1 /* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * Copyright (C) 2007 MIPS Technologies, Inc. 7 * Copyright (C) 2007 Ralf Baechle <ralf@linux-mips.org> 8 */ 9 #include <linux/clockchips.h> 10 #include <linux/interrupt.h> 11 #include <linux/percpu.h> 12 #include <linux/smp.h> 13 #include <linux/irq.h> 14 15 #include <asm/time.h> 16 #include <asm/cevt-r4k.h> 17 18 static int mips_next_event(unsigned long delta, 19 struct clock_event_device *evt) 20 { 21 unsigned int cnt; 22 int res; 23 24 cnt = read_c0_count(); 25 cnt += delta; 26 write_c0_compare(cnt); 27 res = ((int)(read_c0_count() - cnt) >= 0) ? -ETIME : 0; 28 return res; 29 } 30 31 /** 32 * calculate_min_delta() - Calculate a good minimum delta for mips_next_event(). 33 * 34 * Running under virtualisation can introduce overhead into mips_next_event() in 35 * the form of hypervisor emulation of CP0_Count/CP0_Compare registers, 36 * potentially with an unnatural frequency, which makes a fixed min_delta_ns 37 * value inappropriate as it may be too small. 38 * 39 * It can also introduce occasional latency from the guest being descheduled. 40 * 41 * This function calculates a good minimum delta based roughly on the 75th 42 * percentile of the time taken to do the mips_next_event() sequence, in order 43 * to handle potentially higher overhead while also eliminating outliers due to 44 * unpredictable hypervisor latency (which can be handled by retries). 45 * 46 * Return: An appropriate minimum delta for the clock event device. 47 */ 48 static unsigned int calculate_min_delta(void) 49 { 50 unsigned int cnt, i, j, k, l; 51 unsigned int buf1[4], buf2[3]; 52 unsigned int min_delta; 53 54 /* 55 * Calculate the median of 5 75th percentiles of 5 samples of how long 56 * it takes to set CP0_Compare = CP0_Count + delta. 57 */ 58 for (i = 0; i < 5; ++i) { 59 for (j = 0; j < 5; ++j) { 60 /* 61 * This is like the code in mips_next_event(), and 62 * directly measures the borderline "safe" delta. 63 */ 64 cnt = read_c0_count(); 65 write_c0_compare(cnt); 66 cnt = read_c0_count() - cnt; 67 68 /* Sorted insert into buf1 */ 69 for (k = 0; k < j; ++k) { 70 if (cnt < buf1[k]) { 71 l = min_t(unsigned int, 72 j, ARRAY_SIZE(buf1) - 1); 73 for (; l > k; --l) 74 buf1[l] = buf1[l - 1]; 75 break; 76 } 77 } 78 if (k < ARRAY_SIZE(buf1)) 79 buf1[k] = cnt; 80 } 81 82 /* Sorted insert of 75th percentile into buf2 */ 83 for (k = 0; k < i; ++k) { 84 if (buf1[ARRAY_SIZE(buf1) - 1] < buf2[k]) { 85 l = min_t(unsigned int, 86 i, ARRAY_SIZE(buf2) - 1); 87 for (; l > k; --l) 88 buf2[l] = buf2[l - 1]; 89 break; 90 } 91 } 92 if (k < ARRAY_SIZE(buf2)) 93 buf2[k] = buf1[ARRAY_SIZE(buf1) - 1]; 94 } 95 96 /* Use 2 * median of 75th percentiles */ 97 min_delta = buf2[ARRAY_SIZE(buf2) - 1] * 2; 98 99 /* Don't go too low */ 100 if (min_delta < 0x300) 101 min_delta = 0x300; 102 103 pr_debug("%s: median 75th percentile=%#x, min_delta=%#x\n", 104 __func__, buf2[ARRAY_SIZE(buf2) - 1], min_delta); 105 return min_delta; 106 } 107 108 DEFINE_PER_CPU(struct clock_event_device, mips_clockevent_device); 109 int cp0_timer_irq_installed; 110 111 /* 112 * Possibly handle a performance counter interrupt. 113 * Return true if the timer interrupt should not be checked 114 */ 115 static inline int handle_perf_irq(int r2) 116 { 117 /* 118 * The performance counter overflow interrupt may be shared with the 119 * timer interrupt (cp0_perfcount_irq < 0). If it is and a 120 * performance counter has overflowed (perf_irq() == IRQ_HANDLED) 121 * and we can't reliably determine if a counter interrupt has also 122 * happened (!r2) then don't check for a timer interrupt. 123 */ 124 return (cp0_perfcount_irq < 0) && 125 perf_irq() == IRQ_HANDLED && 126 !r2; 127 } 128 129 irqreturn_t c0_compare_interrupt(int irq, void *dev_id) 130 { 131 const int r2 = cpu_has_mips_r2_r6; 132 struct clock_event_device *cd; 133 int cpu = smp_processor_id(); 134 135 /* 136 * Suckage alert: 137 * Before R2 of the architecture there was no way to see if a 138 * performance counter interrupt was pending, so we have to run 139 * the performance counter interrupt handler anyway. 140 */ 141 if (handle_perf_irq(r2)) 142 return IRQ_HANDLED; 143 144 /* 145 * The same applies to performance counter interrupts. But with the 146 * above we now know that the reason we got here must be a timer 147 * interrupt. Being the paranoiacs we are we check anyway. 148 */ 149 if (!r2 || (read_c0_cause() & CAUSEF_TI)) { 150 /* Clear Count/Compare Interrupt */ 151 write_c0_compare(read_c0_compare()); 152 cd = &per_cpu(mips_clockevent_device, cpu); 153 cd->event_handler(cd); 154 155 return IRQ_HANDLED; 156 } 157 158 return IRQ_NONE; 159 } 160 161 struct irqaction c0_compare_irqaction = { 162 .handler = c0_compare_interrupt, 163 /* 164 * IRQF_SHARED: The timer interrupt may be shared with other interrupts 165 * such as perf counter and FDC interrupts. 166 */ 167 .flags = IRQF_PERCPU | IRQF_TIMER | IRQF_SHARED, 168 .name = "timer", 169 }; 170 171 172 void mips_event_handler(struct clock_event_device *dev) 173 { 174 } 175 176 /* 177 * FIXME: This doesn't hold for the relocated E9000 compare interrupt. 178 */ 179 static int c0_compare_int_pending(void) 180 { 181 /* When cpu_has_mips_r2, this checks Cause.TI instead of Cause.IP7 */ 182 return (read_c0_cause() >> cp0_compare_irq_shift) & (1ul << CAUSEB_IP); 183 } 184 185 /* 186 * Compare interrupt can be routed and latched outside the core, 187 * so wait up to worst case number of cycle counter ticks for timer interrupt 188 * changes to propagate to the cause register. 189 */ 190 #define COMPARE_INT_SEEN_TICKS 50 191 192 int c0_compare_int_usable(void) 193 { 194 unsigned int delta; 195 unsigned int cnt; 196 197 #ifdef CONFIG_KVM_GUEST 198 return 1; 199 #endif 200 201 /* 202 * IP7 already pending? Try to clear it by acking the timer. 203 */ 204 if (c0_compare_int_pending()) { 205 cnt = read_c0_count(); 206 write_c0_compare(cnt); 207 back_to_back_c0_hazard(); 208 while (read_c0_count() < (cnt + COMPARE_INT_SEEN_TICKS)) 209 if (!c0_compare_int_pending()) 210 break; 211 if (c0_compare_int_pending()) 212 return 0; 213 } 214 215 for (delta = 0x10; delta <= 0x400000; delta <<= 1) { 216 cnt = read_c0_count(); 217 cnt += delta; 218 write_c0_compare(cnt); 219 back_to_back_c0_hazard(); 220 if ((int)(read_c0_count() - cnt) < 0) 221 break; 222 /* increase delta if the timer was already expired */ 223 } 224 225 while ((int)(read_c0_count() - cnt) <= 0) 226 ; /* Wait for expiry */ 227 228 while (read_c0_count() < (cnt + COMPARE_INT_SEEN_TICKS)) 229 if (c0_compare_int_pending()) 230 break; 231 if (!c0_compare_int_pending()) 232 return 0; 233 cnt = read_c0_count(); 234 write_c0_compare(cnt); 235 back_to_back_c0_hazard(); 236 while (read_c0_count() < (cnt + COMPARE_INT_SEEN_TICKS)) 237 if (!c0_compare_int_pending()) 238 break; 239 if (c0_compare_int_pending()) 240 return 0; 241 242 /* 243 * Feels like a real count / compare timer. 244 */ 245 return 1; 246 } 247 248 unsigned int __weak get_c0_compare_int(void) 249 { 250 return MIPS_CPU_IRQ_BASE + cp0_compare_irq; 251 } 252 253 int r4k_clockevent_init(void) 254 { 255 unsigned int cpu = smp_processor_id(); 256 struct clock_event_device *cd; 257 unsigned int irq, min_delta; 258 259 if (!cpu_has_counter || !mips_hpt_frequency) 260 return -ENXIO; 261 262 if (!c0_compare_int_usable()) 263 return -ENXIO; 264 265 /* 266 * With vectored interrupts things are getting platform specific. 267 * get_c0_compare_int is a hook to allow a platform to return the 268 * interrupt number of its liking. 269 */ 270 irq = get_c0_compare_int(); 271 272 cd = &per_cpu(mips_clockevent_device, cpu); 273 274 cd->name = "MIPS"; 275 cd->features = CLOCK_EVT_FEAT_ONESHOT | 276 CLOCK_EVT_FEAT_C3STOP | 277 CLOCK_EVT_FEAT_PERCPU; 278 279 clockevent_set_clock(cd, mips_hpt_frequency); 280 281 /* Calculate the min / max delta */ 282 cd->max_delta_ns = clockevent_delta2ns(0x7fffffff, cd); 283 min_delta = calculate_min_delta(); 284 cd->min_delta_ns = clockevent_delta2ns(min_delta, cd); 285 286 cd->rating = 300; 287 cd->irq = irq; 288 cd->cpumask = cpumask_of(cpu); 289 cd->set_next_event = mips_next_event; 290 cd->event_handler = mips_event_handler; 291 292 clockevents_register_device(cd); 293 294 if (cp0_timer_irq_installed) 295 return 0; 296 297 cp0_timer_irq_installed = 1; 298 299 setup_irq(irq, &c0_compare_irqaction); 300 301 return 0; 302 } 303 304