xref: /linux/arch/mips/include/asm/mmu_context.h (revision 2b64b2ed277ff23e785fbdb65098ee7e1252d64f)
1 /*
2  * Switch a MMU context.
3  *
4  * This file is subject to the terms and conditions of the GNU General Public
5  * License.  See the file "COPYING" in the main directory of this archive
6  * for more details.
7  *
8  * Copyright (C) 1996, 1997, 1998, 1999 by Ralf Baechle
9  * Copyright (C) 1999 Silicon Graphics, Inc.
10  */
11 #ifndef _ASM_MMU_CONTEXT_H
12 #define _ASM_MMU_CONTEXT_H
13 
14 #include <linux/errno.h>
15 #include <linux/sched.h>
16 #include <linux/mm_types.h>
17 #include <linux/smp.h>
18 #include <linux/slab.h>
19 
20 #include <asm/barrier.h>
21 #include <asm/cacheflush.h>
22 #include <asm/dsemul.h>
23 #include <asm/ginvt.h>
24 #include <asm/hazards.h>
25 #include <asm/tlbflush.h>
26 #include <asm-generic/mm_hooks.h>
27 
28 #define htw_set_pwbase(pgd)						\
29 do {									\
30 	if (cpu_has_htw) {						\
31 		write_c0_pwbase(pgd);					\
32 		back_to_back_c0_hazard();				\
33 	}								\
34 } while (0)
35 
36 extern void tlbmiss_handler_setup_pgd(unsigned long);
37 extern char tlbmiss_handler_setup_pgd_end[];
38 
39 /* Note: This is also implemented with uasm in arch/mips/kvm/entry.c */
40 #define TLBMISS_HANDLER_SETUP_PGD(pgd)					\
41 do {									\
42 	tlbmiss_handler_setup_pgd((unsigned long)(pgd));		\
43 	htw_set_pwbase((unsigned long)pgd);				\
44 } while (0)
45 
46 #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
47 
48 #define TLBMISS_HANDLER_RESTORE()					\
49 	write_c0_xcontext((unsigned long) smp_processor_id() <<		\
50 			  SMP_CPUID_REGSHIFT)
51 
52 #define TLBMISS_HANDLER_SETUP()						\
53 	do {								\
54 		TLBMISS_HANDLER_SETUP_PGD(swapper_pg_dir);		\
55 		TLBMISS_HANDLER_RESTORE();				\
56 	} while (0)
57 
58 #else /* !CONFIG_MIPS_PGD_C0_CONTEXT: using  pgd_current*/
59 
60 /*
61  * For the fast tlb miss handlers, we keep a per cpu array of pointers
62  * to the current pgd for each processor. Also, the proc. id is stuffed
63  * into the context register.
64  */
65 extern unsigned long pgd_current[];
66 
67 #define TLBMISS_HANDLER_RESTORE()					\
68 	write_c0_context((unsigned long) smp_processor_id() <<		\
69 			 SMP_CPUID_REGSHIFT)
70 
71 #define TLBMISS_HANDLER_SETUP()						\
72 	TLBMISS_HANDLER_RESTORE();					\
73 	back_to_back_c0_hazard();					\
74 	TLBMISS_HANDLER_SETUP_PGD(swapper_pg_dir)
75 #endif /* CONFIG_MIPS_PGD_C0_CONTEXT*/
76 
77 /*
78  * The ginvt instruction will invalidate wired entries when its type field
79  * targets anything other than the entire TLB. That means that if we were to
80  * allow the kernel to create wired entries with the MMID of current->active_mm
81  * then those wired entries could be invalidated when we later use ginvt to
82  * invalidate TLB entries with that MMID.
83  *
84  * In order to prevent ginvt from trashing wired entries, we reserve one MMID
85  * for use by the kernel when creating wired entries. This MMID will never be
86  * assigned to a struct mm, and we'll never target it with a ginvt instruction.
87  */
88 #define MMID_KERNEL_WIRED	0
89 
90 /*
91  *  All unused by hardware upper bits will be considered
92  *  as a software asid extension.
93  */
94 static inline u64 asid_version_mask(unsigned int cpu)
95 {
96 	unsigned long asid_mask = cpu_asid_mask(&cpu_data[cpu]);
97 
98 	return ~(u64)(asid_mask | (asid_mask - 1));
99 }
100 
101 static inline u64 asid_first_version(unsigned int cpu)
102 {
103 	return ~asid_version_mask(cpu) + 1;
104 }
105 
106 static inline u64 cpu_context(unsigned int cpu, const struct mm_struct *mm)
107 {
108 	if (cpu_has_mmid)
109 		return atomic64_read(&mm->context.mmid);
110 
111 	return mm->context.asid[cpu];
112 }
113 
114 static inline void set_cpu_context(unsigned int cpu,
115 				   struct mm_struct *mm, u64 ctx)
116 {
117 	if (cpu_has_mmid)
118 		atomic64_set(&mm->context.mmid, ctx);
119 	else
120 		mm->context.asid[cpu] = ctx;
121 }
122 
123 #define asid_cache(cpu)		(cpu_data[cpu].asid_cache)
124 #define cpu_asid(cpu, mm) \
125 	(cpu_context((cpu), (mm)) & cpu_asid_mask(&cpu_data[cpu]))
126 
127 static inline void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk)
128 {
129 }
130 
131 extern void get_new_mmu_context(struct mm_struct *mm);
132 extern void check_mmu_context(struct mm_struct *mm);
133 extern void check_switch_mmu_context(struct mm_struct *mm);
134 
135 /*
136  * Initialize the context related info for a new mm_struct
137  * instance.
138  */
139 static inline int
140 init_new_context(struct task_struct *tsk, struct mm_struct *mm)
141 {
142 	int i;
143 
144 	if (cpu_has_mmid) {
145 		set_cpu_context(0, mm, 0);
146 	} else {
147 		for_each_possible_cpu(i)
148 			set_cpu_context(i, mm, 0);
149 	}
150 
151 	mm->context.bd_emupage_allocmap = NULL;
152 	spin_lock_init(&mm->context.bd_emupage_lock);
153 	init_waitqueue_head(&mm->context.bd_emupage_queue);
154 
155 	return 0;
156 }
157 
158 static inline void switch_mm(struct mm_struct *prev, struct mm_struct *next,
159 			     struct task_struct *tsk)
160 {
161 	unsigned int cpu = smp_processor_id();
162 	unsigned long flags;
163 	local_irq_save(flags);
164 
165 	htw_stop();
166 	check_switch_mmu_context(next);
167 
168 	/*
169 	 * Mark current->active_mm as not "active" anymore.
170 	 * We don't want to mislead possible IPI tlb flush routines.
171 	 */
172 	cpumask_clear_cpu(cpu, mm_cpumask(prev));
173 	cpumask_set_cpu(cpu, mm_cpumask(next));
174 	htw_start();
175 
176 	local_irq_restore(flags);
177 }
178 
179 /*
180  * Destroy context related info for an mm_struct that is about
181  * to be put to rest.
182  */
183 static inline void destroy_context(struct mm_struct *mm)
184 {
185 	dsemul_mm_cleanup(mm);
186 }
187 
188 #define activate_mm(prev, next)	switch_mm(prev, next, current)
189 #define deactivate_mm(tsk, mm)	do { } while (0)
190 
191 static inline void
192 drop_mmu_context(struct mm_struct *mm)
193 {
194 	unsigned long flags;
195 	unsigned int cpu;
196 	u32 old_mmid;
197 	u64 ctx;
198 
199 	local_irq_save(flags);
200 
201 	cpu = smp_processor_id();
202 	ctx = cpu_context(cpu, mm);
203 
204 	if (!ctx) {
205 		/* no-op */
206 	} else if (cpu_has_mmid) {
207 		/*
208 		 * Globally invalidating TLB entries associated with the MMID
209 		 * is pretty cheap using the GINVT instruction, so we'll do
210 		 * that rather than incur the overhead of allocating a new
211 		 * MMID. The latter would be especially difficult since MMIDs
212 		 * are global & other CPUs may be actively using ctx.
213 		 */
214 		htw_stop();
215 		old_mmid = read_c0_memorymapid();
216 		write_c0_memorymapid(ctx & cpu_asid_mask(&cpu_data[cpu]));
217 		mtc0_tlbw_hazard();
218 		ginvt_mmid();
219 		sync_ginv();
220 		write_c0_memorymapid(old_mmid);
221 		instruction_hazard();
222 		htw_start();
223 	} else if (cpumask_test_cpu(cpu, mm_cpumask(mm))) {
224 		/*
225 		 * mm is currently active, so we can't really drop it.
226 		 * Instead we bump the ASID.
227 		 */
228 		htw_stop();
229 		get_new_mmu_context(mm);
230 		write_c0_entryhi(cpu_asid(cpu, mm));
231 		htw_start();
232 	} else {
233 		/* will get a new context next time */
234 		set_cpu_context(cpu, mm, 0);
235 	}
236 
237 	local_irq_restore(flags);
238 }
239 
240 #endif /* _ASM_MMU_CONTEXT_H */
241