xref: /linux/arch/mips/cavium-octeon/setup.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 2004-2007 Cavium Networks
7  * Copyright (C) 2008, 2009 Wind River Systems
8  *   written by Ralf Baechle <ralf@linux-mips.org>
9  */
10 #include <linux/compiler.h>
11 #include <linux/vmalloc.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/console.h>
15 #include <linux/delay.h>
16 #include <linux/export.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/memblock.h>
20 #include <linux/serial.h>
21 #include <linux/smp.h>
22 #include <linux/types.h>
23 #include <linux/string.h>	/* for memset */
24 #include <linux/tty.h>
25 #include <linux/time.h>
26 #include <linux/platform_device.h>
27 #include <linux/serial_core.h>
28 #include <linux/serial_8250.h>
29 #include <linux/of_fdt.h>
30 #include <linux/libfdt.h>
31 #include <linux/kexec.h>
32 
33 #include <asm/processor.h>
34 #include <asm/reboot.h>
35 #include <asm/smp-ops.h>
36 #include <asm/irq_cpu.h>
37 #include <asm/mipsregs.h>
38 #include <asm/bootinfo.h>
39 #include <asm/sections.h>
40 #include <asm/fw/fw.h>
41 #include <asm/setup.h>
42 #include <asm/prom.h>
43 #include <asm/time.h>
44 
45 #include <asm/octeon/octeon.h>
46 #include <asm/octeon/pci-octeon.h>
47 #include <asm/octeon/cvmx-rst-defs.h>
48 
49 /*
50  * TRUE for devices having registers with little-endian byte
51  * order, FALSE for registers with native-endian byte order.
52  * PCI mandates little-endian, USB and SATA are configuraable,
53  * but we chose little-endian for these.
54  */
55 const bool octeon_should_swizzle_table[256] = {
56 	[0x00] = true,	/* bootbus/CF */
57 	[0x1b] = true,	/* PCI mmio window */
58 	[0x1c] = true,	/* PCI mmio window */
59 	[0x1d] = true,	/* PCI mmio window */
60 	[0x1e] = true,	/* PCI mmio window */
61 	[0x68] = true,	/* OCTEON III USB */
62 	[0x69] = true,	/* OCTEON III USB */
63 	[0x6c] = true,	/* OCTEON III SATA */
64 	[0x6f] = true,	/* OCTEON II USB */
65 };
66 EXPORT_SYMBOL(octeon_should_swizzle_table);
67 
68 #ifdef CONFIG_PCI
69 extern void pci_console_init(const char *arg);
70 #endif
71 
72 static unsigned long long max_memory = ULLONG_MAX;
73 static unsigned long long reserve_low_mem;
74 
75 DEFINE_SEMAPHORE(octeon_bootbus_sem, 1);
76 EXPORT_SYMBOL(octeon_bootbus_sem);
77 
78 static struct octeon_boot_descriptor *octeon_boot_desc_ptr;
79 
80 struct cvmx_bootinfo *octeon_bootinfo;
81 EXPORT_SYMBOL(octeon_bootinfo);
82 
83 #ifdef CONFIG_KEXEC
84 #ifdef CONFIG_SMP
85 /*
86  * Wait for relocation code is prepared and send
87  * secondary CPUs to spin until kernel is relocated.
88  */
89 static void octeon_kexec_smp_down(void *ignored)
90 {
91 	int cpu = smp_processor_id();
92 
93 	local_irq_disable();
94 	set_cpu_online(cpu, false);
95 	while (!atomic_read(&kexec_ready_to_reboot))
96 		cpu_relax();
97 
98 	asm volatile (
99 	"	sync						\n"
100 	"	synci	($0)					\n");
101 
102 	kexec_reboot();
103 }
104 #endif
105 
106 #define OCTEON_DDR0_BASE    (0x0ULL)
107 #define OCTEON_DDR0_SIZE    (0x010000000ULL)
108 #define OCTEON_DDR1_BASE    (0x410000000ULL)
109 #define OCTEON_DDR1_SIZE    (0x010000000ULL)
110 #define OCTEON_DDR2_BASE    (0x020000000ULL)
111 #define OCTEON_DDR2_SIZE    (0x3e0000000ULL)
112 #define OCTEON_MAX_PHY_MEM_SIZE (16*1024*1024*1024ULL)
113 
114 static struct kimage *kimage_ptr;
115 
116 static void kexec_bootmem_init(uint64_t mem_size, uint32_t low_reserved_bytes)
117 {
118 	int64_t addr;
119 	struct cvmx_bootmem_desc *bootmem_desc;
120 
121 	bootmem_desc = cvmx_bootmem_get_desc();
122 
123 	if (mem_size > OCTEON_MAX_PHY_MEM_SIZE) {
124 		mem_size = OCTEON_MAX_PHY_MEM_SIZE;
125 		pr_err("Error: requested memory too large,"
126 		       "truncating to maximum size\n");
127 	}
128 
129 	bootmem_desc->major_version = CVMX_BOOTMEM_DESC_MAJ_VER;
130 	bootmem_desc->minor_version = CVMX_BOOTMEM_DESC_MIN_VER;
131 
132 	addr = (OCTEON_DDR0_BASE + reserve_low_mem + low_reserved_bytes);
133 	bootmem_desc->head_addr = 0;
134 
135 	if (mem_size <= OCTEON_DDR0_SIZE) {
136 		__cvmx_bootmem_phy_free(addr,
137 				mem_size - reserve_low_mem -
138 				low_reserved_bytes, 0);
139 		return;
140 	}
141 
142 	__cvmx_bootmem_phy_free(addr,
143 			OCTEON_DDR0_SIZE - reserve_low_mem -
144 			low_reserved_bytes, 0);
145 
146 	mem_size -= OCTEON_DDR0_SIZE;
147 
148 	if (mem_size > OCTEON_DDR1_SIZE) {
149 		__cvmx_bootmem_phy_free(OCTEON_DDR1_BASE, OCTEON_DDR1_SIZE, 0);
150 		__cvmx_bootmem_phy_free(OCTEON_DDR2_BASE,
151 				mem_size - OCTEON_DDR1_SIZE, 0);
152 	} else
153 		__cvmx_bootmem_phy_free(OCTEON_DDR1_BASE, mem_size, 0);
154 }
155 
156 static int octeon_kexec_prepare(struct kimage *image)
157 {
158 	int i;
159 	char *bootloader = "kexec";
160 
161 	octeon_boot_desc_ptr->argc = 0;
162 	for (i = 0; i < image->nr_segments; i++) {
163 		if (!strncmp(bootloader, (char *)image->segment[i].buf,
164 				strlen(bootloader))) {
165 			/*
166 			 * convert command line string to array
167 			 * of parameters (as bootloader does).
168 			 */
169 			int argc = 0, offt;
170 			char *str = (char *)image->segment[i].buf;
171 			char *ptr = strchr(str, ' ');
172 			while (ptr && (OCTEON_ARGV_MAX_ARGS > argc)) {
173 				*ptr = '\0';
174 				if (ptr[1] != ' ') {
175 					offt = (int)(ptr - str + 1);
176 					octeon_boot_desc_ptr->argv[argc] =
177 						image->segment[i].mem + offt;
178 					argc++;
179 				}
180 				ptr = strchr(ptr + 1, ' ');
181 			}
182 			octeon_boot_desc_ptr->argc = argc;
183 			break;
184 		}
185 	}
186 
187 	/*
188 	 * Information about segments will be needed during pre-boot memory
189 	 * initialization.
190 	 */
191 	kimage_ptr = image;
192 	return 0;
193 }
194 
195 static void octeon_generic_shutdown(void)
196 {
197 	int i;
198 #ifdef CONFIG_SMP
199 	int cpu;
200 #endif
201 	struct cvmx_bootmem_desc *bootmem_desc;
202 	void *named_block_array_ptr;
203 
204 	bootmem_desc = cvmx_bootmem_get_desc();
205 	named_block_array_ptr =
206 		cvmx_phys_to_ptr(bootmem_desc->named_block_array_addr);
207 
208 #ifdef CONFIG_SMP
209 	/* disable watchdogs */
210 	for_each_online_cpu(cpu)
211 		cvmx_write_csr(CVMX_CIU_WDOGX(cpu_logical_map(cpu)), 0);
212 #else
213 	cvmx_write_csr(CVMX_CIU_WDOGX(cvmx_get_core_num()), 0);
214 #endif
215 	if (kimage_ptr != kexec_crash_image) {
216 		memset(named_block_array_ptr,
217 			0x0,
218 			CVMX_BOOTMEM_NUM_NAMED_BLOCKS *
219 			sizeof(struct cvmx_bootmem_named_block_desc));
220 		/*
221 		 * Mark all memory (except low 0x100000 bytes) as free.
222 		 * It is the same thing that bootloader does.
223 		 */
224 		kexec_bootmem_init(octeon_bootinfo->dram_size*1024ULL*1024ULL,
225 				0x100000);
226 		/*
227 		 * Allocate all segments to avoid their corruption during boot.
228 		 */
229 		for (i = 0; i < kimage_ptr->nr_segments; i++)
230 			cvmx_bootmem_alloc_address(
231 				kimage_ptr->segment[i].memsz + 2*PAGE_SIZE,
232 				kimage_ptr->segment[i].mem - PAGE_SIZE,
233 				PAGE_SIZE);
234 	} else {
235 		/*
236 		 * Do not mark all memory as free. Free only named sections
237 		 * leaving the rest of memory unchanged.
238 		 */
239 		struct cvmx_bootmem_named_block_desc *ptr =
240 			(struct cvmx_bootmem_named_block_desc *)
241 			named_block_array_ptr;
242 
243 		for (i = 0; i < bootmem_desc->named_block_num_blocks; i++)
244 			if (ptr[i].size)
245 				cvmx_bootmem_free_named(ptr[i].name);
246 	}
247 	kexec_args[2] = 1UL; /* running on octeon_main_processor */
248 	kexec_args[3] = (unsigned long)octeon_boot_desc_ptr;
249 #ifdef CONFIG_SMP
250 	secondary_kexec_args[2] = 0UL; /* running on secondary cpu */
251 	secondary_kexec_args[3] = (unsigned long)octeon_boot_desc_ptr;
252 #endif
253 }
254 
255 static void octeon_shutdown(void)
256 {
257 	octeon_generic_shutdown();
258 #ifdef CONFIG_SMP
259 	smp_call_function(octeon_kexec_smp_down, NULL, 0);
260 	smp_wmb();
261 	while (num_online_cpus() > 1) {
262 		cpu_relax();
263 		mdelay(1);
264 	}
265 #endif
266 }
267 
268 static void octeon_crash_shutdown(struct pt_regs *regs)
269 {
270 	octeon_generic_shutdown();
271 	default_machine_crash_shutdown(regs);
272 }
273 
274 #ifdef CONFIG_SMP
275 void octeon_crash_smp_send_stop(void)
276 {
277 	int cpu;
278 
279 	/* disable watchdogs */
280 	for_each_online_cpu(cpu)
281 		cvmx_write_csr(CVMX_CIU_WDOGX(cpu_logical_map(cpu)), 0);
282 }
283 #endif
284 
285 #endif /* CONFIG_KEXEC */
286 
287 uint64_t octeon_reserve32_memory;
288 EXPORT_SYMBOL(octeon_reserve32_memory);
289 
290 #ifdef CONFIG_KEXEC
291 /* crashkernel cmdline parameter is parsed _after_ memory setup
292  * we also parse it here (workaround for EHB5200) */
293 static uint64_t crashk_size, crashk_base;
294 #endif
295 
296 static int octeon_uart;
297 
298 extern asmlinkage void handle_int(void);
299 
300 /**
301  * octeon_is_simulation - Return non-zero if we are currently running
302  * in the Octeon simulator
303  *
304  * Return: non-0 if running in the Octeon simulator, 0 otherwise
305  */
306 int octeon_is_simulation(void)
307 {
308 	return octeon_bootinfo->board_type == CVMX_BOARD_TYPE_SIM;
309 }
310 EXPORT_SYMBOL(octeon_is_simulation);
311 
312 /**
313  * octeon_is_pci_host - Return true if Octeon is in PCI Host mode. This means
314  * Linux can control the PCI bus.
315  *
316  * Return: Non-zero if Octeon is in host mode.
317  */
318 int octeon_is_pci_host(void)
319 {
320 #ifdef CONFIG_PCI
321 	return octeon_bootinfo->config_flags & CVMX_BOOTINFO_CFG_FLAG_PCI_HOST;
322 #else
323 	return 0;
324 #endif
325 }
326 
327 /**
328  * octeon_get_clock_rate - Get the clock rate of Octeon
329  *
330  * Return: Clock rate in HZ
331  */
332 uint64_t octeon_get_clock_rate(void)
333 {
334 	struct cvmx_sysinfo *sysinfo = cvmx_sysinfo_get();
335 
336 	return sysinfo->cpu_clock_hz;
337 }
338 EXPORT_SYMBOL(octeon_get_clock_rate);
339 
340 static u64 octeon_io_clock_rate;
341 
342 u64 octeon_get_io_clock_rate(void)
343 {
344 	return octeon_io_clock_rate;
345 }
346 EXPORT_SYMBOL(octeon_get_io_clock_rate);
347 
348 
349 /**
350  * octeon_write_lcd - Write to the LCD display connected to the bootbus.
351  * @s:	    String to write
352  *
353  * This display exists on most Cavium evaluation boards. If it doesn't exist,
354  * then this function doesn't do anything.
355  */
356 static void octeon_write_lcd(const char *s)
357 {
358 	if (octeon_bootinfo->led_display_base_addr) {
359 		void __iomem *lcd_address =
360 			ioremap(octeon_bootinfo->led_display_base_addr,
361 					8);
362 		int i;
363 		for (i = 0; i < 8; i++, s++) {
364 			if (*s)
365 				iowrite8(*s, lcd_address + i);
366 			else
367 				iowrite8(' ', lcd_address + i);
368 		}
369 		iounmap(lcd_address);
370 	}
371 }
372 
373 /**
374  * octeon_get_boot_uart - Return the console uart passed by the bootloader
375  *
376  * Return: uart number (0 or 1)
377  */
378 static int octeon_get_boot_uart(void)
379 {
380 	return (octeon_boot_desc_ptr->flags & OCTEON_BL_FLAG_CONSOLE_UART1) ?
381 		1 : 0;
382 }
383 
384 /**
385  * octeon_get_boot_coremask - Get the coremask Linux was booted on.
386  *
387  * Return: Core mask
388  */
389 int octeon_get_boot_coremask(void)
390 {
391 	return octeon_boot_desc_ptr->core_mask;
392 }
393 
394 /**
395  * octeon_check_cpu_bist - Check the hardware BIST results for a CPU
396  */
397 void octeon_check_cpu_bist(void)
398 {
399 	const int coreid = cvmx_get_core_num();
400 	unsigned long long mask;
401 	unsigned long long bist_val;
402 
403 	/* Check BIST results for COP0 registers */
404 	mask = 0x1f00000000ull;
405 	bist_val = read_octeon_c0_icacheerr();
406 	if (bist_val & mask)
407 		pr_err("Core%d BIST Failure: CacheErr(icache) = 0x%llx\n",
408 		       coreid, bist_val);
409 
410 	bist_val = read_octeon_c0_dcacheerr();
411 	if (bist_val & 1)
412 		pr_err("Core%d L1 Dcache parity error: "
413 		       "CacheErr(dcache) = 0x%llx\n",
414 		       coreid, bist_val);
415 
416 	mask = 0xfc00000000000000ull;
417 	bist_val = read_c0_cvmmemctl();
418 	if (bist_val & mask)
419 		pr_err("Core%d BIST Failure: COP0_CVM_MEM_CTL = 0x%llx\n",
420 		       coreid, bist_val);
421 
422 	write_octeon_c0_dcacheerr(0);
423 }
424 
425 /**
426  * octeon_restart - Reboot Octeon
427  *
428  * @command: Command to pass to the bootloader. Currently ignored.
429  */
430 static void octeon_restart(char *command)
431 {
432 	/* Disable all watchdogs before soft reset. They don't get cleared */
433 #ifdef CONFIG_SMP
434 	int cpu;
435 	for_each_online_cpu(cpu)
436 		cvmx_write_csr(CVMX_CIU_WDOGX(cpu_logical_map(cpu)), 0);
437 #else
438 	cvmx_write_csr(CVMX_CIU_WDOGX(cvmx_get_core_num()), 0);
439 #endif
440 
441 	mb();
442 	while (1)
443 		if (OCTEON_IS_OCTEON3())
444 			cvmx_write_csr(CVMX_RST_SOFT_RST, 1);
445 		else
446 			cvmx_write_csr(CVMX_CIU_SOFT_RST, 1);
447 }
448 
449 
450 /**
451  * octeon_kill_core - Permanently stop a core.
452  *
453  * @arg: Ignored.
454  */
455 static void octeon_kill_core(void *arg)
456 {
457 	if (octeon_is_simulation())
458 		/* A break instruction causes the simulator stop a core */
459 		asm volatile ("break" ::: "memory");
460 
461 	local_irq_disable();
462 	/* Disable watchdog on this core. */
463 	cvmx_write_csr(CVMX_CIU_WDOGX(cvmx_get_core_num()), 0);
464 	/* Spin in a low power mode. */
465 	while (true)
466 		asm volatile ("wait" ::: "memory");
467 }
468 
469 
470 /**
471  * octeon_halt - Halt the system
472  */
473 static void octeon_halt(void)
474 {
475 	smp_call_function(octeon_kill_core, NULL, 0);
476 
477 	switch (octeon_bootinfo->board_type) {
478 	case CVMX_BOARD_TYPE_NAO38:
479 		/* Driving a 1 to GPIO 12 shuts off this board */
480 		cvmx_write_csr(CVMX_GPIO_BIT_CFGX(12), 1);
481 		cvmx_write_csr(CVMX_GPIO_TX_SET, 0x1000);
482 		break;
483 	default:
484 		octeon_write_lcd("PowerOff");
485 		break;
486 	}
487 
488 	octeon_kill_core(NULL);
489 }
490 
491 static char __read_mostly octeon_system_type[80];
492 
493 static void __init init_octeon_system_type(void)
494 {
495 	char const *board_type;
496 
497 	board_type = cvmx_board_type_to_string(octeon_bootinfo->board_type);
498 	if (board_type == NULL) {
499 		struct device_node *root;
500 		int ret;
501 
502 		root = of_find_node_by_path("/");
503 		ret = of_property_read_string(root, "model", &board_type);
504 		of_node_put(root);
505 		if (ret)
506 			board_type = "Unsupported Board";
507 	}
508 
509 	snprintf(octeon_system_type, sizeof(octeon_system_type), "%s (%s)",
510 		 board_type, octeon_model_get_string(read_c0_prid()));
511 }
512 
513 /**
514  * octeon_board_type_string - Return a string representing the system type
515  *
516  * Return: system type string
517  */
518 const char *octeon_board_type_string(void)
519 {
520 	return octeon_system_type;
521 }
522 
523 const char *get_system_type(void)
524 	__attribute__ ((alias("octeon_board_type_string")));
525 
526 void octeon_user_io_init(void)
527 {
528 	union octeon_cvmemctl cvmmemctl;
529 
530 	/* Get the current settings for CP0_CVMMEMCTL_REG */
531 	cvmmemctl.u64 = read_c0_cvmmemctl();
532 	/* R/W If set, marked write-buffer entries time out the same
533 	 * as other entries; if clear, marked write-buffer entries
534 	 * use the maximum timeout. */
535 	cvmmemctl.s.dismarkwblongto = 1;
536 	/* R/W If set, a merged store does not clear the write-buffer
537 	 * entry timeout state. */
538 	cvmmemctl.s.dismrgclrwbto = 0;
539 	/* R/W Two bits that are the MSBs of the resultant CVMSEG LM
540 	 * word location for an IOBDMA. The other 8 bits come from the
541 	 * SCRADDR field of the IOBDMA. */
542 	cvmmemctl.s.iobdmascrmsb = 0;
543 	/* R/W If set, SYNCWS and SYNCS only order marked stores; if
544 	 * clear, SYNCWS and SYNCS only order unmarked
545 	 * stores. SYNCWSMARKED has no effect when DISSYNCWS is
546 	 * set. */
547 	cvmmemctl.s.syncwsmarked = 0;
548 	/* R/W If set, SYNCWS acts as SYNCW and SYNCS acts as SYNC. */
549 	cvmmemctl.s.dissyncws = 0;
550 	/* R/W If set, no stall happens on write buffer full. */
551 	if (OCTEON_IS_MODEL(OCTEON_CN38XX_PASS2))
552 		cvmmemctl.s.diswbfst = 1;
553 	else
554 		cvmmemctl.s.diswbfst = 0;
555 	/* R/W If set (and SX set), supervisor-level loads/stores can
556 	 * use XKPHYS addresses with <48>==0 */
557 	cvmmemctl.s.xkmemenas = 0;
558 
559 	/* R/W If set (and UX set), user-level loads/stores can use
560 	 * XKPHYS addresses with VA<48>==0 */
561 	cvmmemctl.s.xkmemenau = 0;
562 
563 	/* R/W If set (and SX set), supervisor-level loads/stores can
564 	 * use XKPHYS addresses with VA<48>==1 */
565 	cvmmemctl.s.xkioenas = 0;
566 
567 	/* R/W If set (and UX set), user-level loads/stores can use
568 	 * XKPHYS addresses with VA<48>==1 */
569 	cvmmemctl.s.xkioenau = 0;
570 
571 	/* R/W If set, all stores act as SYNCW (NOMERGE must be set
572 	 * when this is set) RW, reset to 0. */
573 	cvmmemctl.s.allsyncw = 0;
574 
575 	/* R/W If set, no stores merge, and all stores reach the
576 	 * coherent bus in order. */
577 	cvmmemctl.s.nomerge = 0;
578 	/* R/W Selects the bit in the counter used for DID time-outs 0
579 	 * = 231, 1 = 230, 2 = 229, 3 = 214. Actual time-out is
580 	 * between 1x and 2x this interval. For example, with
581 	 * DIDTTO=3, expiration interval is between 16K and 32K. */
582 	cvmmemctl.s.didtto = 0;
583 	/* R/W If set, the (mem) CSR clock never turns off. */
584 	cvmmemctl.s.csrckalwys = 0;
585 	/* R/W If set, mclk never turns off. */
586 	cvmmemctl.s.mclkalwys = 0;
587 	/* R/W Selects the bit in the counter used for write buffer
588 	 * flush time-outs (WBFLT+11) is the bit position in an
589 	 * internal counter used to determine expiration. The write
590 	 * buffer expires between 1x and 2x this interval. For
591 	 * example, with WBFLT = 0, a write buffer expires between 2K
592 	 * and 4K cycles after the write buffer entry is allocated. */
593 	cvmmemctl.s.wbfltime = 0;
594 	/* R/W If set, do not put Istream in the L2 cache. */
595 	cvmmemctl.s.istrnol2 = 0;
596 
597 	/*
598 	 * R/W The write buffer threshold. As per erratum Core-14752
599 	 * for CN63XX, a sc/scd might fail if the write buffer is
600 	 * full.  Lowering WBTHRESH greatly lowers the chances of the
601 	 * write buffer ever being full and triggering the erratum.
602 	 */
603 	if (OCTEON_IS_MODEL(OCTEON_CN63XX_PASS1_X))
604 		cvmmemctl.s.wbthresh = 4;
605 	else
606 		cvmmemctl.s.wbthresh = 10;
607 
608 	/* R/W If set, CVMSEG is available for loads/stores in
609 	 * kernel/debug mode. */
610 #if CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE > 0
611 	cvmmemctl.s.cvmsegenak = 1;
612 #else
613 	cvmmemctl.s.cvmsegenak = 0;
614 #endif
615 	/* R/W If set, CVMSEG is available for loads/stores in
616 	 * supervisor mode. */
617 	cvmmemctl.s.cvmsegenas = 0;
618 	/* R/W If set, CVMSEG is available for loads/stores in user
619 	 * mode. */
620 	cvmmemctl.s.cvmsegenau = 0;
621 
622 	write_c0_cvmmemctl(cvmmemctl.u64);
623 
624 	/* Setup of CVMSEG is done in kernel-entry-init.h */
625 	if (smp_processor_id() == 0)
626 		pr_notice("CVMSEG size: %d cache lines (%d bytes)\n",
627 			  CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE,
628 			  CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE * 128);
629 
630 	if (octeon_has_feature(OCTEON_FEATURE_FAU)) {
631 		union cvmx_iob_fau_timeout fau_timeout;
632 
633 		/* Set a default for the hardware timeouts */
634 		fau_timeout.u64 = 0;
635 		fau_timeout.s.tout_val = 0xfff;
636 		/* Disable tagwait FAU timeout */
637 		fau_timeout.s.tout_enb = 0;
638 		cvmx_write_csr(CVMX_IOB_FAU_TIMEOUT, fau_timeout.u64);
639 	}
640 
641 	if ((!OCTEON_IS_MODEL(OCTEON_CN68XX) &&
642 	     !OCTEON_IS_MODEL(OCTEON_CN7XXX)) ||
643 	    OCTEON_IS_MODEL(OCTEON_CN70XX)) {
644 		union cvmx_pow_nw_tim nm_tim;
645 
646 		nm_tim.u64 = 0;
647 		/* 4096 cycles */
648 		nm_tim.s.nw_tim = 3;
649 		cvmx_write_csr(CVMX_POW_NW_TIM, nm_tim.u64);
650 	}
651 
652 	write_octeon_c0_icacheerr(0);
653 	write_c0_derraddr1(0);
654 }
655 
656 /**
657  * prom_init - Early entry point for arch setup
658  */
659 void __init prom_init(void)
660 {
661 	struct cvmx_sysinfo *sysinfo;
662 	const char *arg;
663 	char *p;
664 	int i;
665 	u64 t;
666 	int argc;
667 	/*
668 	 * The bootloader passes a pointer to the boot descriptor in
669 	 * $a3, this is available as fw_arg3.
670 	 */
671 	octeon_boot_desc_ptr = (struct octeon_boot_descriptor *)fw_arg3;
672 	octeon_bootinfo =
673 		cvmx_phys_to_ptr(octeon_boot_desc_ptr->cvmx_desc_vaddr);
674 	cvmx_bootmem_init(cvmx_phys_to_ptr(octeon_bootinfo->phy_mem_desc_addr));
675 
676 	sysinfo = cvmx_sysinfo_get();
677 	memset(sysinfo, 0, sizeof(*sysinfo));
678 	sysinfo->system_dram_size = octeon_bootinfo->dram_size << 20;
679 	sysinfo->phy_mem_desc_addr = (u64)phys_to_virt(octeon_bootinfo->phy_mem_desc_addr);
680 
681 	if ((octeon_bootinfo->major_version > 1) ||
682 	    (octeon_bootinfo->major_version == 1 &&
683 	     octeon_bootinfo->minor_version >= 4))
684 		cvmx_coremask_copy(&sysinfo->core_mask,
685 				   &octeon_bootinfo->ext_core_mask);
686 	else
687 		cvmx_coremask_set64(&sysinfo->core_mask,
688 				    octeon_bootinfo->core_mask);
689 
690 	/* Some broken u-boot pass garbage in upper bits, clear them out */
691 	if (!OCTEON_IS_MODEL(OCTEON_CN78XX))
692 		for (i = 512; i < 1024; i++)
693 			cvmx_coremask_clear_core(&sysinfo->core_mask, i);
694 
695 	sysinfo->exception_base_addr = octeon_bootinfo->exception_base_addr;
696 	sysinfo->cpu_clock_hz = octeon_bootinfo->eclock_hz;
697 	sysinfo->dram_data_rate_hz = octeon_bootinfo->dclock_hz * 2;
698 	sysinfo->board_type = octeon_bootinfo->board_type;
699 	sysinfo->board_rev_major = octeon_bootinfo->board_rev_major;
700 	sysinfo->board_rev_minor = octeon_bootinfo->board_rev_minor;
701 	memcpy(sysinfo->mac_addr_base, octeon_bootinfo->mac_addr_base,
702 	       sizeof(sysinfo->mac_addr_base));
703 	sysinfo->mac_addr_count = octeon_bootinfo->mac_addr_count;
704 	memcpy(sysinfo->board_serial_number,
705 	       octeon_bootinfo->board_serial_number,
706 	       sizeof(sysinfo->board_serial_number));
707 	sysinfo->compact_flash_common_base_addr =
708 		octeon_bootinfo->compact_flash_common_base_addr;
709 	sysinfo->compact_flash_attribute_base_addr =
710 		octeon_bootinfo->compact_flash_attribute_base_addr;
711 	sysinfo->led_display_base_addr = octeon_bootinfo->led_display_base_addr;
712 	sysinfo->dfa_ref_clock_hz = octeon_bootinfo->dfa_ref_clock_hz;
713 	sysinfo->bootloader_config_flags = octeon_bootinfo->config_flags;
714 
715 	if (OCTEON_IS_OCTEON2()) {
716 		/* I/O clock runs at a different rate than the CPU. */
717 		union cvmx_mio_rst_boot rst_boot;
718 		rst_boot.u64 = cvmx_read_csr(CVMX_MIO_RST_BOOT);
719 		octeon_io_clock_rate = 50000000 * rst_boot.s.pnr_mul;
720 	} else if (OCTEON_IS_OCTEON3()) {
721 		/* I/O clock runs at a different rate than the CPU. */
722 		union cvmx_rst_boot rst_boot;
723 		rst_boot.u64 = cvmx_read_csr(CVMX_RST_BOOT);
724 		octeon_io_clock_rate = 50000000 * rst_boot.s.pnr_mul;
725 	} else {
726 		octeon_io_clock_rate = sysinfo->cpu_clock_hz;
727 	}
728 
729 	t = read_c0_cvmctl();
730 	if ((t & (1ull << 27)) == 0) {
731 		/*
732 		 * Setup the multiplier save/restore code if
733 		 * CvmCtl[NOMUL] clear.
734 		 */
735 		void *save;
736 		void *save_end;
737 		void *restore;
738 		void *restore_end;
739 		int save_len;
740 		int restore_len;
741 		int save_max = (char *)octeon_mult_save_end -
742 			(char *)octeon_mult_save;
743 		int restore_max = (char *)octeon_mult_restore_end -
744 			(char *)octeon_mult_restore;
745 		if (current_cpu_data.cputype == CPU_CAVIUM_OCTEON3) {
746 			save = octeon_mult_save3;
747 			save_end = octeon_mult_save3_end;
748 			restore = octeon_mult_restore3;
749 			restore_end = octeon_mult_restore3_end;
750 		} else {
751 			save = octeon_mult_save2;
752 			save_end = octeon_mult_save2_end;
753 			restore = octeon_mult_restore2;
754 			restore_end = octeon_mult_restore2_end;
755 		}
756 		save_len = (char *)save_end - (char *)save;
757 		restore_len = (char *)restore_end - (char *)restore;
758 		if (!WARN_ON(save_len > save_max ||
759 				restore_len > restore_max)) {
760 			memcpy(octeon_mult_save, save, save_len);
761 			memcpy(octeon_mult_restore, restore, restore_len);
762 		}
763 	}
764 
765 	/*
766 	 * Only enable the LED controller if we're running on a CN38XX, CN58XX,
767 	 * or CN56XX. The CN30XX and CN31XX don't have an LED controller.
768 	 */
769 	if (!octeon_is_simulation() &&
770 	    octeon_has_feature(OCTEON_FEATURE_LED_CONTROLLER)) {
771 		cvmx_write_csr(CVMX_LED_EN, 0);
772 		cvmx_write_csr(CVMX_LED_PRT, 0);
773 		cvmx_write_csr(CVMX_LED_DBG, 0);
774 		cvmx_write_csr(CVMX_LED_PRT_FMT, 0);
775 		cvmx_write_csr(CVMX_LED_UDD_CNTX(0), 32);
776 		cvmx_write_csr(CVMX_LED_UDD_CNTX(1), 32);
777 		cvmx_write_csr(CVMX_LED_UDD_DATX(0), 0);
778 		cvmx_write_csr(CVMX_LED_UDD_DATX(1), 0);
779 		cvmx_write_csr(CVMX_LED_EN, 1);
780 	}
781 
782 	/*
783 	 * We need to temporarily allocate all memory in the reserve32
784 	 * region. This makes sure the kernel doesn't allocate this
785 	 * memory when it is getting memory from the
786 	 * bootloader. Later, after the memory allocations are
787 	 * complete, the reserve32 will be freed.
788 	 *
789 	 * Allocate memory for RESERVED32 aligned on 2MB boundary. This
790 	 * is in case we later use hugetlb entries with it.
791 	 */
792 	if (CONFIG_CAVIUM_RESERVE32) {
793 		int64_t addr =
794 			cvmx_bootmem_phy_named_block_alloc(CONFIG_CAVIUM_RESERVE32 << 20,
795 							   0, 0, 2 << 20,
796 							   "CAVIUM_RESERVE32", 0);
797 		if (addr < 0)
798 			pr_err("Failed to allocate CAVIUM_RESERVE32 memory area\n");
799 		else
800 			octeon_reserve32_memory = addr;
801 	}
802 
803 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2
804 	if (cvmx_read_csr(CVMX_L2D_FUS3) & (3ull << 34)) {
805 		pr_info("Skipping L2 locking due to reduced L2 cache size\n");
806 	} else {
807 		uint32_t __maybe_unused ebase = read_c0_ebase() & 0x3ffff000;
808 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_TLB
809 		/* TLB refill */
810 		cvmx_l2c_lock_mem_region(ebase, 0x100);
811 #endif
812 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_EXCEPTION
813 		/* General exception */
814 		cvmx_l2c_lock_mem_region(ebase + 0x180, 0x80);
815 #endif
816 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_LOW_LEVEL_INTERRUPT
817 		/* Interrupt handler */
818 		cvmx_l2c_lock_mem_region(ebase + 0x200, 0x80);
819 #endif
820 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_INTERRUPT
821 		cvmx_l2c_lock_mem_region(__pa_symbol(handle_int), 0x100);
822 		cvmx_l2c_lock_mem_region(__pa_symbol(plat_irq_dispatch), 0x80);
823 #endif
824 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_MEMCPY
825 		cvmx_l2c_lock_mem_region(__pa_symbol(memcpy), 0x480);
826 #endif
827 	}
828 #endif
829 
830 	octeon_check_cpu_bist();
831 
832 	octeon_uart = octeon_get_boot_uart();
833 
834 #ifdef CONFIG_SMP
835 	octeon_write_lcd("LinuxSMP");
836 #else
837 	octeon_write_lcd("Linux");
838 #endif
839 
840 	octeon_setup_delays();
841 
842 	/*
843 	 * BIST should always be enabled when doing a soft reset. L2
844 	 * Cache locking for instance is not cleared unless BIST is
845 	 * enabled.  Unfortunately due to a chip errata G-200 for
846 	 * Cn38XX and CN31XX, BIST must be disabled on these parts.
847 	 */
848 	if (OCTEON_IS_MODEL(OCTEON_CN38XX_PASS2) ||
849 	    OCTEON_IS_MODEL(OCTEON_CN31XX))
850 		cvmx_write_csr(CVMX_CIU_SOFT_BIST, 0);
851 	else
852 		cvmx_write_csr(CVMX_CIU_SOFT_BIST, 1);
853 
854 	/* Default to 64MB in the simulator to speed things up */
855 	if (octeon_is_simulation())
856 		max_memory = 64ull << 20;
857 
858 	arg = strstr(arcs_cmdline, "mem=");
859 	if (arg) {
860 		max_memory = memparse(arg + 4, &p);
861 		if (max_memory == 0)
862 			max_memory = 32ull << 30;
863 		if (*p == '@')
864 			reserve_low_mem = memparse(p + 1, &p);
865 	}
866 
867 	arcs_cmdline[0] = 0;
868 	argc = octeon_boot_desc_ptr->argc;
869 	for (i = 0; i < argc; i++) {
870 		const char *arg =
871 			cvmx_phys_to_ptr(octeon_boot_desc_ptr->argv[i]);
872 		if ((strncmp(arg, "MEM=", 4) == 0) ||
873 		    (strncmp(arg, "mem=", 4) == 0)) {
874 			max_memory = memparse(arg + 4, &p);
875 			if (max_memory == 0)
876 				max_memory = 32ull << 30;
877 			if (*p == '@')
878 				reserve_low_mem = memparse(p + 1, &p);
879 #ifdef CONFIG_KEXEC
880 		} else if (strncmp(arg, "crashkernel=", 12) == 0) {
881 			crashk_size = memparse(arg+12, &p);
882 			if (*p == '@')
883 				crashk_base = memparse(p+1, &p);
884 			strcat(arcs_cmdline, " ");
885 			strcat(arcs_cmdline, arg);
886 			/*
887 			 * To do: switch parsing to new style, something like:
888 			 * parse_crashkernel(arg, sysinfo->system_dram_size,
889 			 *		  &crashk_size, &crashk_base);
890 			 */
891 #endif
892 		} else if (strlen(arcs_cmdline) + strlen(arg) + 1 <
893 			   sizeof(arcs_cmdline) - 1) {
894 			strcat(arcs_cmdline, " ");
895 			strcat(arcs_cmdline, arg);
896 		}
897 	}
898 
899 	if (strstr(arcs_cmdline, "console=") == NULL) {
900 		if (octeon_uart == 1)
901 			strcat(arcs_cmdline, " console=ttyS1,115200");
902 		else
903 			strcat(arcs_cmdline, " console=ttyS0,115200");
904 	}
905 
906 	mips_hpt_frequency = octeon_get_clock_rate();
907 
908 	octeon_init_cvmcount();
909 
910 	_machine_restart = octeon_restart;
911 	_machine_halt = octeon_halt;
912 
913 #ifdef CONFIG_KEXEC
914 	_machine_kexec_shutdown = octeon_shutdown;
915 	_machine_crash_shutdown = octeon_crash_shutdown;
916 	_machine_kexec_prepare = octeon_kexec_prepare;
917 #ifdef CONFIG_SMP
918 	_crash_smp_send_stop = octeon_crash_smp_send_stop;
919 #endif
920 #endif
921 
922 	octeon_user_io_init();
923 	octeon_setup_smp();
924 }
925 
926 /* Exclude a single page from the regions obtained in plat_mem_setup. */
927 #ifndef CONFIG_CRASH_DUMP
928 static __init void memory_exclude_page(u64 addr, u64 *mem, u64 *size)
929 {
930 	if (addr > *mem && addr < *mem + *size) {
931 		u64 inc = addr - *mem;
932 		memblock_add(*mem, inc);
933 		*mem += inc;
934 		*size -= inc;
935 	}
936 
937 	if (addr == *mem && *size > PAGE_SIZE) {
938 		*mem += PAGE_SIZE;
939 		*size -= PAGE_SIZE;
940 	}
941 }
942 #endif /* CONFIG_CRASH_DUMP */
943 
944 void __init fw_init_cmdline(void)
945 {
946 	int i;
947 
948 	octeon_boot_desc_ptr = (struct octeon_boot_descriptor *)fw_arg3;
949 	for (i = 0; i < octeon_boot_desc_ptr->argc; i++) {
950 		const char *arg =
951 			cvmx_phys_to_ptr(octeon_boot_desc_ptr->argv[i]);
952 		if (strlen(arcs_cmdline) + strlen(arg) + 1 <
953 			   sizeof(arcs_cmdline) - 1) {
954 			strcat(arcs_cmdline, " ");
955 			strcat(arcs_cmdline, arg);
956 		}
957 	}
958 }
959 
960 void __init *plat_get_fdt(void)
961 {
962 	octeon_bootinfo =
963 		cvmx_phys_to_ptr(octeon_boot_desc_ptr->cvmx_desc_vaddr);
964 	return phys_to_virt(octeon_bootinfo->fdt_addr);
965 }
966 
967 void __init plat_mem_setup(void)
968 {
969 	uint64_t mem_alloc_size;
970 	uint64_t total;
971 	uint64_t crashk_end;
972 #ifndef CONFIG_CRASH_DUMP
973 	int64_t memory;
974 #endif
975 
976 	total = 0;
977 	crashk_end = 0;
978 
979 	/*
980 	 * The Mips memory init uses the first memory location for
981 	 * some memory vectors. When SPARSEMEM is in use, it doesn't
982 	 * verify that the size is big enough for the final
983 	 * vectors. Making the smallest chuck 4MB seems to be enough
984 	 * to consistently work.
985 	 */
986 	mem_alloc_size = 4 << 20;
987 	if (mem_alloc_size > max_memory)
988 		mem_alloc_size = max_memory;
989 
990 /* Crashkernel ignores bootmem list. It relies on mem=X@Y option */
991 #ifdef CONFIG_CRASH_DUMP
992 	memblock_add(reserve_low_mem, max_memory);
993 	total += max_memory;
994 #else
995 #ifdef CONFIG_KEXEC
996 	if (crashk_size > 0) {
997 		memblock_add(crashk_base, crashk_size);
998 		crashk_end = crashk_base + crashk_size;
999 	}
1000 #endif
1001 	/*
1002 	 * When allocating memory, we want incrementing addresses,
1003 	 * which is handled by memblock
1004 	 */
1005 	cvmx_bootmem_lock();
1006 	while (total < max_memory) {
1007 		memory = cvmx_bootmem_phy_alloc(mem_alloc_size,
1008 						__pa_symbol(&_end), -1,
1009 						0x100000,
1010 						CVMX_BOOTMEM_FLAG_NO_LOCKING);
1011 		if (memory >= 0) {
1012 			u64 size = mem_alloc_size;
1013 #ifdef CONFIG_KEXEC
1014 			uint64_t end;
1015 #endif
1016 
1017 			/*
1018 			 * exclude a page at the beginning and end of
1019 			 * the 256MB PCIe 'hole' so the kernel will not
1020 			 * try to allocate multi-page buffers that
1021 			 * span the discontinuity.
1022 			 */
1023 			memory_exclude_page(CVMX_PCIE_BAR1_PHYS_BASE,
1024 					    &memory, &size);
1025 			memory_exclude_page(CVMX_PCIE_BAR1_PHYS_BASE +
1026 					    CVMX_PCIE_BAR1_PHYS_SIZE,
1027 					    &memory, &size);
1028 #ifdef CONFIG_KEXEC
1029 			end = memory + mem_alloc_size;
1030 
1031 			/*
1032 			 * This function automatically merges address regions
1033 			 * next to each other if they are received in
1034 			 * incrementing order
1035 			 */
1036 			if (memory < crashk_base && end >  crashk_end) {
1037 				/* region is fully in */
1038 				memblock_add(memory, crashk_base - memory);
1039 				total += crashk_base - memory;
1040 				memblock_add(crashk_end, end - crashk_end);
1041 				total += end - crashk_end;
1042 				continue;
1043 			}
1044 
1045 			if (memory >= crashk_base && end <= crashk_end)
1046 				/*
1047 				 * Entire memory region is within the new
1048 				 *  kernel's memory, ignore it.
1049 				 */
1050 				continue;
1051 
1052 			if (memory > crashk_base && memory < crashk_end &&
1053 			    end > crashk_end) {
1054 				/*
1055 				 * Overlap with the beginning of the region,
1056 				 * reserve the beginning.
1057 				  */
1058 				mem_alloc_size -= crashk_end - memory;
1059 				memory = crashk_end;
1060 			} else if (memory < crashk_base && end > crashk_base &&
1061 				   end < crashk_end)
1062 				/*
1063 				 * Overlap with the beginning of the region,
1064 				 * chop of end.
1065 				 */
1066 				mem_alloc_size -= end - crashk_base;
1067 #endif
1068 			memblock_add(memory, mem_alloc_size);
1069 			total += mem_alloc_size;
1070 			/* Recovering mem_alloc_size */
1071 			mem_alloc_size = 4 << 20;
1072 		} else {
1073 			break;
1074 		}
1075 	}
1076 	cvmx_bootmem_unlock();
1077 #endif /* CONFIG_CRASH_DUMP */
1078 
1079 	/*
1080 	 * Now that we've allocated the kernel memory it is safe to
1081 	 * free the reserved region. We free it here so that builtin
1082 	 * drivers can use the memory.
1083 	 */
1084 	if (octeon_reserve32_memory)
1085 		cvmx_bootmem_free_named("CAVIUM_RESERVE32");
1086 
1087 	if (total == 0)
1088 		panic("Unable to allocate memory from "
1089 		      "cvmx_bootmem_phy_alloc");
1090 }
1091 
1092 /*
1093  * Emit one character to the boot UART.	 Exported for use by the
1094  * watchdog timer.
1095  */
1096 void prom_putchar(char c)
1097 {
1098 	uint64_t lsrval;
1099 
1100 	/* Spin until there is room */
1101 	do {
1102 		lsrval = cvmx_read_csr(CVMX_MIO_UARTX_LSR(octeon_uart));
1103 	} while ((lsrval & 0x20) == 0);
1104 
1105 	/* Write the byte */
1106 	cvmx_write_csr(CVMX_MIO_UARTX_THR(octeon_uart), c & 0xffull);
1107 }
1108 EXPORT_SYMBOL(prom_putchar);
1109 
1110 void __init prom_free_prom_memory(void)
1111 {
1112 	if (OCTEON_IS_MODEL(OCTEON_CN6XXX)) {
1113 		/* Check for presence of Core-14449 fix.  */
1114 		u32 insn;
1115 		u32 *foo;
1116 
1117 		foo = &insn;
1118 
1119 		asm volatile("# before" : : : "memory");
1120 		prefetch(foo);
1121 		asm volatile(
1122 			".set push\n\t"
1123 			".set noreorder\n\t"
1124 			"bal 1f\n\t"
1125 			"nop\n"
1126 			"1:\tlw %0,-12($31)\n\t"
1127 			".set pop\n\t"
1128 			: "=r" (insn) : : "$31", "memory");
1129 
1130 		if ((insn >> 26) != 0x33)
1131 			panic("No PREF instruction at Core-14449 probe point.");
1132 
1133 		if (((insn >> 16) & 0x1f) != 28)
1134 			panic("OCTEON II DCache prefetch workaround not in place (%04x).\n"
1135 			      "Please build kernel with proper options (CONFIG_CAVIUM_CN63XXP1).",
1136 			      insn);
1137 	}
1138 }
1139 
1140 void __init octeon_fill_mac_addresses(void);
1141 
1142 void __init device_tree_init(void)
1143 {
1144 	const void *fdt;
1145 	bool do_prune;
1146 	bool fill_mac;
1147 
1148 #ifdef CONFIG_MIPS_ELF_APPENDED_DTB
1149 	if (!fdt_check_header(&__appended_dtb)) {
1150 		fdt = &__appended_dtb;
1151 		do_prune = false;
1152 		fill_mac = true;
1153 		pr_info("Using appended Device Tree.\n");
1154 	} else
1155 #endif
1156 	if (octeon_bootinfo->minor_version >= 3 && octeon_bootinfo->fdt_addr) {
1157 		fdt = phys_to_virt(octeon_bootinfo->fdt_addr);
1158 		if (fdt_check_header(fdt))
1159 			panic("Corrupt Device Tree passed to kernel.");
1160 		do_prune = false;
1161 		fill_mac = false;
1162 		pr_info("Using passed Device Tree.\n");
1163 	} else if (OCTEON_IS_MODEL(OCTEON_CN68XX)) {
1164 		fdt = &__dtb_octeon_68xx_begin;
1165 		do_prune = true;
1166 		fill_mac = true;
1167 	} else {
1168 		fdt = &__dtb_octeon_3xxx_begin;
1169 		do_prune = true;
1170 		fill_mac = true;
1171 	}
1172 
1173 	initial_boot_params = (void *)fdt;
1174 
1175 	if (do_prune) {
1176 		octeon_prune_device_tree();
1177 		pr_info("Using internal Device Tree.\n");
1178 	}
1179 	if (fill_mac)
1180 		octeon_fill_mac_addresses();
1181 	unflatten_and_copy_device_tree();
1182 	init_octeon_system_type();
1183 }
1184 
1185 static int __initdata disable_octeon_edac_p;
1186 
1187 static int __init disable_octeon_edac(char *str)
1188 {
1189 	disable_octeon_edac_p = 1;
1190 	return 0;
1191 }
1192 early_param("disable_octeon_edac", disable_octeon_edac);
1193 
1194 static char *edac_device_names[] = {
1195 	"octeon_l2c_edac",
1196 	"octeon_pc_edac",
1197 };
1198 
1199 static int __init edac_devinit(void)
1200 {
1201 	struct platform_device *dev;
1202 	int i, err = 0;
1203 	int num_lmc;
1204 	char *name;
1205 
1206 	if (disable_octeon_edac_p)
1207 		return 0;
1208 
1209 	for (i = 0; i < ARRAY_SIZE(edac_device_names); i++) {
1210 		name = edac_device_names[i];
1211 		dev = platform_device_register_simple(name, -1, NULL, 0);
1212 		if (IS_ERR(dev)) {
1213 			pr_err("Registration of %s failed!\n", name);
1214 			err = PTR_ERR(dev);
1215 		}
1216 	}
1217 
1218 	num_lmc = OCTEON_IS_MODEL(OCTEON_CN68XX) ? 4 :
1219 		(OCTEON_IS_MODEL(OCTEON_CN56XX) ? 2 : 1);
1220 	for (i = 0; i < num_lmc; i++) {
1221 		dev = platform_device_register_simple("octeon_lmc_edac",
1222 						      i, NULL, 0);
1223 		if (IS_ERR(dev)) {
1224 			pr_err("Registration of octeon_lmc_edac %d failed!\n", i);
1225 			err = PTR_ERR(dev);
1226 		}
1227 	}
1228 
1229 	return err;
1230 }
1231 device_initcall(edac_devinit);
1232 
1233 static void __initdata *octeon_dummy_iospace;
1234 
1235 static int __init octeon_no_pci_init(void)
1236 {
1237 	/*
1238 	 * Initially assume there is no PCI. The PCI/PCIe platform code will
1239 	 * later re-initialize these to correct values if they are present.
1240 	 */
1241 	octeon_dummy_iospace = vzalloc(IO_SPACE_LIMIT);
1242 	set_io_port_base((unsigned long)octeon_dummy_iospace);
1243 	ioport_resource.start = RESOURCE_SIZE_MAX;
1244 	ioport_resource.end = 0;
1245 	return 0;
1246 }
1247 core_initcall(octeon_no_pci_init);
1248 
1249 static int __init octeon_no_pci_release(void)
1250 {
1251 	/*
1252 	 * Release the allocated memory if a real IO space is there.
1253 	 */
1254 	if ((unsigned long)octeon_dummy_iospace != mips_io_port_base)
1255 		vfree(octeon_dummy_iospace);
1256 	return 0;
1257 }
1258 late_initcall(octeon_no_pci_release);
1259