xref: /linux/arch/mips/include/asm/mmu_context.h (revision c8bfe3fad4f86a029da7157bae9699c816f0c309)
1 /*
2  * Switch a MMU context.
3  *
4  * This file is subject to the terms and conditions of the GNU General Public
5  * License.  See the file "COPYING" in the main directory of this archive
6  * for more details.
7  *
8  * Copyright (C) 1996, 1997, 1998, 1999 by Ralf Baechle
9  * Copyright (C) 1999 Silicon Graphics, Inc.
10  */
11 #ifndef _ASM_MMU_CONTEXT_H
12 #define _ASM_MMU_CONTEXT_H
13 
14 #include <linux/errno.h>
15 #include <linux/sched.h>
16 #include <linux/mm_types.h>
17 #include <linux/smp.h>
18 #include <linux/slab.h>
19 
20 #include <asm/barrier.h>
21 #include <asm/cacheflush.h>
22 #include <asm/dsemul.h>
23 #include <asm/ginvt.h>
24 #include <asm/hazards.h>
25 #include <asm/tlbflush.h>
26 #include <asm-generic/mm_hooks.h>
27 
28 #define htw_set_pwbase(pgd)						\
29 do {									\
30 	if (cpu_has_htw) {						\
31 		write_c0_pwbase(pgd);					\
32 		back_to_back_c0_hazard();				\
33 	}								\
34 } while (0)
35 
36 extern void tlbmiss_handler_setup_pgd(unsigned long);
37 extern char tlbmiss_handler_setup_pgd_end[];
38 
39 /* Note: This is also implemented with uasm in arch/mips/kvm/entry.c */
40 #define TLBMISS_HANDLER_SETUP_PGD(pgd)					\
41 do {									\
42 	tlbmiss_handler_setup_pgd((unsigned long)(pgd));		\
43 	htw_set_pwbase((unsigned long)pgd);				\
44 } while (0)
45 
46 #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
47 
48 #define TLBMISS_HANDLER_RESTORE()					\
49 	write_c0_xcontext((unsigned long) smp_processor_id() <<		\
50 			  SMP_CPUID_REGSHIFT)
51 
52 #define TLBMISS_HANDLER_SETUP()						\
53 	do {								\
54 		TLBMISS_HANDLER_SETUP_PGD(swapper_pg_dir);		\
55 		TLBMISS_HANDLER_RESTORE();				\
56 	} while (0)
57 
58 #else /* !CONFIG_MIPS_PGD_C0_CONTEXT: using  pgd_current*/
59 
60 /*
61  * For the fast tlb miss handlers, we keep a per cpu array of pointers
62  * to the current pgd for each processor. Also, the proc. id is stuffed
63  * into the context register.
64  */
65 extern unsigned long pgd_current[];
66 
67 #define TLBMISS_HANDLER_RESTORE()					\
68 	write_c0_context((unsigned long) smp_processor_id() <<		\
69 			 SMP_CPUID_REGSHIFT)
70 
71 #define TLBMISS_HANDLER_SETUP()						\
72 	TLBMISS_HANDLER_RESTORE();					\
73 	back_to_back_c0_hazard();					\
74 	TLBMISS_HANDLER_SETUP_PGD(swapper_pg_dir)
75 #endif /* CONFIG_MIPS_PGD_C0_CONTEXT*/
76 
77 /*
78  * The ginvt instruction will invalidate wired entries when its type field
79  * targets anything other than the entire TLB. That means that if we were to
80  * allow the kernel to create wired entries with the MMID of current->active_mm
81  * then those wired entries could be invalidated when we later use ginvt to
82  * invalidate TLB entries with that MMID.
83  *
84  * In order to prevent ginvt from trashing wired entries, we reserve one MMID
85  * for use by the kernel when creating wired entries. This MMID will never be
86  * assigned to a struct mm, and we'll never target it with a ginvt instruction.
87  */
88 #define MMID_KERNEL_WIRED	0
89 
90 /*
91  *  All unused by hardware upper bits will be considered
92  *  as a software asid extension.
93  */
94 static inline u64 asid_version_mask(unsigned int cpu)
95 {
96 	unsigned long asid_mask = cpu_asid_mask(&cpu_data[cpu]);
97 
98 	return ~(u64)(asid_mask | (asid_mask - 1));
99 }
100 
101 static inline u64 asid_first_version(unsigned int cpu)
102 {
103 	return ~asid_version_mask(cpu) + 1;
104 }
105 
106 static inline u64 cpu_context(unsigned int cpu, const struct mm_struct *mm)
107 {
108 	if (cpu_has_mmid)
109 		return atomic64_read(&mm->context.mmid);
110 
111 	return mm->context.asid[cpu];
112 }
113 
114 static inline void set_cpu_context(unsigned int cpu,
115 				   struct mm_struct *mm, u64 ctx)
116 {
117 	if (cpu_has_mmid)
118 		atomic64_set(&mm->context.mmid, ctx);
119 	else
120 		mm->context.asid[cpu] = ctx;
121 }
122 
123 #define asid_cache(cpu)		(cpu_data[cpu].asid_cache)
124 #define cpu_asid(cpu, mm) \
125 	(cpu_context((cpu), (mm)) & cpu_asid_mask(&cpu_data[cpu]))
126 
127 extern void get_new_mmu_context(struct mm_struct *mm);
128 extern void check_mmu_context(struct mm_struct *mm);
129 extern void check_switch_mmu_context(struct mm_struct *mm);
130 
131 /*
132  * Initialize the context related info for a new mm_struct
133  * instance.
134  */
135 #define init_new_context init_new_context
136 static inline int
137 init_new_context(struct task_struct *tsk, struct mm_struct *mm)
138 {
139 	int i;
140 
141 	if (cpu_has_mmid) {
142 		set_cpu_context(0, mm, 0);
143 	} else {
144 		for_each_possible_cpu(i)
145 			set_cpu_context(i, mm, 0);
146 	}
147 
148 	mm->context.bd_emupage_allocmap = NULL;
149 	spin_lock_init(&mm->context.bd_emupage_lock);
150 	init_waitqueue_head(&mm->context.bd_emupage_queue);
151 
152 	return 0;
153 }
154 
155 static inline void switch_mm(struct mm_struct *prev, struct mm_struct *next,
156 			     struct task_struct *tsk)
157 {
158 	unsigned int cpu = smp_processor_id();
159 	unsigned long flags;
160 	local_irq_save(flags);
161 
162 	htw_stop();
163 	check_switch_mmu_context(next);
164 
165 	/*
166 	 * Mark current->active_mm as not "active" anymore.
167 	 * We don't want to mislead possible IPI tlb flush routines.
168 	 */
169 	cpumask_clear_cpu(cpu, mm_cpumask(prev));
170 	cpumask_set_cpu(cpu, mm_cpumask(next));
171 	htw_start();
172 
173 	local_irq_restore(flags);
174 }
175 
176 /*
177  * Destroy context related info for an mm_struct that is about
178  * to be put to rest.
179  */
180 #define destroy_context destroy_context
181 static inline void destroy_context(struct mm_struct *mm)
182 {
183 	dsemul_mm_cleanup(mm);
184 }
185 
186 static inline void
187 drop_mmu_context(struct mm_struct *mm)
188 {
189 	unsigned long flags;
190 	unsigned int cpu;
191 	u32 old_mmid;
192 	u64 ctx;
193 
194 	local_irq_save(flags);
195 
196 	cpu = smp_processor_id();
197 	ctx = cpu_context(cpu, mm);
198 
199 	if (!ctx) {
200 		/* no-op */
201 	} else if (cpu_has_mmid) {
202 		/*
203 		 * Globally invalidating TLB entries associated with the MMID
204 		 * is pretty cheap using the GINVT instruction, so we'll do
205 		 * that rather than incur the overhead of allocating a new
206 		 * MMID. The latter would be especially difficult since MMIDs
207 		 * are global & other CPUs may be actively using ctx.
208 		 */
209 		htw_stop();
210 		old_mmid = read_c0_memorymapid();
211 		write_c0_memorymapid(ctx & cpu_asid_mask(&cpu_data[cpu]));
212 		mtc0_tlbw_hazard();
213 		ginvt_mmid();
214 		sync_ginv();
215 		write_c0_memorymapid(old_mmid);
216 		instruction_hazard();
217 		htw_start();
218 	} else if (cpumask_test_cpu(cpu, mm_cpumask(mm))) {
219 		/*
220 		 * mm is currently active, so we can't really drop it.
221 		 * Instead we bump the ASID.
222 		 */
223 		htw_stop();
224 		get_new_mmu_context(mm);
225 		write_c0_entryhi(cpu_asid(cpu, mm));
226 		htw_start();
227 	} else {
228 		/* will get a new context next time */
229 		set_cpu_context(cpu, mm, 0);
230 	}
231 
232 	local_irq_restore(flags);
233 }
234 
235 #include <asm-generic/mmu_context.h>
236 
237 #endif /* _ASM_MMU_CONTEXT_H */
238