIPS_CPU_NAN_2008;
133 
134 			if ((fcsr0 ^ fcsr1) & FPU_CSR_ABS2008)
135 				c->fpu_msk31 &= ~FPU_CSR_ABS2008;
136 			else
137 				c->fpu_csr31 |= fcsr & FPU_CSR_ABS2008;
138 
139 			if ((fcsr0 ^ fcsr1) & FPU_CSR_NAN2008)
140 				c->fpu_msk31 &= ~FPU_CSR_NAN2008;
141 			else
142 				c->fpu_csr31 |= fcsr & FPU_CSR_NAN2008;
143 		} else {
144 			c->options |= MIPS_CPU_NAN_LEGACY;
145 		}
146 
147 		write_c0_status(sr);
148 	} else {
149 		c->options |= MIPS_CPU_NAN_LEGACY;
150 	}
151 }
152 
153 /*
154  * IEEE 754 conformance mode to use.  Affects the NaN encoding and the
155  * ABS.fmt/NEG.fmt execution mode.
156  */
157 static enum { STRICT, LEGACY, STD2008, RELAXED } ieee754 = STRICT;
158 
159 /*
160  * Set the IEEE 754 NaN encodings and the ABS.fmt/NEG.fmt execution modes
161  * to support by the FPU emulator according to the IEEE 754 conformance
162  * mode selected.  Note that "relaxed" straps the emulator so that it
163  * allows 2008-NaN binaries even for legacy processors.
164  */
165 static void cpu_set_nofpu_2008(struct cpuinfo_mips *c)
166 {
167 	c->options &= ~(MIPS_CPU_NAN_2008 | MIPS_CPU_NAN_LEGACY);
168 	c->fpu_csr31 &= ~(FPU_CSR_ABS2008 | FPU_CSR_NAN2008);
169 	c->fpu_msk31 &= ~(FPU_CSR_ABS2008 | FPU_CSR_NAN2008);
170 
171 	switch (ieee754) {
172 	case STRICT:
173 		if (c->isa_level & (MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1 |
174 				    MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 |
175 				    MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6)) {
176 			c->options |= MIPS_CPU_NAN_2008 | MIPS_CPU_NAN_LEGACY;
177 		} else {
178 			c->options |= MIPS_CPU_NAN_LEGACY;
179 			c->fpu_msk31 |= FPU_CSR_ABS2008 | FPU_CSR_NAN2008;
180 		}
181 		break;
182 	case LEGACY:
183 		c->options |= MIPS_CPU_NAN_LEGACY;
184 		c->fpu_msk31 |= FPU_CSR_ABS2008 | FPU_CSR_NAN2008;
185 		break;
186 	case STD2008:
187 		c->options |= MIPS_CPU_NAN_2008;
188 		c->fpu_csr31 |= FPU_CSR_ABS2008 | FPU_CSR_NAN2008;
189 		c->fpu_msk31 |= FPU_CSR_ABS2008 | FPU_CSR_NAN2008;
190 		break;
191 	case RELAXED:
192 		c->options |= MIPS_CPU_NAN_2008 | MIPS_CPU_NAN_LEGACY;
193 		break;
194 	}
195 }
196 
197 /*
198  * Override the IEEE 754 NaN encoding and ABS.fmt/NEG.fmt execution mode
199  * according to the "ieee754=" parameter.
200  */
201 static void cpu_set_nan_2008(struct cpuinfo_mips *c)
202 {
203 	switch (ieee754) {
204 	case STRICT:
205 		mips_use_nan_legacy = !!cpu_has_nan_legacy;
206 		mips_use_nan_2008 = !!cpu_has_nan_2008;
207 		break;
208 	case LEGACY:
209 		mips_use_nan_legacy = !!cpu_has_nan_legacy;
210 		mips_use_nan_2008 = !cpu_has_nan_legacy;
211 		break;
212 	case STD2008:
213 		mips_use_nan_legacy = !cpu_has_nan_2008;
214 		mips_use_nan_2008 = !!cpu_has_nan_2008;
215 		break;
216 	case RELAXED:
217 		mips_use_nan_legacy = true;
218 		mips_use_nan_2008 = true;
219 		break;
220 	}
221 }
222 
223 /*
224  * IEEE 754 NaN encoding and ABS.fmt/NEG.fmt execution mode override
225  * settings:
226  *
227  * strict:  accept binaries that request a NaN encoding supported by the FPU
228  * legacy:  only accept legacy-NaN binaries
229  * 2008:    only accept 2008-NaN binaries
230  * relaxed: accept any binaries regardless of whether supported by the FPU
231  */
232 static int __init ieee754_setup(char *s)
233 {
234 	if (!s)
235 		return -1;
236 	else if (!strcmp(s, "strict"))
237 		ieee754 = STRICT;
238 	else if (!strcmp(s, "legacy"))
239 		ieee754 = LEGACY;
240 	else if (!strcmp(s, "2008"))
241 		ieee754 = STD2008;
242 	else if (!strcmp(s, "relaxed"))
243 		ieee754 = RELAXED;
244 	else
245 		return -1;
246 
247 	if (!(boot_cpu_data.options & MIPS_CPU_FPU))
248 		cpu_set_nofpu_2008(&boot_cpu_data);
249 	cpu_set_nan_2008(&boot_cpu_data);
250 
251 	return 0;
252 }
253 
254 early_param("ieee754", ieee754_setup);
255 
256 /*
257  * Set the FIR feature flags for the FPU emulator.
258  */
259 static void cpu_set_nofpu_id(struct cpuinfo_mips *c)
260 {
261 	u32 value;
262 
263 	value = 0;
264 	if (c->isa_level & (MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1 |
265 			    MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 |
266 			    MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6))
267 		value |= MIPS_FPIR_D | MIPS_FPIR_S;
268 	if (c->isa_level & (MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 |
269 			    MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6))
270 		value |= MIPS_FPIR_F64 | MIPS_FPIR_L | MIPS_FPIR_W;
271 	if (c->options & MIPS_CPU_NAN_2008)
272 		value |= MIPS_FPIR_HAS2008;
273 	c->fpu_id = value;
274 }
275 
276 /* Determined FPU emulator mask to use for the boot CPU with "nofpu".  */
277 static unsigned int mips_nofpu_msk31;
278 
279 /*
280  * Set options for FPU hardware.
281  */
282 static void cpu_set_fpu_opts(struct cpuinfo_mips *c)
283 {
284 	c->fpu_id = cpu_get_fpu_id();
285 	mips_nofpu_msk31 = c->fpu_msk31;
286 
287 	if (c->isa_level & (MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1 |
288 			    MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 |
289 			    MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6)) {
290 		if (c->fpu_id & MIPS_FPIR_3D)
291 			c->ases |= MIPS_ASE_MIPS3D;
292 		if (c->fpu_id & MIPS_FPIR_UFRP)
293 			c->options |= MIPS_CPU_UFR;
294 		if (c->fpu_id & MIPS_FPIR_FREP)
295 			c->options |= MIPS_CPU_FRE;
296 	}
297 
298 	cpu_set_fpu_fcsr_mask(c);
299 	cpu_set_fpu_2008(c);
300 	cpu_set_nan_2008(c);
301 }
302 
303 /*
304  * Set options for the FPU emulator.
305  */
306 static void cpu_set_nofpu_opts(struct cpuinfo_mips *c)
307 {
308 	c->options &= ~MIPS_CPU_FPU;
309 	c->fpu_msk31 = mips_nofpu_msk31;
310 
311 	cpu_set_nofpu_2008(c);
312 	cpu_set_nan_2008(c);
313 	cpu_set_nofpu_id(c);
314 }
315 
316 static int mips_fpu_disabled;
317 
318 static int __init fpu_disable(char *s)
319 {
320 	cpu_set_nofpu_opts(&boot_cpu_data);
321 	mips_fpu_disabled = 1;
322 
323 	return 1;
324 }
325 
326 __setup("nofpu", fpu_disable);
327 
328 #else /* !CONFIG_MIPS_FP_SUPPORT */
329 
330 #define mips_fpu_disabled 1
331 
332 static inline unsigned long cpu_get_fpu_id(void)
333 {
334 	return FPIR_IMP_NONE;
335 }
336 
337 static inline int __cpu_has_fpu(void)
338 {
339 	return 0;
340 }
341 
342 static void cpu_set_fpu_opts(struct cpuinfo_mips *c)
343 {
344 	/* no-op */
345 }
346 
347 static void cpu_set_nofpu_opts(struct cpuinfo_mips *c)
348 {
349 	/* no-op */
350 }
351 
352 #endif /* CONFIG_MIPS_FP_SUPPORT */
353 
354 static inline unsigned long cpu_get_msa_id(void)
355 {
356 	unsigned long status, msa_id;
357 
358 	status = read_c0_status();
359 	__enable_fpu(FPU_64BIT);
360 	enable_msa();
361 	msa_id = read_msa_ir();
362 	disable_msa();
363 	write_c0_status(status);
364 	return msa_id;
365 }
366 
367 static int mips_dsp_disabled;
368 
369 static int __init dsp_disable(char *s)
370 {
371 	cpu_data[0].ases &= ~(MIPS_ASE_DSP | MIPS_ASE_DSP2P);
372 	mips_dsp_disabled = 1;
373 
374 	return 1;
375 }
376 
377 __setup("nodsp", dsp_disable);
378 
379 static int mips_htw_disabled;
380 
381 static int __init htw_disable(char *s)
382 {
383 	mips_htw_disabled = 1;
384 	cpu_data[0].options &= ~MIPS_CPU_HTW;
385 	write_c0_pwctl(read_c0_pwctl() &
386 		       ~(1 << MIPS_PWCTL_PWEN_SHIFT));
387 
388 	return 1;
389 }
390 
391 __setup("nohtw", htw_disable);
392 
393 static int mips_ftlb_disabled;
394 static int mips_has_ftlb_configured;
395 
396 enum ftlb_flags {
397 	FTLB_EN		= 1 << 0,
398 	FTLB_SET_PROB	= 1 << 1,
399 };
400 
401 static int set_ftlb_enable(struct cpuinfo_mips *c, enum ftlb_flags flags);
402 
403 static int __init ftlb_disable(char *s)
404 {
405 	unsigned int config4, mmuextdef;
406 
407 	/*
408 	 * If the core hasn't done any FTLB configuration, there is nothing
409 	 * for us to do here.
410 	 */
411 	if (!mips_has_ftlb_configured)
412 		return 1;
413 
414 	/* Disable it in the boot cpu */
415 	if (set_ftlb_enable(&cpu_data[0], 0)) {
416 		pr_warn("Can't turn FTLB off\n");
417 		return 1;
418 	}
419 
420 	config4 = read_c0_config4();
421 
422 	/* Check that FTLB has been disabled */
423 	mmuextdef = config4 & MIPS_CONF4_MMUEXTDEF;
424 	/* MMUSIZEEXT == VTLB ON, FTLB OFF */
425 	if (mmuextdef == MIPS_CONF4_MMUEXTDEF_FTLBSIZEEXT) {
426 		/* This should never happen */
427 		pr_warn("FTLB could not be disabled!\n");
428 		return 1;
429 	}
430 
431 	mips_ftlb_disabled = 1;
432 	mips_has_ftlb_configured = 0;
433 
434 	/*
435 	 * noftlb is mainly used for debug purposes so print
436 	 * an informative message instead of using pr_debug()
437 	 */
438 	pr_info("FTLB has been disabled\n");
439 
440 	/*
441 	 * Some of these bits are duplicated in the decode_config4.
442 	 * MIPS_CONF4_MMUEXTDEF_MMUSIZEEXT is the only possible case
443 	 * once FTLB has been disabled so undo what decode_config4 did.
444 	 */
445 	cpu_data[0].tlbsize -= cpu_data[0].tlbsizeftlbways *
446 			       cpu_data[0].tlbsizeftlbsets;
447 	cpu_data[0].tlbsizeftlbsets = 0;
448 	cpu_data[0].tlbsizeftlbways = 0;
449 
450 	return 1;
451 }
452 
453 __setup("noftlb", ftlb_disable);
454 
455 /*
456  * Check if the CPU has per tc perf counters
457  */
458 static inline void cpu_set_mt_per_tc_perf(struct cpuinfo_mips *c)
459 {
460 	if (read_c0_config7() & MTI_CONF7_PTC)
461 		c->options |= MIPS_CPU_MT_PER_TC_PERF_COUNTERS;
462 }
463 
464 static inline void check_errata(void)
465 {
466 	struct cpuinfo_mips *c = &current_cpu_data;
467 
468 	switch (current_cpu_type()) {
469 	case CPU_34K:
470 		/*
471 		 * Erratum "RPS May Cause Incorrect Instruction Execution"
472 		 * This code only handles VPE0, any SMP/RTOS code
473 		 * making use of VPE1 will be responsable for that VPE.
474 		 */
475 		if ((c->processor_id & PRID_REV_MASK) <= PRID_REV_34K_V1_0_2)
476 			write_c0_config7(read_c0_config7() | MIPS_CONF7_RPS);
477 		break;
478 	default:
479 		break;
480 	}
481 }
482 
483 void __init check_bugs32(void)
484 {
485 	check_errata();
486 }
487 
488 /*
489  * Probe whether cpu has config register by trying to play with
490  * alternate cache bit and see whether it matters.
491  * It's used by cpu_probe to distinguish between R3000A and R3081.
492  */
493 static inline int cpu_has_confreg(void)
494 {
495 #ifdef CONFIG_CPU_R3000
496 	extern unsigned long r3k_cache_size(unsigned long);
497 	unsigned long size1, size2;
498 	unsigned long cfg = read_c0_conf();
499 
500 	size1 = r3k_cache_size(ST0_ISC);
501 	write_c0_conf(cfg ^ R30XX_CONF_AC);
502 	size2 = r3k_cache_size(ST0_ISC);
503 	write_c0_conf(cfg);
504 	return size1 != size2;
505 #else
506 	return 0;
507 #endif
508 }
509 
510 static inline void set_elf_platform(int cpu, const char *plat)
511 {
512 	if (cpu == 0)
513 		__elf_platform = plat;
514 }
515 
516 static inline void cpu_probe_vmbits(struct cpuinfo_mips *c)
517 {
518 #ifdef __NEED_VMBITS_PROBE
519 	write_c0_entryhi(0x3fffffffffffe000ULL);
520 	back_to_back_c0_hazard();
521 	c->vmbits = fls64(read_c0_entryhi() & 0x3fffffffffffe000ULL);
522 #endif
523 }
524 
525 static void set_isa(struct cpuinfo_mips *c, unsigned int isa)
526 {
527 	switch (isa) {
528 	case MIPS_CPU_ISA_M64R2:
529 		c->isa_level |= MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2;
530 		/* fall through */
531 	case MIPS_CPU_ISA_M64R1:
532 		c->isa_level |= MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1;
533 		/* fall through */
534 	case MIPS_CPU_ISA_V:
535 		c->isa_level |= MIPS_CPU_ISA_V;
536 		/* fall through */
537 	case MIPS_CPU_ISA_IV:
538 		c->isa_level |= MIPS_CPU_ISA_IV;
539 		/* fall through */
540 	case MIPS_CPU_ISA_III:
541 		c->isa_level |= MIPS_CPU_ISA_II | MIPS_CPU_ISA_III;
542 		break;
543 
544 	/* R6 incompatible with everything else */
545 	case MIPS_CPU_ISA_M64R6:
546 		c->isa_level |= MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6;
547 		/* fall through */
548 	case MIPS_CPU_ISA_M32R6:
549 		c->isa_level |= MIPS_CPU_ISA_M32R6;
550 		/* Break here so we don't add incompatible ISAs */
551 		break;
552 	case MIPS_CPU_ISA_M32R2:
553 		c->isa_level |= MIPS_CPU_ISA_M32R2;
554 		/* fall through */
555 	case MIPS_CPU_ISA_M32R1:
556 		c->isa_level |= MIPS_CPU_ISA_M32R1;
557 		/* fall through */
558 	case MIPS_CPU_ISA_II:
559 		c->isa_level |= MIPS_CPU_ISA_II;
560 		break;
561 	}
562 }
563 
564 static char unknown_isa[] = KERN_ERR \
565 	"Unsupported ISA type, c0.config0: %d.";
566 
567 static unsigned int calculate_ftlb_probability(struct cpuinfo_mips *c)
568 {
569 
570 	unsigned int probability = c->tlbsize / c->tlbsizevtlb;
571 
572 	/*
573 	 * 0 = All TLBWR instructions go to FTLB
574 	 * 1 = 15:1: For every 16 TBLWR instructions, 15 go to the
575 	 * FTLB and 1 goes to the VTLB.
576 	 * 2 = 7:1: As above with 7:1 ratio.
577 	 * 3 = 3:1: As above with 3:1 ratio.
578 	 *
579 	 * Use the linear midpoint as the probability threshold.
580 	 */
581 	if (probability >= 12)
582 		return 1;
583 	else if (probability >= 6)
584 		return 2;
585 	else
586 		/*
587 		 * So FTLB is less than 4 times bigger than VTLB.
588 		 * A 3:1 ratio can still be useful though.
589 		 */
590 		return 3;
591 }
592 
593 static int set_ftlb_enable(struct cpuinfo_mips *c, enum ftlb_flags flags)
594 {
595 	unsigned int config;
596 
597 	/* It's implementation dependent how the FTLB can be enabled */
598 	switch (c->cputype) {
599 	case CPU_PROAPTIV:
600 	case CPU_P5600:
601 	case CPU_P6600:
602 		/* proAptiv & related cores use Config6 to enable the FTLB */
603 		config = read_c0_config6();
604 
605 		if (flags & FTLB_EN)
606 			config |= MIPS_CONF6_FTLBEN;
607 		else
608 			config &= ~MIPS_CONF6_FTLBEN;
609 
610 		if (flags & FTLB_SET_PROB) {
611 			config &= ~(3 << MIPS_CONF6_FTLBP_SHIFT);
612 			config |= calculate_ftlb_probability(c)
613 				  << MIPS_CONF6_FTLBP_SHIFT;
614 		}
615 
616 		write_c0_config6(config);
617 		back_to_back_c0_hazard();
618 		break;
619 	case CPU_I6400:
620 	case CPU_I6500:
621 		/* There's no way to disable the FTLB */
622 		if (!(flags & FTLB_EN))
623 			return 1;
624 		return 0;
625 	case CPU_LOONGSON64:
626 		/* Flush ITLB, DTLB, VTLB and FTLB */
627 		write_c0_diag(LOONGSON_DIAG_ITLB | LOONGSON_DIAG_DTLB |
628 			      LOONGSON_DIAG_VTLB | LOONGSON_DIAG_FTLB);
629 		/* Loongson-3 cores use Config6 to enable the FTLB */
630 		config = read_c0_config6();
631 		if (flags & FTLB_EN)
632 			/* Enable FTLB */
633 			write_c0_config6(config & ~MIPS_CONF6_FTLBDIS);
634 		else
635 			/* Disable FTLB */
636 			write_c0_config6(config | MIPS_CONF6_FTLBDIS);
637 		break;
638 	default:
639 		return 1;
640 	}
641 
642 	return 0;
643 }
644 
645 static inline unsigned int decode_config0(struct cpuinfo_mips *c)
646 {
647 	unsigned int config0;
648 	int isa, mt;
649 
650 	config0 = read_c0_config();
651 
652 	/*
653 	 * Look for Standard TLB or Dual VTLB and FTLB
654 	 */
655 	mt = config0 & MIPS_CONF_MT;
656 	if (mt == MIPS_CONF_MT_TLB)
657 		c->options |= MIPS_CPU_TLB;
658 	else if (mt == MIPS_CONF_MT_FTLB)
659 		c->options |= MIPS_CPU_TLB | MIPS_CPU_FTLB;
660 
661 	isa = (config0 & MIPS_CONF_AT) >> 13;
662 	switch (isa) {
663 	case 0:
664 		switch ((config0 & MIPS_CONF_AR) >> 10) {
665 		case 0:
666 			set_isa(c, MIPS_CPU_ISA_M32R1);
667 			break;
668 		case 1:
669 			set_isa(c, MIPS_CPU_ISA_M32R2);
670 			break;
671 		case 2:
672 			set_isa(c, MIPS_CPU_ISA_M32R6);
673 			break;
674 		default:
675 			goto unknown;
676 		}
677 		break;
678 	case 2:
679 		switch ((config0 & MIPS_CONF_AR) >> 10) {
680 		case 0:
681 			set_isa(c, MIPS_CPU_ISA_M64R1);
682 			break;
683 		case 1:
684 			set_isa(c, MIPS_CPU_ISA_M64R2);
685 			break;
686 		case 2:
687 			set_isa(c, MIPS_CPU_ISA_M64R6);
688 			break;
689 		default:
690 			goto unknown;
691 		}
692 		break;
693 	default:
694 		goto unknown;
695 	}
696 
697 	return config0 & MIPS_CONF_M;
698 
699 unknown:
700 	panic(unknown_isa, config0);
701 }
702 
703 static inline unsigned int decode_config1(struct cpuinfo_mips *c)
704 {
705 	unsigned int config1;
706 
707 	config1 = read_c0_config1();
708 
709 	if (config1 & MIPS_CONF1_MD)
710 		c->ases |= MIPS_ASE_MDMX;
711 	if (config1 & MIPS_CONF1_PC)
712 		c->options |= MIPS_CPU_PERF;
713 	if (config1 & MIPS_CONF1_WR)
714 		c->options |= MIPS_CPU_WATCH;
715 	if (config1 & MIPS_CONF1_CA)
716 		c->ases |= MIPS_ASE_MIPS16;
717 	if (config1 & MIPS_CONF1_EP)
718 		c->options |= MIPS_CPU_EJTAG;
719 	if (config1 & MIPS_CONF1_FP) {
720 		c->options |= MIPS_CPU_FPU;
721 		c->options |= MIPS_CPU_32FPR;
722 	}
723 	if (cpu_has_tlb) {
724 		c->tlbsize = ((config1 & MIPS_CONF1_TLBS) >> 25) + 1;
725 		c->tlbsizevtlb = c->tlbsize;
726 		c->tlbsizeftlbsets = 0;
727 	}
728 
729 	return config1 & MIPS_CONF_M;
730 }
731 
732 static inline unsigned int decode_config2(struct cpuinfo_mips *c)
733 {
734 	unsigned int config2;
735 
736 	config2 = read_c0_config2();
737 
738 	if (config2 & MIPS_CONF2_SL)
739 		c->scache.flags &= ~MIPS_CACHE_NOT_PRESENT;
740 
741 	return config2 & MIPS_CONF_M;
742 }
743 
744 static inline unsigned int decode_config3(struct cpuinfo_mips *c)
745 {
746 	unsigned int config3;
747 
748 	config3 = read_c0_config3();
749 
750 	if (config3 & MIPS_CONF3_SM) {
751 		c->ases |= MIPS_ASE_SMARTMIPS;
752 		c->options |= MIPS_CPU_RIXI | MIPS_CPU_CTXTC;
753 	}
754 	if (config3 & MIPS_CONF3_RXI)
755 		c->options |= MIPS_CPU_RIXI;
756 	if (config3 & MIPS_CONF3_CTXTC)
757 		c->options |= MIPS_CPU_CTXTC;
758 	if (config3 & MIPS_CONF3_DSP)
759 		c->ases |= MIPS_ASE_DSP;
760 	if (config3 & MIPS_CONF3_DSP2P) {
761 		c->ases |= MIPS_ASE_DSP2P;
762 		if (cpu_has_mips_r6)
763 			c->ases |= MIPS_ASE_DSP3;
764 	}
765 	if (config3 & MIPS_CONF3_VINT)
766 		c->options |= MIPS_CPU_VINT;
767 	if (config3 & MIPS_CONF3_VEIC)
768 		c->options |= MIPS_CPU_VEIC;
769 	if (config3 & MIPS_CONF3_LPA)
770 		c->options |= MIPS_CPU_LPA;
771 	if (config3 & MIPS_CONF3_MT)
772 		c->ases |= MIPS_ASE_MIPSMT;
773 	if (config3 & MIPS_CONF3_ULRI)
774 		c->options |= MIPS_CPU_ULRI;
775 	if (config3 & MIPS_CONF3_ISA)
776 		c->options |= MIPS_CPU_MICROMIPS;
777 	if (config3 & MIPS_CONF3_VZ)
778 		c->ases |= MIPS_ASE_VZ;
779 	if (config3 & MIPS_CONF3_SC)
780 		c->options |= MIPS_CPU_SEGMENTS;
781 	if (config3 & MIPS_CONF3_BI)
782 		c->options |= MIPS_CPU_BADINSTR;
783 	if (config3 & MIPS_CONF3_BP)
784 		c->options |= MIPS_CPU_BADINSTRP;
785 	if (config3 & MIPS_CONF3_MSA)
786 		c->ases |= MIPS_ASE_MSA;
787 	if (config3 & MIPS_CONF3_PW) {
788 		c->htw_seq = 0;
789 		c->options |= MIPS_CPU_HTW;
790 	}
791 	if (config3 & MIPS_CONF3_CDMM)
792 		c->options |= MIPS_CPU_CDMM;
793 	if (config3 & MIPS_CONF3_SP)
794 		c->options |= MIPS_CPU_SP;
795 
796 	return config3 & MIPS_CONF_M;
797 }
798 
799 static inline unsigned int decode_config4(struct cpuinfo_mips *c)
800 {
801 	unsigned int config4;
802 	unsigned int newcf4;
803 	unsigned int mmuextdef;
804 	unsigned int ftlb_page = MIPS_CONF4_FTLBPAGESIZE;
805 	unsigned long asid_mask;
806 
807 	config4 = read_c0_config4();
808 
809 	if (cpu_has_tlb) {
810 		if (((config4 & MIPS_CONF4_IE) >> 29) == 2)
811 			c->options |= MIPS_CPU_TLBINV;
812 
813 		/*
814 		 * R6 has dropped the MMUExtDef field from config4.
815 		 * On R6 the fields always describe the FTLB, and only if it is
816 		 * present according to Config.MT.
817 		 */
818 		if (!cpu_has_mips_r6)
819 			mmuextdef = config4 & MIPS_CONF4_MMUEXTDEF;
820 		else if (cpu_has_ftlb)
821 			mmuextdef = MIPS_CONF4_MMUEXTDEF_VTLBSIZEEXT;
822 		else
823 			mmuextdef = 0;
824 
825 		switch (mmuextdef) {
826 		case MIPS_CONF4_MMUEXTDEF_MMUSIZEEXT:
827 			c->tlbsize += (config4 & MIPS_CONF4_MMUSIZEEXT) * 0x40;
828 			c->tlbsizevtlb = c->tlbsize;
829 			break;
830 		case MIPS_CONF4_MMUEXTDEF_VTLBSIZEEXT:
831 			c->tlbsizevtlb +=
832 				((config4 & MIPS_CONF4_VTLBSIZEEXT) >>
833 				  MIPS_CONF4_VTLBSIZEEXT_SHIFT) * 0x40;
834 			c->tlbsize = c->tlbsizevtlb;
835 			ftlb_page = MIPS_CONF4_VFTLBPAGESIZE;
836 			/* fall through */
837 		case MIPS_CONF4_MMUEXTDEF_FTLBSIZEEXT:
838 			if (mips_ftlb_disabled)
839 				break;
840 			newcf4 = (config4 & ~ftlb_page) |
841 				(page_size_ftlb(mmuextdef) <<
842 				 MIPS_CONF4_FTLBPAGESIZE_SHIFT);
843 			write_c0_config4(newcf4);
844 			back_to_back_c0_hazard();
845 			config4 = read_c0_config4();
846 			if (config4 != newcf4) {
847 				pr_err("PAGE_SIZE 0x%lx is not supported by FTLB (config4=0x%x)\n",
848 				       PAGE_SIZE, config4);
849 				/* Switch FTLB off */
850 				set_ftlb_enable(c, 0);
851 				mips_ftlb_disabled = 1;
852 				break;
853 			}
854 			c->tlbsizeftlbsets = 1 <<
855 				((config4 & MIPS_CONF4_FTLBSETS) >>
856 				 MIPS_CONF4_FTLBSETS_SHIFT);
857 			c->tlbsizeftlbways = ((config4 & MIPS_CONF4_FTLBWAYS) >>
858 					      MIPS_CONF4_FTLBWAYS_SHIFT) + 2;
859 			c->tlbsize += c->tlbsizeftlbways * c->tlbsizeftlbsets;
860 			mips_has_ftlb_configured = 1;
861 			break;
862 		}
863 	}
864 
865 	c->kscratch_mask = (config4 & MIPS_CONF4_KSCREXIST)
866 				>> MIPS_CONF4_KSCREXIST_SHIFT;
867 
868 	asid_mask = MIPS_ENTRYHI_ASID;
869 	if (config4 & MIPS_CONF4_AE)
870 		asid_mask |= MIPS_ENTRYHI_ASIDX;
871 	set_cpu_asid_mask(c, asid_mask);
872 
873 	/*
874 	 * Warn if the computed ASID mask doesn't match the mask the kernel
875 	 * is built for. This may indicate either a serious problem or an
876 	 * easy optimisation opportunity, but either way should be addressed.
877 	 */
878 	WARN_ON(asid_mask != cpu_asid_mask(c));
879 
880 	return config4 & MIPS_CONF_M;
881 }
882 
883 static inline unsigned int decode_config5(struct cpuinfo_mips *c)
884 {
885 	unsigned int config5, max_mmid_width;
886 	unsigned long asid_mask;
887 
888 	config5 = read_c0_config5();
889 	config5 &= ~(MIPS_CONF5_UFR | MIPS_CONF5_UFE);
890 
891 	if (cpu_has_mips_r6) {
892 		if (!__builtin_constant_p(cpu_has_mmid) || cpu_has_mmid)
893 			config5 |= MIPS_CONF5_MI;
894 		else
895 			config5 &= ~MIPS_CONF5_MI;
896 	}
897 
898 	write_c0_config5(config5);
899 
900 	if (config5 & MIPS_CONF5_EVA)
901 		c->options |= MIPS_CPU_EVA;
902 	if (config5 & MIPS_CONF5_MRP)
903 		c->options |= MIPS_CPU_MAAR;
904 	if (config5 & MIPS_CONF5_LLB)
905 		c->options |= MIPS_CPU_RW_LLB;
906 	if (config5 & MIPS_CONF5_MVH)
907 		c->options |= MIPS_CPU_MVH;
908 	if (cpu_has_mips_r6 && (config5 & MIPS_CONF5_VP))
909 		c->options |= MIPS_CPU_VP;
910 	if (config5 & MIPS_CONF5_CA2)
911 		c->ases |= MIPS_ASE_MIPS16E2;
912 
913 	if (config5 & MIPS_CONF5_CRCP)
914 		elf_hwcap |= HWCAP_MIPS_CRC32;
915 
916 	if (cpu_has_mips_r6) {
917 		/* Ensure the write to config5 above takes effect */
918 		back_to_back_c0_hazard();
919 
920 		/* Check whether we successfully enabled MMID support */
921 		config5 = read_c0_config5();
922 		if (config5 & MIPS_CONF5_MI)
923 			c->options |= MIPS_CPU_MMID;
924 
925 		/*
926 		 * Warn if we've hardcoded cpu_has_mmid to a value unsuitable
927 		 * for the CPU we're running on, or if CPUs in an SMP system
928 		 * have inconsistent MMID support.
929 		 */
930 		WARN_ON(!!cpu_has_mmid != !!(config5 & MIPS_CONF5_MI));
931 
932 		if (cpu_has_mmid) {
933 			write_c0_memorymapid(~0ul);
934 			back_to_back_c0_hazard();
935 			asid_mask = read_c0_memorymapid();
936 
937 			/*
938 			 * We maintain a bitmap to track MMID allocation, and
939 			 * need a sensible upper bound on the size of that
940 			 * bitmap. The initial CPU with MMID support (I6500)
941 			 * supports 16 bit MMIDs, which gives us an 8KiB
942 			 * bitmap. The architecture recommends that hardware
943 			 * support 32 bit MMIDs, which would give us a 512MiB
944 			 * bitmap - that's too big in most cases.
945 			 *
946 			 * Cap MMID width at 16 bits for now & we can revisit
947 			 * this if & when hardware supports anything wider.
948 			 */
949 			max_mmid_width = 16;
950 			if (asid_mask > GENMASK(max_mmid_width - 1, 0)) {
951 				pr_info("Capping MMID width at %d bits",
952 					max_mmid_width);
953 				asid_mask = GENMASK(max_mmid_width - 1, 0);
954 			}
955 
956 			set_cpu_asid_mask(c, asid_mask);
957 		}
958 	}
959 
960 	return config5 & MIPS_CONF_M;
961 }
962 
963 static void decode_configs(struct cpuinfo_mips *c)
964 {
965 	int ok;
966 
967 	/* MIPS32 or MIPS64 compliant CPU.  */
968 	c->options = MIPS_CPU_4KEX | MIPS_CPU_4K_CACHE | MIPS_CPU_COUNTER |
969 		     MIPS_CPU_DIVEC | MIPS_CPU_LLSC | MIPS_CPU_MCHECK;
970 
971 	c->scache.flags = MIPS_CACHE_NOT_PRESENT;
972 
973 	/* Enable FTLB if present and not disabled */
974 	set_ftlb_enable(c, mips_ftlb_disabled ? 0 : FTLB_EN);
975 
976 	ok = decode_config0(c);			/* Read Config registers.  */
977 	BUG_ON(!ok);				/* Arch spec violation!	 */
978 	if (ok)
979 		ok = decode_config1(c);
980 	if (ok)
981 		ok = decode_config2(c);
982 	if (ok)
983 		ok = decode_config3(c);
984 	if (ok)
985 		ok = decode_config4(c);
986 	if (ok)
987 		ok = decode_config5(c);
988 
989 	/* Probe the EBase.WG bit */
990 	if (cpu_has_mips_r2_r6) {
991 		u64 ebase;
992 		unsigned int status;
993 
994 		/* {read,write}_c0_ebase_64() may be UNDEFINED prior to r6 */
995 		ebase = cpu_has_mips64r6 ? read_c0_ebase_64()
996 					 : (s32)read_c0_ebase();
997 		if (ebase & MIPS_EBASE_WG) {
998 			/* WG bit already set, we can avoid the clumsy probe */
999 			c->options |= MIPS_CPU_EBASE_WG;
1000 		} else {
1001 			/* Its UNDEFINED to change EBase while BEV=0 */
1002 			status = read_c0_status();
1003 			write_c0_status(status | ST0_BEV);
1004 			irq_enable_hazard();
1005 			/*
1006 			 * On pre-r6 cores, this may well clobber the upper bits
1007 			 * of EBase. This is hard to avoid without potentially
1008 			 * hitting UNDEFINED dm*c0 behaviour if EBase is 32-bit.
1009 			 */
1010 			if (cpu_has_mips64r6)
1011 				write_c0_ebase_64(ebase | MIPS_EBASE_WG);
1012 			else
1013 				write_c0_ebase(ebase | MIPS_EBASE_WG);
1014 			back_to_back_c0_hazard();
1015 			/* Restore BEV */
1016 			write_c0_status(status);
1017 			if (read_c0_ebase() & MIPS_EBASE_WG) {
1018 				c->options |= MIPS_CPU_EBASE_WG;
1019 				write_c0_ebase(ebase);
1020 			}
1021 		}
1022 	}
1023 
1024 	/* configure the FTLB write probability */
1025 	set_ftlb_enable(c, (mips_ftlb_disabled ? 0 : FTLB_EN) | FTLB_SET_PROB);
1026 
1027 	mips_probe_watch_registers(c);
1028 
1029 #ifndef CONFIG_MIPS_CPS
1030 	if (cpu_has_mips_r2_r6) {
1031 		unsigned int core;
1032 
1033 		core = get_ebase_cpunum();
1034 		if (cpu_has_mipsmt)
1035 			core >>= fls(core_nvpes()) - 1;
1036 		cpu_set_core(c, core);
1037 	}
1038 #endif
1039 }
1040 
1041 /*
1042  * Probe for certain guest capabilities by writing config bits and reading back.
1043  * Finally write back the original value.
1044  */
1045 #define probe_gc0_config(name, maxconf, bits)				\
1046 do {									\
1047 	unsigned int tmp;						\
1048 	tmp = read_gc0_##name();					\
1049 	write_gc0_##name(tmp | (bits));					\
1050 	back_to_back_c0_hazard();					\
1051 	maxconf = read_gc0_##name();					\
1052 	write_gc0_##name(tmp);						\
1053 } while (0)
1054 
1055 /*
1056  * Probe for dynamic guest capabilities by changing certain config bits and
1057  * reading back to see if they change. Finally write back the original value.
1058  */
1059 #define probe_gc0_config_dyn(name, maxconf, dynconf, bits)		\
1060 do {									\
1061 	maxconf = read_gc0_##name();					\
1062 	write_gc0_##name(maxconf ^ (bits));				\
1063 	back_to_back_c0_hazard();					\
1064 	dynconf = maxconf ^ read_gc0_##name();				\
1065 	write_gc0_##name(maxconf);					\
1066 	maxconf |= dynconf;						\
1067 } while (0)
1068 
1069 static inline unsigned int decode_guest_config0(struct cpuinfo_mips *c)
1070 {
1071 	unsigned int config0;
1072 
1073 	probe_gc0_config(config, config0, MIPS_CONF_M);
1074 
1075 	if (config0 & MIPS_CONF_M)
1076 		c->guest.conf |= BIT(1);
1077 	return config0 & MIPS_CONF_M;
1078 }
1079 
1080 static inline unsigned int decode_guest_config1(struct cpuinfo_mips *c)
1081 {
1082 	unsigned int config1, config1_dyn;
1083 
1084 	probe_gc0_config_dyn(config1, config1, config1_dyn,
1085 			     MIPS_CONF_M | MIPS_CONF1_PC | MIPS_CONF1_WR |
1086 			     MIPS_CONF1_FP);
1087 
1088 	if (config1 & MIPS_CONF1_FP)
1089 		c->guest.options |= MIPS_CPU_FPU;
1090 	if (config1_dyn & MIPS_CONF1_FP)
1091 		c->guest.options_dyn |= MIPS_CPU_FPU;
1092 
1093 	if (config1 & MIPS_CONF1_WR)
1094 		c->guest.options |= MIPS_CPU_WATCH;
1095 	if (config1_dyn & MIPS_CONF1_WR)
1096 		c->guest.options_dyn |= MIPS_CPU_WATCH;
1097 
1098 	if (config1 & MIPS_CONF1_PC)
1099 		c->guest.options |= MIPS_CPU_PERF;
1100 	if (config1_dyn & MIPS_CONF1_PC)
1101 		c->guest.options_dyn |= MIPS_CPU_PERF;
1102 
1103 	if (config1 & MIPS_CONF_M)
1104 		c->guest.conf |= BIT(2);
1105 	return config1 & MIPS_CONF_M;
1106 }
1107 
1108 static inline unsigned int decode_guest_config2(struct cpuinfo_mips *c)
1109 {
1110 	unsigned int config2;
1111 
1112 	probe_gc0_config(config2, config2, MIPS_CONF_M);
1113 
1114 	if (config2 & MIPS_CONF_M)
1115 		c->guest.conf |= BIT(3);
1116 	return config2 & MIPS_CONF_M;
1117 }
1118 
1119 static inline unsigned int decode_guest_config3(struct cpuinfo_mips *c)
1120 {
1121 	unsigned int config3, config3_dyn;
1122 
1123 	probe_gc0_config_dyn(config3, config3, config3_dyn,
1124 			     MIPS_CONF_M | MIPS_CONF3_MSA | MIPS_CONF3_ULRI |
1125 			     MIPS_CONF3_CTXTC);
1126 
1127 	if (config3 & MIPS_CONF3_CTXTC)
1128 		c->guest.options |= MIPS_CPU_CTXTC;
1129 	if (config3_dyn & MIPS_CONF3_CTXTC)
1130 		c->guest.options_dyn |= MIPS_CPU_CTXTC;
1131 
1132 	if (config3 & MIPS_CONF3_PW)
1133 		c->guest.options |= MIPS_CPU_HTW;
1134 
1135 	if (config3 & MIPS_CONF3_ULRI)
1136 		c->guest.options |= MIPS_CPU_ULRI;
1137 
1138 	if (config3 & MIPS_CONF3_SC)
1139 		c->guest.options |= MIPS_CPU_SEGMENTS;
1140 
1141 	if (config3 & MIPS_CONF3_BI)
1142 		c->guest.options |= MIPS_CPU_BADINSTR;
1143 	if (config3 & MIPS_CONF3_BP)
1144 		c->guest.options |= MIPS_CPU_BADINSTRP;
1145 
1146 	if (config3 & MIPS_CONF3_MSA)
1147 		c->guest.ases |= MIPS_ASE_MSA;
1148 	if (config3_dyn & MIPS_CONF3_MSA)
1149 		c->guest.ases_dyn |= MIPS_ASE_MSA;
1150 
1151 	if (config3 & MIPS_CONF_M)
1152 		c->guest.conf |= BIT(4);
1153 	return config3 & MIPS_CONF_M;
1154 }
1155 
1156 static inline unsigned int decode_guest_config4(struct cpuinfo_mips *c)
1157 {
1158 	unsigned int config4;
1159 
1160 	probe_gc0_config(config4, config4,
1161 			 MIPS_CONF_M | MIPS_CONF4_KSCREXIST);
1162 
1163 	c->guest.kscratch_mask = (config4 & MIPS_CONF4_KSCREXIST)
1164 				>> MIPS_CONF4_KSCREXIST_SHIFT;
1165 
1166 	if (config4 & MIPS_CONF_M)
1167 		c->guest.conf |= BIT(5);
1168 	return config4 & MIPS_CONF_M;
1169 }
1170 
1171 static inline unsigned int decode_guest_config5(struct cpuinfo_mips *c)
1172 {
1173 	unsigned int config5, config5_dyn;
1174 
1175 	probe_gc0_config_dyn(config5, config5, config5_dyn,
1176 			 MIPS_CONF_M | MIPS_CONF5_MVH | MIPS_CONF5_MRP);
1177 
1178 	if (config5 & MIPS_CONF5_MRP)
1179 		c->guest.options |= MIPS_CPU_MAAR;
1180 	if (config5_dyn & MIPS_CONF5_MRP)
1181 		c->guest.options_dyn |= MIPS_CPU_MAAR;
1182 
1183 	if (config5 & MIPS_CONF5_LLB)
1184 		c->guest.options |= MIPS_CPU_RW_LLB;
1185 
1186 	if (config5 & MIPS_CONF5_MVH)
1187 		c->guest.options |= MIPS_CPU_MVH;
1188 
1189 	if (config5 & MIPS_CONF_M)
1190 		c->guest.conf |= BIT(6);
1191 	return config5 & MIPS_CONF_M;
1192 }
1193 
1194 static inline void decode_guest_configs(struct cpuinfo_mips *c)
1195 {
1196 	unsigned int ok;
1197 
1198 	ok = decode_guest_config0(c);
1199 	if (ok)
1200 		ok = decode_guest_config1(c);
1201 	if (ok)
1202 		ok = decode_guest_config2(c);
1203 	if (ok)
1204 		ok = decode_guest_config3(c);
1205 	if (ok)
1206 		ok = decode_guest_config4(c);
1207 	if (ok)
1208 		decode_guest_config5(c);
1209 }
1210 
1211 static inline void cpu_probe_guestctl0(struct cpuinfo_mips *c)
1212 {
1213 	unsigned int guestctl0, temp;
1214 
1215 	guestctl0 = read_c0_guestctl0();
1216 
1217 	if (guestctl0 & MIPS_GCTL0_G0E)
1218 		c->options |= MIPS_CPU_GUESTCTL0EXT;
1219 	if (guestctl0 & MIPS_GCTL0_G1)
1220 		c->options |= MIPS_CPU_GUESTCTL1;
1221 	if (guestctl0 & MIPS_GCTL0_G2)
1222 		c->options |= MIPS_CPU_GUESTCTL2;
1223 	if (!(guestctl0 & MIPS_GCTL0_RAD)) {
1224 		c->options |= MIPS_CPU_GUESTID;
1225 
1226 		/*
1227 		 * Probe for Direct Root to Guest (DRG). Set GuestCtl1.RID = 0
1228 		 * first, otherwise all data accesses will be fully virtualised
1229 		 * as if they were performed by guest mode.
1230 		 */
1231 		write_c0_guestctl1(0);
1232 		tlbw_use_hazard();
1233 
1234 		write_c0_guestctl0(guestctl0 | MIPS_GCTL0_DRG);
1235 		back_to_back_c0_hazard();
1236 		temp = read_c0_guestctl0();
1237 
1238 		if (temp & MIPS_GCTL0_DRG) {
1239 			write_c0_guestctl0(guestctl0);
1240 			c->options |= MIPS_CPU_DRG;
1241 		}
1242 	}
1243 }
1244 
1245 static inline void cpu_probe_guestctl1(struct cpuinfo_mips *c)
1246 {
1247 	if (cpu_has_guestid) {
1248 		/* determine the number of bits of GuestID available */
1249 		write_c0_guestctl1(MIPS_GCTL1_ID);
1250 		back_to_back_c0_hazard();
1251 		c->guestid_mask = (read_c0_guestctl1() & MIPS_GCTL1_ID)
1252 						>> MIPS_GCTL1_ID_SHIFT;
1253 		write_c0_guestctl1(0);
1254 	}
1255 }
1256 
1257 static inline void cpu_probe_gtoffset(struct cpuinfo_mips *c)
1258 {
1259 	/* determine the number of bits of GTOffset available */
1260 	write_c0_gtoffset(0xffffffff);
1261 	back_to_back_c0_hazard();
1262 	c->gtoffset_mask = read_c0_gtoffset();
1263 	write_c0_gtoffset(0);
1264 }
1265 
1266 static inline void cpu_probe_vz(struct cpuinfo_mips *c)
1267 {
1268 	cpu_probe_guestctl0(c);
1269 	if (cpu_has_guestctl1)
1270 		cpu_probe_guestctl1(c);
1271 
1272 	cpu_probe_gtoffset(c);
1273 
1274 	decode_guest_configs(c);
1275 }
1276 
1277 #define R4K_OPTS (MIPS_CPU_TLB | MIPS_CPU_4KEX | MIPS_CPU_4K_CACHE \
1278 		| MIPS_CPU_COUNTER)
1279 
1280 static inline void cpu_probe_legacy(struct cpuinfo_mips *c, unsigned int cpu)
1281 {
1282 	switch (c->processor_id & PRID_IMP_MASK) {
1283 	case PRID_IMP_R2000:
1284 		c->cputype = CPU_R2000;
1285 		__cpu_name[cpu] = "R2000";
1286 		c->fpu_msk31 |= FPU_CSR_CONDX | FPU_CSR_FS;
1287 		c->options = MIPS_CPU_TLB | MIPS_CPU_3K_CACHE |
1288 			     MIPS_CPU_NOFPUEX;
1289 		if (__cpu_has_fpu())
1290 			c->options |= MIPS_CPU_FPU;
1291 		c->tlbsize = 64;
1292 		break;
1293 	case PRID_IMP_R3000:
1294 		if ((c->processor_id & PRID_REV_MASK) == PRID_REV_R3000A) {
1295 			if (cpu_has_confreg()) {
1296 				c->cputype = CPU_R3081E;
1297 				__cpu_name[cpu] = "R3081";
1298 			} else {
1299 				c->cputype = CPU_R3000A;
1300 				__cpu_name[cpu] = "R3000A";
1301 			}
1302 		} else {
1303 			c->cputype = CPU_R3000;
1304 			__cpu_name[cpu] = "R3000";
1305 		}
1306 		c->fpu_msk31 |= FPU_CSR_CONDX | FPU_CSR_FS;
1307 		c->options = MIPS_CPU_TLB | MIPS_CPU_3K_CACHE |
1308 			     MIPS_CPU_NOFPUEX;
1309 		if (__cpu_has_fpu())
1310 			c->options |= MIPS_CPU_FPU;
1311 		c->tlbsize = 64;
1312 		break;
1313 	case PRID_IMP_R4000:
1314 		if (read_c0_config() & CONF_SC) {
1315 			if ((c->processor_id & PRID_REV_MASK) >=
1316 			    PRID_REV_R4400) {
1317 				c->cputype = CPU_R4400PC;
1318 				__cpu_name[cpu] = "R4400PC";
1319 			} else {
1320 				c->cputype = CPU_R4000PC;
1321 				__cpu_name[cpu] = "R4000PC";
1322 			}
1323 		} else {
1324 			int cca = read_c0_config() & CONF_CM_CMASK;
1325 			int mc;
1326 
1327 			/*
1328 			 * SC and MC versions can't be reliably told apart,
1329 			 * but only the latter support coherent caching
1330 			 * modes so assume the firmware has set the KSEG0
1331 			 * coherency attribute reasonably (if uncached, we
1332 			 * assume SC).
1333 			 */
1334 			switch (cca) {
1335 			case CONF_CM_CACHABLE_CE:
1336 			case CONF_CM_CACHABLE_COW:
1337 			case CONF_CM_CACHABLE_CUW:
1338 				mc = 1;
1339 				break;
1340 			default:
1341 				mc = 0;
1342 				break;
1343 			}
1344 			if ((c->processor_id & PRID_REV_MASK) >=
1345 			    PRID_REV_R4400) {
1346 				c->cputype = mc ? CPU_R4400MC : CPU_R4400SC;
1347 				__cpu_name[cpu] = mc ? "R4400MC" : "R4400SC";
1348 			} else {
1349 				c->cputype = mc ? CPU_R4000MC : CPU_R4000SC;
1350 				__cpu_name[cpu] = mc ? "R4000MC" : "R4000SC";
1351 			}
1352 		}
1353 
1354 		set_isa(c, MIPS_CPU_ISA_III);
1355 		c->fpu_msk31 |= FPU_CSR_CONDX;
1356 		c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1357 			     MIPS_CPU_WATCH | MIPS_CPU_VCE |
1358 			     MIPS_CPU_LLSC;
1359 		c->tlbsize = 48;
1360 		break;
1361 	case PRID_IMP_VR41XX:
1362 		set_isa(c, MIPS_CPU_ISA_III);
1363 		c->fpu_msk31 |= FPU_CSR_CONDX;
1364 		c->options = R4K_OPTS;
1365 		c->tlbsize = 32;
1366 		switch (c->processor_id & 0xf0) {
1367 		case PRID_REV_VR4111:
1368 			c->cputype = CPU_VR4111;
1369 			__cpu_name[cpu] = "NEC VR4111";
1370 			break;
1371 		case PRID_REV_VR4121:
1372 			c->cputype = CPU_VR4121;
1373 			__cpu_name[cpu] = "NEC VR4121";
1374 			break;
1375 		case PRID_REV_VR4122:
1376 			if ((c->processor_id & 0xf) < 0x3) {
1377 				c->cputype = CPU_VR4122;
1378 				__cpu_name[cpu] = "NEC VR4122";
1379 			} else {
1380 				c->cputype = CPU_VR4181A;
1381 				__cpu_name[cpu] = "NEC VR4181A";
1382 			}
1383 			break;
1384 		case PRID_REV_VR4130:
1385 			if ((c->processor_id & 0xf) < 0x4) {
1386 				c->cputype = CPU_VR4131;
1387 				__cpu_name[cpu] = "NEC VR4131";
1388 			} else {
1389 				c->cputype = CPU_VR4133;
1390 				c->options |= MIPS_CPU_LLSC;
1391 				__cpu_name[cpu] = "NEC VR4133";
1392 			}
1393 			break;
1394 		default:
1395 			printk(KERN_INFO "Unexpected CPU of NEC VR4100 series\n");
1396 			c->cputype = CPU_VR41XX;
1397 			__cpu_name[cpu] = "NEC Vr41xx";
1398 			break;
1399 		}
1400 		break;
1401 	case PRID_IMP_R4600:
1402 		c->cputype = CPU_R4600;
1403 		__cpu_name[cpu] = "R4600";
1404 		set_isa(c, MIPS_CPU_ISA_III);
1405 		c->fpu_msk31 |= FPU_CSR_CONDX;
1406 		c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1407 			     MIPS_CPU_LLSC;
1408 		c->tlbsize = 48;
1409 		break;
1410 	#if 0
1411 	case PRID_IMP_R4650:
1412 		/*
1413 		 * This processor doesn't have an MMU, so it's not
1414 		 * "real easy" to run Linux on it. It is left purely
1415 		 * for documentation.  Commented out because it shares
1416 		 * it's c0_prid id number with the TX3900.
1417 		 */
1418 		c->cputype = CPU_R4650;
1419 		__cpu_name[cpu] = "R4650";
1420 		set_isa(c, MIPS_CPU_ISA_III);
1421 		c->fpu_msk31 |= FPU_CSR_CONDX;
1422 		c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_LLSC;
1423 		c->tlbsize = 48;
1424 		break;
1425 	#endif
1426 	case PRID_IMP_TX39:
1427 		c->fpu_msk31 |= FPU_CSR_CONDX | FPU_CSR_FS;
1428 		c->options = MIPS_CPU_TLB | MIPS_CPU_TX39_CACHE;
1429 
1430 		if ((c->processor_id & 0xf0) == (PRID_REV_TX3927 & 0xf0)) {
1431 			c->cputype = CPU_TX3927;
1432 			__cpu_name[cpu] = "TX3927";
1433 			c->tlbsize = 64;
1434 		} else {
1435 			switch (c->processor_id & PRID_REV_MASK) {
1436 			case PRID_REV_TX3912:
1437 				c->cputype = CPU_TX3912;
1438 				__cpu_name[cpu] = "TX3912";
1439 				c->tlbsize = 32;
1440 				break;
1441 			case PRID_REV_TX3922:
1442 				c->cputype = CPU_TX3922;
1443 				__cpu_name[cpu] = "TX3922";
1444 				c->tlbsize = 64;
1445 				break;
1446 			}
1447 		}
1448 		break;
1449 	case PRID_IMP_R4700:
1450 		c->cputype = CPU_R4700;
1451 		__cpu_name[cpu] = "R4700";
1452 		set_isa(c, MIPS_CPU_ISA_III);
1453 		c->fpu_msk31 |= FPU_CSR_CONDX;
1454 		c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1455 			     MIPS_CPU_LLSC;
1456 		c->tlbsize = 48;
1457 		break;
1458 	case PRID_IMP_TX49:
1459 		c->cputype = CPU_TX49XX;
1460 		__cpu_name[cpu] = "R49XX";
1461 		set_isa(c, MIPS_CPU_ISA_III);
1462 		c->fpu_msk31 |= FPU_CSR_CONDX;
1463 		c->options = R4K_OPTS | MIPS_CPU_LLSC;
1464 		if (!(c->processor_id & 0x08))
1465 			c->options |= MIPS_CPU_FPU | MIPS_CPU_32FPR;
1466 		c->tlbsize = 48;
1467 		break;
1468 	case PRID_IMP_R5000:
1469 		c->cputype = CPU_R5000;
1470 		__cpu_name[cpu] = "R5000";
1471 		set_isa(c, MIPS_CPU_ISA_IV);
1472 		c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1473 			     MIPS_CPU_LLSC;
1474 		c->tlbsize = 48;
1475 		break;
1476 	case PRID_IMP_R5500:
1477 		c->cputype = CPU_R5500;
1478 		__cpu_name[cpu] = "R5500";
1479 		set_isa(c, MIPS_CPU_ISA_IV);
1480 		c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1481 			     MIPS_CPU_WATCH | MIPS_CPU_LLSC;
1482 		c->tlbsize = 48;
1483 		break;
1484 	case PRID_IMP_NEVADA:
1485 		c->cputype = CPU_NEVADA;
1486 		__cpu_name[cpu] = "Nevada";
1487 		set_isa(c, MIPS_CPU_ISA_IV);
1488 		c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1489 			     MIPS_CPU_DIVEC | MIPS_CPU_LLSC;
1490 		c->tlbsize = 48;
1491 		break;
1492 	case PRID_IMP_RM7000:
1493 		c->cputype = CPU_RM7000;
1494 		__cpu_name[cpu] = "RM7000";
1495 		set_isa(c, MIPS_CPU_ISA_IV);
1496 		c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1497 			     MIPS_CPU_LLSC;
1498 		/*
1499 		 * Undocumented RM7000:	 Bit 29 in the info register of
1500 		 * the RM7000 v2.0 indicates if the TLB has 48 or 64
1501 		 * entries.
1502 		 *
1503 		 * 29	   1 =>	   64 entry JTLB
1504 		 *	   0 =>	   48 entry JTLB
1505 		 */
1506 		c->tlbsize = (read_c0_info() & (1 << 29)) ? 64 : 48;
1507 		break;
1508 	case PRID_IMP_R10000:
1509 		c->cputype = CPU_R10000;
1510 		__cpu_name[cpu] = "R10000";
1511 		set_isa(c, MIPS_CPU_ISA_IV);
1512 		c->options = MIPS_CPU_TLB | MIPS_CPU_4K_CACHE | MIPS_CPU_4KEX |
1513 			     MIPS_CPU_FPU | MIPS_CPU_32FPR |
1514 			     MIPS_CPU_COUNTER | MIPS_CPU_WATCH |
1515 			     MIPS_CPU_LLSC;
1516 		c->tlbsize = 64;
1517 		break;
1518 	case PRID_IMP_R12000:
1519 		c->cputype = CPU_R12000;
1520 		__cpu_name[cpu] = "R12000";
1521 		set_isa(c, MIPS_CPU_ISA_IV);
1522 		c->options = MIPS_CPU_TLB | MIPS_CPU_4K_CACHE | MIPS_CPU_4KEX |
1523 			     MIPS_CPU_FPU | MIPS_CPU_32FPR |
1524 			     MIPS_CPU_COUNTER | MIPS_CPU_WATCH |
1525 			     MIPS_CPU_LLSC | MIPS_CPU_BP_GHIST;
1526 		c->tlbsize = 64;
1527 		break;
1528 	case PRID_IMP_R14000:
1529 		if (((c->processor_id >> 4) & 0x0f) > 2) {
1530 			c->cputype = CPU_R16000;
1531 			__cpu_name[cpu] = "R16000";
1532 		} else {
1533 			c->cputype = CPU_R14000;
1534 			__cpu_name[cpu] = "R14000";
1535 		}
1536 		set_isa(c, MIPS_CPU_ISA_IV);
1537 		c->options = MIPS_CPU_TLB | MIPS_CPU_4K_CACHE | MIPS_CPU_4KEX |
1538 			     MIPS_CPU_FPU | MIPS_CPU_32FPR |
1539 			     MIPS_CPU_COUNTER | MIPS_CPU_WATCH |
1540 			     MIPS_CPU_LLSC | MIPS_CPU_BP_GHIST;
1541 		c->tlbsize = 64;
1542 		break;
1543 	case PRID_IMP_LOONGSON_64C:  /* Loongson-2/3 */
1544 		switch (c->processor_id & PRID_REV_MASK) {
1545 		case PRID_REV_LOONGSON2E:
1546 			c->cputype = CPU_LOONGSON2EF;
1547 			__cpu_name[cpu] = "ICT Loongson-2";
1548 			set_elf_platform(cpu, "loongson2e");
1549 			set_isa(c, MIPS_CPU_ISA_III);
1550 			c->fpu_msk31 |= FPU_CSR_CONDX;
1551 			break;
1552 		case PRID_REV_LOONGSON2F:
1553 			c->cputype = CPU_LOONGSON2EF;
1554 			__cpu_name[cpu] = "ICT Loongson-2";
1555 			set_elf_platform(cpu, "loongson2f");
1556 			set_isa(c, MIPS_CPU_ISA_III);
1557 			c->fpu_msk31 |= FPU_CSR_CONDX;
1558 			break;
1559 		case PRID_REV_LOONGSON3A_R1:
1560 			c->cputype = CPU_LOONGSON64;
1561 			__cpu_name[cpu] = "ICT Loongson-3";
1562 			set_elf_platform(cpu, "loongson3a");
1563 			set_isa(c, MIPS_CPU_ISA_M64R1);
1564 			c->ases |= (MIPS_ASE_LOONGSON_MMI | MIPS_ASE_LOONGSON_CAM |
1565 				MIPS_ASE_LOONGSON_EXT);
1566 			break;
1567 		case PRID_REV_LOONGSON3B_R1:
1568 		case PRID_REV_LOONGSON3B_R2:
1569 			c->cputype = CPU_LOONGSON64;
1570 			__cpu_name[cpu] = "ICT Loongson-3";
1571 			set_elf_platform(cpu, "loongson3b");
1572 			set_isa(c, MIPS_CPU_ISA_M64R1);
1573 			c->ases |= (MIPS_ASE_LOONGSON_MMI | MIPS_ASE_LOONGSON_CAM |
1574 				MIPS_ASE_LOONGSON_EXT);
1575 			break;
1576 		}
1577 
1578 		c->options = R4K_OPTS |
1579 			     MIPS_CPU_FPU | MIPS_CPU_LLSC |
1580 			     MIPS_CPU_32FPR;
1581 		c->tlbsize = 64;
1582 		set_cpu_asid_mask(c, MIPS_ENTRYHI_ASID);
1583 		c->writecombine = _CACHE_UNCACHED_ACCELERATED;
1584 		break;
1585 	case PRID_IMP_LOONGSON_32:  /* Loongson-1 */
1586 		decode_configs(c);
1587 
1588 		c->cputype = CPU_LOONGSON32;
1589 
1590 		switch (c->processor_id & PRID_REV_MASK) {
1591 		case PRID_REV_LOONGSON1B:
1592 			__cpu_name[cpu] = "Loongson 1B";
1593 			break;
1594 		}
1595 
1596 		break;
1597 	}
1598 }
1599 
1600 static inline void cpu_probe_mips(struct cpuinfo_mips *c, unsigned int cpu)
1601 {
1602 	c->writecombine = _CACHE_UNCACHED_ACCELERATED;
1603 	switch (c->processor_id & PRID_IMP_MASK) {
1604 	case PRID_IMP_QEMU_GENERIC:
1605 		c->writecombine = _CACHE_UNCACHED;
1606 		c->cputype = CPU_QEMU_GENERIC;
1607 		__cpu_name[cpu] = "MIPS GENERIC QEMU";
1608 		break;
1609 	case PRID_IMP_4KC:
1610 		c->cputype = CPU_4KC;
1611 		c->writecombine = _CACHE_UNCACHED;
1612 		__cpu_name[cpu] = "MIPS 4Kc";
1613 		break;
1614 	case PRID_IMP_4KEC:
1615 	case PRID_IMP_4KECR2:
1616 		c->cputype = CPU_4KEC;
1617 		c->writecombine = _CACHE_UNCACHED;
1618 		__cpu_name[cpu] = "MIPS 4KEc";
1619 		break;
1620 	case PRID_IMP_4KSC:
1621 	case PRID_IMP_4KSD:
1622 		c->cputype = CPU_4KSC;
1623 		c->writecombine = _CACHE_UNCACHED;
1624 		__cpu_name[cpu] = "MIPS 4KSc";
1625 		break;
1626 	case PRID_IMP_5KC:
1627 		c->cputype = CPU_5KC;
1628 		c->writecombine = _CACHE_UNCACHED;
1629 		__cpu_name[cpu] = "MIPS 5Kc";
1630 		break;
1631 	case PRID_IMP_5KE:
1632 		c->cputype = CPU_5KE;
1633 		c->writecombine = _CACHE_UNCACHED;
1634 		__cpu_name[cpu] = "MIPS 5KE";
1635 		break;
1636 	case PRID_IMP_20KC:
1637 		c->cputype = CPU_20KC;
1638 		c->writecombine = _CACHE_UNCACHED;
1639 		__cpu_name[cpu] = "MIPS 20Kc";
1640 		break;
1641 	case PRID_IMP_24K:
1642 		c->cputype = CPU_24K;
1643 		c->writecombine = _CACHE_UNCACHED;
1644 		__cpu_name[cpu] = "MIPS 24Kc";
1645 		break;
1646 	case PRID_IMP_24KE:
1647 		c->cputype = CPU_24K;
1648 		c->writecombine = _CACHE_UNCACHED;
1649 		__cpu_name[cpu] = "MIPS 24KEc";
1650 		break;
1651 	case PRID_IMP_25KF:
1652 		c->cputype = CPU_25KF;
1653 		c->writecombine = _CACHE_UNCACHED;
1654 		__cpu_name[cpu] = "MIPS 25Kc";
1655 		break;
1656 	case PRID_IMP_34K:
1657 		c->cputype = CPU_34K;
1658 		c->writecombine = _CACHE_UNCACHED;
1659 		__cpu_name[cpu] = "MIPS 34Kc";
1660 		cpu_set_mt_per_tc_perf(c);
1661 		break;
1662 	case PRID_IMP_74K:
1663 		c->cputype = CPU_74K;
1664 		c->writecombine = _CACHE_UNCACHED;
1665 		__cpu_name[cpu] = "MIPS 74Kc";
1666 		break;
1667 	case PRID_IMP_M14KC:
1668 		c->cputype = CPU_M14KC;
1669 		c->writecombine = _CACHE_UNCACHED;
1670 		__cpu_name[cpu] = "MIPS M14Kc";
1671 		break;
1672 	case PRID_IMP_M14KEC:
1673 		c->cputype = CPU_M14KEC;
1674 		c->writecombine = _CACHE_UNCACHED;
1675 		__cpu_name[cpu] = "MIPS M14KEc";
1676 		break;
1677 	case PRID_IMP_1004K:
1678 		c->cputype = CPU_1004K;
1679 		c->writecombine = _CACHE_UNCACHED;
1680 		__cpu_name[cpu] = "MIPS 1004Kc";
1681 		cpu_set_mt_per_tc_perf(c);
1682 		break;
1683 	case PRID_IMP_1074K:
1684 		c->cputype = CPU_1074K;
1685 		c->writecombine = _CACHE_UNCACHED;
1686 		__cpu_name[cpu] = "MIPS 1074Kc";
1687 		break;
1688 	case PRID_IMP_INTERAPTIV_UP:
1689 		c->cputype = CPU_INTERAPTIV;
1690 		__cpu_name[cpu] = "MIPS interAptiv";
1691 		cpu_set_mt_per_tc_perf(c);
1692 		break;
1693 	case PRID_IMP_INTERAPTIV_MP:
1694 		c->cputype = CPU_INTERAPTIV;
1695 		__cpu_name[cpu] = "MIPS interAptiv (multi)";
1696 		cpu_set_mt_per_tc_perf(c);
1697 		break;
1698 	case PRID_IMP_PROAPTIV_UP:
1699 		c->cputype = CPU_PROAPTIV;
1700 		__cpu_name[cpu] = "MIPS proAptiv";
1701 		break;
1702 	case PRID_IMP_PROAPTIV_MP:
1703 		c->cputype = CPU_PROAPTIV;
1704 		__cpu_name[cpu] = "MIPS proAptiv (multi)";
1705 		break;
1706 	case PRID_IMP_P5600:
1707 		c->cputype = CPU_P5600;
1708 		__cpu_name[cpu] = "MIPS P5600";
1709 		break;
1710 	case PRID_IMP_P6600:
1711 		c->cputype = CPU_P6600;
1712 		__cpu_name[cpu] = "MIPS P6600";
1713 		break;
1714 	case PRID_IMP_I6400:
1715 		c->cputype = CPU_I6400;
1716 		__cpu_name[cpu] = "MIPS I6400";
1717 		break;
1718 	case PRID_IMP_I6500:
1719 		c->cputype = CPU_I6500;
1720 		__cpu_name[cpu] = "MIPS I6500";
1721 		break;
1722 	case PRID_IMP_M5150:
1723 		c->cputype = CPU_M5150;
1724 		__cpu_name[cpu] = "MIPS M5150";
1725 		break;
1726 	case PRID_IMP_M6250:
1727 		c->cputype = CPU_M6250;
1728 		__cpu_name[cpu] = "MIPS M6250";
1729 		break;
1730 	}
1731 
1732 	decode_configs(c);
1733 
1734 	spram_config();
1735 
1736 	switch (__get_cpu_type(c->cputype)) {
1737 	case CPU_I6500:
1738 		c->options |= MIPS_CPU_SHARED_FTLB_ENTRIES;
1739 		/* fall-through */
1740 	case CPU_I6400:
1741 		c->options |= MIPS_CPU_SHARED_FTLB_RAM;
1742 		/* fall-through */
1743 	default:
1744 		break;
1745 	}
1746 }
1747 
1748 static inline void cpu_probe_alchemy(struct cpuinfo_mips *c, unsigned int cpu)
1749 {
1750 	decode_configs(c);
1751 	switch (c->processor_id & PRID_IMP_MASK) {
1752 	case PRID_IMP_AU1_REV1:
1753 	case PRID_IMP_AU1_REV2:
1754 		c->cputype = CPU_ALCHEMY;
1755 		switch ((c->processor_id >> 24) & 0xff) {
1756 		case 0:
1757 			__cpu_name[cpu] = "Au1000";
1758 			break;
1759 		case 1:
1760 			__cpu_name[cpu] = "Au1500";
1761 			break;
1762 		case 2:
1763 			__cpu_name[cpu] = "Au1100";
1764 			break;
1765 		case 3:
1766 			__cpu_name[cpu] = "Au1550";
1767 			break;
1768 		case 4:
1769 			__cpu_name[cpu] = "Au1200";
1770 			if ((c->processor_id & PRID_REV_MASK) == 2)
1771 				__cpu_name[cpu] = "Au1250";
1772 			break;
1773 		case 5:
1774 			__cpu_name[cpu] = "Au1210";
1775 			break;
1776 		default:
1777 			__cpu_name[cpu] = "Au1xxx";
1778 			break;
1779 		}
1780 		break;
1781 	}
1782 }
1783 
1784 static inline void cpu_probe_sibyte(struct cpuinfo_mips *c, unsigned int cpu)
1785 {
1786 	decode_configs(c);
1787 
1788 	c->writecombine = _CACHE_UNCACHED_ACCELERATED;
1789 	switch (c->processor_id & PRID_IMP_MASK) {
1790 	case PRID_IMP_SB1:
1791 		c->cputype = CPU_SB1;
1792 		__cpu_name[cpu] = "SiByte SB1";
1793 		/* FPU in pass1 is known to have issues. */
1794 		if ((c->processor_id & PRID_REV_MASK) < 0x02)
1795 			c->options &= ~(MIPS_CPU_FPU | MIPS_CPU_32FPR);
1796 		break;
1797 	case PRID_IMP_SB1A:
1798 		c->cputype = CPU_SB1A;
1799 		__cpu_name[cpu] = "SiByte SB1A";
1800 		break;
1801 	}
1802 }
1803 
1804 static inline void cpu_probe_sandcraft(struct cpuinfo_mips *c, unsigned int cpu)
1805 {
1806 	decode_configs(c);
1807 	switch (c->processor_id & PRID_IMP_MASK) {
1808 	case PRID_IMP_SR71000:
1809 		c->cputype = CPU_SR71000;
1810 		__cpu_name[cpu] = "Sandcraft SR71000";
1811 		c->scache.ways = 8;
1812 		c->tlbsize = 64;
1813 		break;
1814 	}
1815 }
1816 
1817 static inline void cpu_probe_nxp(struct cpuinfo_mips *c, unsigned int cpu)
1818 {
1819 	decode_configs(c);
1820 	switch (c->processor_id & PRID_IMP_MASK) {
1821 	case PRID_IMP_PR4450:
1822 		c->cputype = CPU_PR4450;
1823 		__cpu_name[cpu] = "Philips PR4450";
1824 		set_isa(c, MIPS_CPU_ISA_M32R1);
1825 		break;
1826 	}
1827 }
1828 
1829 static inline void cpu_probe_broadcom(struct cpuinfo_mips *c, unsigned int cpu)
1830 {
1831 	decode_configs(c);
1832 	switch (c->processor_id & PRID_IMP_MASK) {
1833 	case PRID_IMP_BMIPS32_REV4:
1834 	case PRID_IMP_BMIPS32_REV8:
1835 		c->cputype = CPU_BMIPS32;
1836 		__cpu_name[cpu] = "Broadcom BMIPS32";
1837 		set_elf_platform(cpu, "bmips32");
1838 		break;
1839 	case PRID_IMP_BMIPS3300:
1840 	case PRID_IMP_BMIPS3300_ALT:
1841 	case PRID_IMP_BMIPS3300_BUG:
1842 		c->cputype = CPU_BMIPS3300;
1843 		__cpu_name[cpu] = "Broadcom BMIPS3300";
1844 		set_elf_platform(cpu, "bmips3300");
1845 		break;
1846 	case PRID_IMP_BMIPS43XX: {
1847 		int rev = c->processor_id & PRID_REV_MASK;
1848 
1849 		if (rev >= PRID_REV_BMIPS4380_LO &&
1850 				rev <= PRID_REV_BMIPS4380_HI) {
1851 			c->cputype = CPU_BMIPS4380;
1852 			__cpu_name[cpu] = "Broadcom BMIPS4380";
1853 			set_elf_platform(cpu, "bmips4380");
1854 			c->options |= MIPS_CPU_RIXI;
1855 		} else {
1856 			c->cputype = CPU_BMIPS4350;
1857 			__cpu_name[cpu] = "Broadcom BMIPS4350";
1858 			set_elf_platform(cpu, "bmips4350");
1859 		}
1860 		break;
1861 	}
1862 	case PRID_IMP_BMIPS5000:
1863 	case PRID_IMP_BMIPS5200:
1864 		c->cputype = CPU_BMIPS5000;
1865 		if ((c->processor_id & PRID_IMP_MASK) == PRID_IMP_BMIPS5200)
1866 			__cpu_name[cpu] = "Broadcom BMIPS5200";
1867 		else
1868 			__cpu_name[cpu] = "Broadcom BMIPS5000";
1869 		set_elf_platform(cpu, "bmips5000");
1870 		c->options |= MIPS_CPU_ULRI | MIPS_CPU_RIXI;
1871 		break;
1872 	}
1873 }
1874 
1875 static inline void cpu_probe_cavium(struct cpuinfo_mips *c, unsigned int cpu)
1876 {
1877 	decode_configs(c);
1878 	switch (c->processor_id & PRID_IMP_MASK) {
1879 	case PRID_IMP_CAVIUM_CN38XX:
1880 	case PRID_IMP_CAVIUM_CN31XX:
1881 	case PRID_IMP_CAVIUM_CN30XX:
1882 		c->cputype = CPU_CAVIUM_OCTEON;
1883 		__cpu_name[cpu] = "Cavium Octeon";
1884 		goto platform;
1885 	case PRID_IMP_CAVIUM_CN58XX:
1886 	case PRID_IMP_CAVIUM_CN56XX:
1887 	case PRID_IMP_CAVIUM_CN50XX:
1888 	case PRID_IMP_CAVIUM_CN52XX:
1889 		c->cputype = CPU_CAVIUM_OCTEON_PLUS;
1890 		__cpu_name[cpu] = "Cavium Octeon+";
1891 platform:
1892 		set_elf_platform(cpu, "octeon");
1893 		break;
1894 	case PRID_IMP_CAVIUM_CN61XX:
1895 	case PRID_IMP_CAVIUM_CN63XX:
1896 	case PRID_IMP_CAVIUM_CN66XX:
1897 	case PRID_IMP_CAVIUM_CN68XX:
1898 	case PRID_IMP_CAVIUM_CNF71XX:
1899 		c->cputype = CPU_CAVIUM_OCTEON2;
1900 		__cpu_name[cpu] = "Cavium Octeon II";
1901 		set_elf_platform(cpu, "octeon2");
1902 		break;
1903 	case PRID_IMP_CAVIUM_CN70XX:
1904 	case PRID_IMP_CAVIUM_CN73XX:
1905 	case PRID_IMP_CAVIUM_CNF75XX:
1906 	case PRID_IMP_CAVIUM_CN78XX:
1907 		c->cputype = CPU_CAVIUM_OCTEON3;
1908 		__cpu_name[cpu] = "Cavium Octeon III";
1909 		set_elf_platform(cpu, "octeon3");
1910 		break;
1911 	default:
1912 		printk(KERN_INFO "Unknown Octeon chip!\n");
1913 		c->cputype = CPU_UNKNOWN;
1914 		break;
1915 	}
1916 }
1917 
1918 static inline void cpu_probe_loongson(struct cpuinfo_mips *c, unsigned int cpu)
1919 {
1920 	switch (c->processor_id & PRID_IMP_MASK) {
1921 	case PRID_IMP_LOONGSON_64C:  /* Loongson-2/3 */
1922 		switch (c->processor_id & PRID_REV_MASK) {
1923 		case PRID_REV_LOONGSON3A_R2_0:
1924 		case PRID_REV_LOONGSON3A_R2_1:
1925 			c->cputype = CPU_LOONGSON64;
1926 			__cpu_name[cpu] = "ICT Loongson-3";
1927 			set_elf_platform(cpu, "loongson3a");
1928 			set_isa(c, MIPS_CPU_ISA_M64R2);
1929 			break;
1930 		case PRID_REV_LOONGSON3A_R3_0:
1931 		case PRID_REV_LOONGSON3A_R3_1:
1932 			c->cputype = CPU_LOONGSON64;
1933 			__cpu_name[cpu] = "ICT Loongson-3";
1934 			set_elf_platform(cpu, "loongson3a");
1935 			set_isa(c, MIPS_CPU_ISA_M64R2);
1936 			break;
1937 		}
1938 
1939 		decode_configs(c);
1940 		c->options |= MIPS_CPU_FTLB | MIPS_CPU_TLBINV | MIPS_CPU_LDPTE;
1941 		c->writecombine = _CACHE_UNCACHED_ACCELERATED;
1942 		c->ases |= (MIPS_ASE_LOONGSON_MMI | MIPS_ASE_LOONGSON_CAM |
1943 			MIPS_ASE_LOONGSON_EXT | MIPS_ASE_LOONGSON_EXT2);
1944 		break;
1945 	case PRID_IMP_LOONGSON_64G:
1946 		c->cputype = CPU_LOONGSON64;
1947 		__cpu_name[cpu] = "ICT Loongson-3";
1948 		set_elf_platform(cpu, "loongson3a");
1949 		set_isa(c, MIPS_CPU_ISA_M64R2);
1950 		decode_configs(c);
1951 		c->options |= MIPS_CPU_FTLB | MIPS_CPU_TLBINV | MIPS_CPU_LDPTE;
1952 		c->writecombine = _CACHE_UNCACHED_ACCELERATED;
1953 		c->ases |= (MIPS_ASE_LOONGSON_MMI | MIPS_ASE_LOONGSON_CAM |
1954 			MIPS_ASE_LOONGSON_EXT | MIPS_ASE_LOONGSON_EXT2);
1955 		break;
1956 	default:
1957 		panic("Unknown Loongson Processor ID!");
1958 		break;
1959 	}
1960 }
1961 
1962 static inline void cpu_probe_ingenic(struct cpuinfo_mips *c, unsigned int cpu)
1963 {
1964 	decode_configs(c);
1965 
1966 	/*
1967 	 * XBurst misses a config2 register, so config3 decode was skipped in
1968 	 * decode_configs().
1969 	 */
1970 	decode_config3(c);
1971 
1972 	/* XBurst does not implement the CP0 counter. */
1973 	c->options &= ~MIPS_CPU_COUNTER;
1974 	BUG_ON(!__builtin_constant_p(cpu_has_counter) || cpu_has_counter);
1975 
1976 	switch (c->processor_id & PRID_IMP_MASK) {
1977 	case PRID_IMP_XBURST_REV1:
1978 
1979 		/*
1980 		 * The XBurst core by default attempts to avoid branch target
1981 		 * buffer lookups by detecting & special casing loops. This
1982 		 * feature will cause BogoMIPS and lpj calculate in error.
1983 		 * Set cp0 config7 bit 4 to disable this feature.
1984 		 */
1985 		set_c0_config7(MIPS_CONF7_BTB_LOOP_EN);
1986 
1987 		switch (c->processor_id & PRID_COMP_MASK) {
1988 
1989 		/*
1990 		 * The config0 register in the XBurst CPUs with a processor ID of
1991 		 * PRID_COMP_INGENIC_D0 report themselves as MIPS32r2 compatible,
1992 		 * but they don't actually support this ISA.
1993 		 */
1994 		case PRID_COMP_INGENIC_D0:
1995 			c->isa_level &= ~MIPS_CPU_ISA_M32R2;
1996 			break;
1997 
1998 		/*
1999 		 * The config0 register in the XBurst CPUs with a processor ID of
2000 		 * PRID_COMP_INGENIC_D1 has an abandoned huge page tlb mode, this
2001 		 * mode is not compatible with the MIPS standard, it will cause
2002 		 * tlbmiss and into an infinite loop (line 21 in the tlb-funcs.S)
2003 		 * when starting the init process. After chip reset, the default
2004 		 * is HPTLB mode, Write 0xa9000000 to cp0 register 5 sel 4 to
2005 		 * switch back to VTLB mode to prevent getting stuck.
2006 		 */
2007 		case PRID_COMP_INGENIC_D1:
2008 			write_c0_page_ctrl(XBURST_PAGECTRL_HPTLB_DIS);
2009 			break;
2010 
2011 		default:
2012 			break;
2013 		}
2014 	/* fall-through */
2015 	case PRID_IMP_XBURST_REV2:
2016 		c->cputype = CPU_XBURST;
2017 		c->writecombine = _CACHE_UNCACHED_ACCELERATED;
2018 		__cpu_name[cpu] = "Ingenic XBurst";
2019 		break;
2020 
2021 	default:
2022 		panic("Unknown Ingenic Processor ID!");
2023 		break;
2024 	}
2025 }
2026 
2027 static inline void cpu_probe_netlogic(struct cpuinfo_mips *c, int cpu)
2028 {
2029 	decode_configs(c);
2030 
2031 	if ((c->processor_id & PRID_IMP_MASK) == PRID_IMP_NETLOGIC_AU13XX) {
2032 		c->cputype = CPU_ALCHEMY;
2033 		__cpu_name[cpu] = "Au1300";
2034 		/* following stuff is not for Alchemy */
2035 		return;
2036 	}
2037 
2038 	c->options = (MIPS_CPU_TLB	 |
2039 			MIPS_CPU_4KEX	 |
2040 			MIPS_CPU_COUNTER |
2041 			MIPS_CPU_DIVEC	 |
2042 			MIPS_CPU_WATCH	 |
2043 			MIPS_CPU_EJTAG	 |
2044 			MIPS_CPU_LLSC);
2045 
2046 	switch (c->processor_id & PRID_IMP_MASK) {
2047 	case PRID_IMP_NETLOGIC_XLP2XX:
2048 	case PRID_IMP_NETLOGIC_XLP9XX:
2049 	case PRID_IMP_NETLOGIC_XLP5XX:
2050 		c->cputype = CPU_XLP;
2051 		__cpu_name[cpu] = "Broadcom XLPII";
2052 		break;
2053 
2054 	case PRID_IMP_NETLOGIC_XLP8XX:
2055 	case PRID_IMP_NETLOGIC_XLP3XX:
2056 		c->cputype = CPU_XLP;
2057 		__cpu_name[cpu] = "Netlogic XLP";
2058 		break;
2059 
2060 	case PRID_IMP_NETLOGIC_XLR732:
2061 	case PRID_IMP_NETLOGIC_XLR716:
2062 	case PRID_IMP_NETLOGIC_XLR532:
2063 	case PRID_IMP_NETLOGIC_XLR308:
2064 	case PRID_IMP_NETLOGIC_XLR532C:
2065 	case PRID_IMP_NETLOGIC_XLR516C:
2066 	case PRID_IMP_NETLOGIC_XLR508C:
2067 	case PRID_IMP_NETLOGIC_XLR308C:
2068 		c->cputype = CPU_XLR;
2069 		__cpu_name[cpu] = "Netlogic XLR";
2070 		break;
2071 
2072 	case PRID_IMP_NETLOGIC_XLS608:
2073 	case PRID_IMP_NETLOGIC_XLS408:
2074 	case PRID_IMP_NETLOGIC_XLS404:
2075 	case PRID_IMP_NETLOGIC_XLS208:
2076 	case PRID_IMP_NETLOGIC_XLS204:
2077 	case PRID_IMP_NETLOGIC_XLS108:
2078 	case PRID_IMP_NETLOGIC_XLS104:
2079 	case PRID_IMP_NETLOGIC_XLS616B:
2080 	case PRID_IMP_NETLOGIC_XLS608B:
2081 	case PRID_IMP_NETLOGIC_XLS416B:
2082 	case PRID_IMP_NETLOGIC_XLS412B:
2083 	case PRID_IMP_NETLOGIC_XLS408B:
2084 	case PRID_IMP_NETLOGIC_XLS404B:
2085 		c->cputype = CPU_XLR;
2086 		__cpu_name[cpu] = "Netlogic XLS";
2087 		break;
2088 
2089 	default:
2090 		pr_info("Unknown Netlogic chip id [%02x]!\n",
2091 		       c->processor_id);
2092 		c->cputype = CPU_XLR;
2093 		break;
2094 	}
2095 
2096 	if (c->cputype == CPU_XLP) {
2097 		set_isa(c, MIPS_CPU_ISA_M64R2);
2098 		c->options |= (MIPS_CPU_FPU | MIPS_CPU_ULRI | MIPS_CPU_MCHECK);
2099 		/* This will be updated again after all threads are woken up */
2100 		c->tlbsize = ((read_c0_config6() >> 16) & 0xffff) + 1;
2101 	} else {
2102 		set_isa(c, MIPS_CPU_ISA_M64R1);
2103 		c->tlbsize = ((read_c0_config1() >> 25) & 0x3f) + 1;
2104 	}
2105 	c->kscratch_mask = 0xf;
2106 }
2107 
2108 #ifdef CONFIG_64BIT
2109 /* For use by uaccess.h */
2110 u64 __ua_limit;
2111 EXPORT_SYMBOL(__ua_limit);
2112 #endif
2113 
2114 const char *__cpu_name[NR_CPUS];
2115 const char *__elf_platform;
2116 
2117 void cpu_probe(void)
2118 {
2119 	struct cpuinfo_mips *c = &current_cpu_data;
2120 	unsigned int cpu = smp_processor_id();
2121 
2122 	/*
2123 	 * Set a default elf platform, cpu probe may later
2124 	 * overwrite it with a more precise value
2125 	 */
2126 	set_elf_platform(cpu, "mips");
2127 
2128 	c->processor_id = PRID_IMP_UNKNOWN;
2129 	c->fpu_id	= FPIR_IMP_NONE;
2130 	c->cputype	= CPU_UNKNOWN;
2131 	c->writecombine = _CACHE_UNCACHED;
2132 
2133 	c->fpu_csr31	= FPU_CSR_RN;
2134 	c->fpu_msk31	= FPU_CSR_RSVD | FPU_CSR_ABS2008 | FPU_CSR_NAN2008;
2135 
2136 	c->processor_id = read_c0_prid();
2137 	switch (c->processor_id & PRID_COMP_MASK) {
2138 	case PRID_COMP_LEGACY:
2139 		cpu_probe_legacy(c, cpu);
2140 		break;
2141 	case PRID_COMP_MIPS:
2142 		cpu_probe_mips(c, cpu);
2143 		break;
2144 	case PRID_COMP_ALCHEMY:
2145 		cpu_probe_alchemy(c, cpu);
2146 		break;
2147 	case PRID_COMP_SIBYTE:
2148 		cpu_probe_sibyte(c, cpu);
2149 		break;
2150 	case PRID_COMP_BROADCOM:
2151 		cpu_probe_broadcom(c, cpu);
2152 		break;
2153 	case PRID_COMP_SANDCRAFT:
2154 		cpu_probe_sandcraft(c, cpu);
2155 		break;
2156 	case PRID_COMP_NXP:
2157 		cpu_probe_nxp(c, cpu);
2158 		break;
2159 	case PRID_COMP_CAVIUM:
2160 		cpu_probe_cavium(c, cpu);
2161 		break;
2162 	case PRID_COMP_LOONGSON:
2163 		cpu_probe_loongson(c, cpu);
2164 		break;
2165 	case PRID_COMP_INGENIC_D0:
2166 	case PRID_COMP_INGENIC_D1:
2167 	case PRID_COMP_INGENIC_E1:
2168 		cpu_probe_ingenic(c, cpu);
2169 		break;
2170 	case PRID_COMP_NETLOGIC:
2171 		cpu_probe_netlogic(c, cpu);
2172 		break;
2173 	}
2174 
2175 	BUG_ON(!__cpu_name[cpu]);
2176 	BUG_ON(c->cputype == CPU_UNKNOWN);
2177 
2178 	/*
2179 	 * Platform code can force the cpu type to optimize code
2180 	 * generation. In that case be sure the cpu type is correctly
2181 	 * manually setup otherwise it could trigger some nasty bugs.
2182 	 */
2183 	BUG_ON(current_cpu_type() != c->cputype);
2184 
2185 	if (cpu_has_rixi) {
2186 		/* Enable the RIXI exceptions */
2187 		set_c0_pagegrain(PG_IEC);
2188 		back_to_back_c0_hazard();
2189 		/* Verify the IEC bit is set */
2190 		if (read_c0_pagegrain() & PG_IEC)
2191 			c->options |= MIPS_CPU_RIXIEX;
2192 	}
2193 
2194 	if (mips_fpu_disabled)
2195 		c->options &= ~MIPS_CPU_FPU;
2196 
2197 	if (mips_dsp_disabled)
2198 		c->ases &= ~(MIPS_ASE_DSP | MIPS_ASE_DSP2P);
2199 
2200 	if (mips_htw_disabled) {
2201 		c->options &= ~MIPS_CPU_HTW;
2202 		write_c0_pwctl(read_c0_pwctl() &
2203 			       ~(1 << MIPS_PWCTL_PWEN_SHIFT));
2204 	}
2205 
2206 	if (c->options & MIPS_CPU_FPU)
2207 		cpu_set_fpu_opts(c);
2208 	else
2209 		cpu_set_nofpu_opts(c);
2210 
2211 	if (cpu_has_bp_ghist)
2212 		write_c0_r10k_diag(read_c0_r10k_diag() |
2213 				   R10K_DIAG_E_GHIST);
2214 
2215 	if (cpu_has_mips_r2_r6) {
2216 		c->srsets = ((read_c0_srsctl() >> 26) & 0x0f) + 1;
2217 		/* R2 has Performance Counter Interrupt indicator */
2218 		c->options |= MIPS_CPU_PCI;
2219 	}
2220 	else
2221 		c->srsets = 1;
2222 
2223 	if (cpu_has_mips_r6)
2224 		elf_hwcap |= HWCAP_MIPS_R6;
2225 
2226 	if (cpu_has_msa) {
2227 		c->msa_id = cpu_get_msa_id();
2228 		WARN(c->msa_id & MSA_IR_WRPF,
2229 		     "Vector register partitioning unimplemented!");
2230 		elf_hwcap |= HWCAP_MIPS_MSA;
2231 	}
2232 
2233 	if (cpu_has_mips16)
2234 		elf_hwcap |= HWCAP_MIPS_MIPS16;
2235 
2236 	if (cpu_has_mdmx)
2237 		elf_hwcap |= HWCAP_MIPS_MDMX;
2238 
2239 	if (cpu_has_mips3d)
2240 		elf_hwcap |= HWCAP_MIPS_MIPS3D;
2241 
2242 	if (cpu_has_smartmips)
2243 		elf_hwcap |= HWCAP_MIPS_SMARTMIPS;
2244 
2245 	if (cpu_has_dsp)
2246 		elf_hwcap |= HWCAP_MIPS_DSP;
2247 
2248 	if (cpu_has_dsp2)
2249 		elf_hwcap |= HWCAP_MIPS_DSP2;
2250 
2251 	if (cpu_has_dsp3)
2252 		elf_hwcap |= HWCAP_MIPS_DSP3;
2253 
2254 	if (cpu_has_mips16e2)
2255 		elf_hwcap |= HWCAP_MIPS_MIPS16E2;
2256 
2257 	if (cpu_has_loongson_mmi)
2258 		elf_hwcap |= HWCAP_LOONGSON_MMI;
2259 
2260 	if (cpu_has_loongson_ext)
2261 		elf_hwcap |= HWCAP_LOONGSON_EXT;
2262 
2263 	if (cpu_has_loongson_ext2)
2264 		elf_hwcap |= HWCAP_LOONGSON_EXT2;
2265 
2266 	if (cpu_has_vz)
2267 		cpu_probe_vz(c);
2268 
2269 	cpu_probe_vmbits(c);
2270 
2271 #ifdef CONFIG_64BIT
2272 	if (cpu == 0)
2273 		__ua_limit = ~((1ull << cpu_vmbits) - 1);
2274 #endif
2275 }
2276 
2277 void cpu_report(void)
2278 {
2279 	struct cpuinfo_mips *c = &current_cpu_data;
2280 
2281 	pr_info("CPU%d revision is: %08x (%s)\n",
2282 		smp_processor_id(), c->processor_id, cpu_name_string());
2283 	if (c->options & MIPS_CPU_FPU)
2284 		printk(KERN_INFO "FPU revision is: %08x\n", c->fpu_id);
2285 	if (cpu_has_msa)
2286 		pr_info("MSA revision is: %08x\n", c->msa_id);
2287 }
2288 
2289 void cpu_set_cluster(struct cpuinfo_mips *cpuinfo, unsigned int cluster)
2290 {
2291 	/* Ensure the core number fits in the field */
2292 	WARN_ON(cluster > (MIPS_GLOBALNUMBER_CLUSTER >>
2293 			   MIPS_GLOBALNUMBER_CLUSTER_SHF));
2294 
2295 	cpuinfo->globalnumber &= ~MIPS_GLOBALNUMBER_CLUSTER;
2296 	cpuinfo->globalnumber |= cluster << MIPS_GLOBALNUMBER_CLUSTER_SHF;
2297 }
2298 
2299 void cpu_set_core(struct cpuinfo_mips *cpuinfo, unsigned int core)
2300 {
2301 	/* Ensure the core number fits in the field */
2302 	WARN_ON(core > (MIPS_GLOBALNUMBER_CORE >> MIPS_GLOBALNUMBER_CORE_SHF));
2303 
2304 	cpuinfo->globalnumber &= ~MIPS_GLOBALNUMBER_CORE;
2305 	cpuinfo->globalnumber |= core << MIPS_GLOBALNUMBER_CORE_SHF;
2306 }
2307 
2308 void cpu_set_vpe_id(struct cpuinfo_mips *cpuinfo, unsigned int vpe)
2309 {
2310 	/* Ensure the VP(E) ID fits in the field */
2311 	WARN_ON(vpe > (MIPS_GLOBALNUMBER_VP >> MIPS_GLOBALNUMBER_VP_SHF));
2312 
2313 	/* Ensure we're not using VP(E)s without support */
2314 	WARN_ON(vpe && !IS_ENABLED(CONFIG_MIPS_MT_SMP) &&
2315 		!IS_ENABLED(CONFIG_CPU_MIPSR6));
2316 
2317 	cpuinfo->globalnumber &= ~MIPS_GLOBALNUMBER_VP;
2318 	cpuinfo->globalnumber |= vpe << MIPS_GLOBALNUMBER_VP_SHF;
2319 }
2320