xref: /linux/arch/mips/cavium-octeon/setup.c (revision d91517839e5d95adc0cf4b28caa7af62a71de526)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 2004-2007 Cavium Networks
7  * Copyright (C) 2008, 2009 Wind River Systems
8  *   written by Ralf Baechle <ralf@linux-mips.org>
9  */
10 #include <linux/compiler.h>
11 #include <linux/vmalloc.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/console.h>
15 #include <linux/delay.h>
16 #include <linux/export.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/serial.h>
20 #include <linux/smp.h>
21 #include <linux/types.h>
22 #include <linux/string.h>	/* for memset */
23 #include <linux/tty.h>
24 #include <linux/time.h>
25 #include <linux/platform_device.h>
26 #include <linux/serial_core.h>
27 #include <linux/serial_8250.h>
28 #include <linux/of_fdt.h>
29 #include <linux/libfdt.h>
30 #include <linux/kexec.h>
31 
32 #include <asm/processor.h>
33 #include <asm/reboot.h>
34 #include <asm/smp-ops.h>
35 #include <asm/irq_cpu.h>
36 #include <asm/mipsregs.h>
37 #include <asm/bootinfo.h>
38 #include <asm/sections.h>
39 #include <asm/time.h>
40 
41 #include <asm/octeon/octeon.h>
42 #include <asm/octeon/pci-octeon.h>
43 #include <asm/octeon/cvmx-mio-defs.h>
44 
45 extern struct plat_smp_ops octeon_smp_ops;
46 
47 #ifdef CONFIG_PCI
48 extern void pci_console_init(const char *arg);
49 #endif
50 
51 static unsigned long long MAX_MEMORY = 512ull << 20;
52 
53 struct octeon_boot_descriptor *octeon_boot_desc_ptr;
54 
55 struct cvmx_bootinfo *octeon_bootinfo;
56 EXPORT_SYMBOL(octeon_bootinfo);
57 
58 static unsigned long long RESERVE_LOW_MEM = 0ull;
59 #ifdef CONFIG_KEXEC
60 #ifdef CONFIG_SMP
61 /*
62  * Wait for relocation code is prepared and send
63  * secondary CPUs to spin until kernel is relocated.
64  */
65 static void octeon_kexec_smp_down(void *ignored)
66 {
67 	int cpu = smp_processor_id();
68 
69 	local_irq_disable();
70 	set_cpu_online(cpu, false);
71 	while (!atomic_read(&kexec_ready_to_reboot))
72 		cpu_relax();
73 
74 	asm volatile (
75 	"	sync						\n"
76 	"	synci	($0)					\n");
77 
78 	relocated_kexec_smp_wait(NULL);
79 }
80 #endif
81 
82 #define OCTEON_DDR0_BASE    (0x0ULL)
83 #define OCTEON_DDR0_SIZE    (0x010000000ULL)
84 #define OCTEON_DDR1_BASE    (0x410000000ULL)
85 #define OCTEON_DDR1_SIZE    (0x010000000ULL)
86 #define OCTEON_DDR2_BASE    (0x020000000ULL)
87 #define OCTEON_DDR2_SIZE    (0x3e0000000ULL)
88 #define OCTEON_MAX_PHY_MEM_SIZE (16*1024*1024*1024ULL)
89 
90 static struct kimage *kimage_ptr;
91 
92 static void kexec_bootmem_init(uint64_t mem_size, uint32_t low_reserved_bytes)
93 {
94 	int64_t addr;
95 	struct cvmx_bootmem_desc *bootmem_desc;
96 
97 	bootmem_desc = cvmx_bootmem_get_desc();
98 
99 	if (mem_size > OCTEON_MAX_PHY_MEM_SIZE) {
100 		mem_size = OCTEON_MAX_PHY_MEM_SIZE;
101 		pr_err("Error: requested memory too large,"
102 		       "truncating to maximum size\n");
103 	}
104 
105 	bootmem_desc->major_version = CVMX_BOOTMEM_DESC_MAJ_VER;
106 	bootmem_desc->minor_version = CVMX_BOOTMEM_DESC_MIN_VER;
107 
108 	addr = (OCTEON_DDR0_BASE + RESERVE_LOW_MEM + low_reserved_bytes);
109 	bootmem_desc->head_addr = 0;
110 
111 	if (mem_size <= OCTEON_DDR0_SIZE) {
112 		__cvmx_bootmem_phy_free(addr,
113 				mem_size - RESERVE_LOW_MEM -
114 				low_reserved_bytes, 0);
115 		return;
116 	}
117 
118 	__cvmx_bootmem_phy_free(addr,
119 			OCTEON_DDR0_SIZE - RESERVE_LOW_MEM -
120 			low_reserved_bytes, 0);
121 
122 	mem_size -= OCTEON_DDR0_SIZE;
123 
124 	if (mem_size > OCTEON_DDR1_SIZE) {
125 		__cvmx_bootmem_phy_free(OCTEON_DDR1_BASE, OCTEON_DDR1_SIZE, 0);
126 		__cvmx_bootmem_phy_free(OCTEON_DDR2_BASE,
127 				mem_size - OCTEON_DDR1_SIZE, 0);
128 	} else
129 		__cvmx_bootmem_phy_free(OCTEON_DDR1_BASE, mem_size, 0);
130 }
131 
132 static int octeon_kexec_prepare(struct kimage *image)
133 {
134 	int i;
135 	char *bootloader = "kexec";
136 
137 	octeon_boot_desc_ptr->argc = 0;
138 	for (i = 0; i < image->nr_segments; i++) {
139 		if (!strncmp(bootloader, (char *)image->segment[i].buf,
140 				strlen(bootloader))) {
141 			/*
142 			 * convert command line string to array
143 			 * of parameters (as bootloader does).
144 			 */
145 			int argc = 0, offt;
146 			char *str = (char *)image->segment[i].buf;
147 			char *ptr = strchr(str, ' ');
148 			while (ptr && (OCTEON_ARGV_MAX_ARGS > argc)) {
149 				*ptr = '\0';
150 				if (ptr[1] != ' ') {
151 					offt = (int)(ptr - str + 1);
152 					octeon_boot_desc_ptr->argv[argc] =
153 						image->segment[i].mem + offt;
154 					argc++;
155 				}
156 				ptr = strchr(ptr + 1, ' ');
157 			}
158 			octeon_boot_desc_ptr->argc = argc;
159 			break;
160 		}
161 	}
162 
163 	/*
164 	 * Information about segments will be needed during pre-boot memory
165 	 * initialization.
166 	 */
167 	kimage_ptr = image;
168 	return 0;
169 }
170 
171 static void octeon_generic_shutdown(void)
172 {
173 	int i;
174 #ifdef CONFIG_SMP
175 	int cpu;
176 #endif
177 	struct cvmx_bootmem_desc *bootmem_desc;
178 	void *named_block_array_ptr;
179 
180 	bootmem_desc = cvmx_bootmem_get_desc();
181 	named_block_array_ptr =
182 		cvmx_phys_to_ptr(bootmem_desc->named_block_array_addr);
183 
184 #ifdef CONFIG_SMP
185 	/* disable watchdogs */
186 	for_each_online_cpu(cpu)
187 		cvmx_write_csr(CVMX_CIU_WDOGX(cpu_logical_map(cpu)), 0);
188 #else
189 	cvmx_write_csr(CVMX_CIU_WDOGX(cvmx_get_core_num()), 0);
190 #endif
191 	if (kimage_ptr != kexec_crash_image) {
192 		memset(named_block_array_ptr,
193 			0x0,
194 			CVMX_BOOTMEM_NUM_NAMED_BLOCKS *
195 			sizeof(struct cvmx_bootmem_named_block_desc));
196 		/*
197 		 * Mark all memory (except low 0x100000 bytes) as free.
198 		 * It is the same thing that bootloader does.
199 		 */
200 		kexec_bootmem_init(octeon_bootinfo->dram_size*1024ULL*1024ULL,
201 				0x100000);
202 		/*
203 		 * Allocate all segments to avoid their corruption during boot.
204 		 */
205 		for (i = 0; i < kimage_ptr->nr_segments; i++)
206 			cvmx_bootmem_alloc_address(
207 				kimage_ptr->segment[i].memsz + 2*PAGE_SIZE,
208 				kimage_ptr->segment[i].mem - PAGE_SIZE,
209 				PAGE_SIZE);
210 	} else {
211 		/*
212 		 * Do not mark all memory as free. Free only named sections
213 		 * leaving the rest of memory unchanged.
214 		 */
215 		struct cvmx_bootmem_named_block_desc *ptr =
216 			(struct cvmx_bootmem_named_block_desc *)
217 			named_block_array_ptr;
218 
219 		for (i = 0; i < bootmem_desc->named_block_num_blocks; i++)
220 			if (ptr[i].size)
221 				cvmx_bootmem_free_named(ptr[i].name);
222 	}
223 	kexec_args[2] = 1UL; /* running on octeon_main_processor */
224 	kexec_args[3] = (unsigned long)octeon_boot_desc_ptr;
225 #ifdef CONFIG_SMP
226 	secondary_kexec_args[2] = 0UL; /* running on secondary cpu */
227 	secondary_kexec_args[3] = (unsigned long)octeon_boot_desc_ptr;
228 #endif
229 }
230 
231 static void octeon_shutdown(void)
232 {
233 	octeon_generic_shutdown();
234 #ifdef CONFIG_SMP
235 	smp_call_function(octeon_kexec_smp_down, NULL, 0);
236 	smp_wmb();
237 	while (num_online_cpus() > 1) {
238 		cpu_relax();
239 		mdelay(1);
240 	}
241 #endif
242 }
243 
244 static void octeon_crash_shutdown(struct pt_regs *regs)
245 {
246 	octeon_generic_shutdown();
247 	default_machine_crash_shutdown(regs);
248 }
249 
250 #endif /* CONFIG_KEXEC */
251 
252 #ifdef CONFIG_CAVIUM_RESERVE32
253 uint64_t octeon_reserve32_memory;
254 EXPORT_SYMBOL(octeon_reserve32_memory);
255 #endif
256 
257 #ifdef CONFIG_KEXEC
258 /* crashkernel cmdline parameter is parsed _after_ memory setup
259  * we also parse it here (workaround for EHB5200) */
260 static uint64_t crashk_size, crashk_base;
261 #endif
262 
263 static int octeon_uart;
264 
265 extern asmlinkage void handle_int(void);
266 extern asmlinkage void plat_irq_dispatch(void);
267 
268 /**
269  * Return non zero if we are currently running in the Octeon simulator
270  *
271  * Returns
272  */
273 int octeon_is_simulation(void)
274 {
275 	return octeon_bootinfo->board_type == CVMX_BOARD_TYPE_SIM;
276 }
277 EXPORT_SYMBOL(octeon_is_simulation);
278 
279 /**
280  * Return true if Octeon is in PCI Host mode. This means
281  * Linux can control the PCI bus.
282  *
283  * Returns Non zero if Octeon in host mode.
284  */
285 int octeon_is_pci_host(void)
286 {
287 #ifdef CONFIG_PCI
288 	return octeon_bootinfo->config_flags & CVMX_BOOTINFO_CFG_FLAG_PCI_HOST;
289 #else
290 	return 0;
291 #endif
292 }
293 
294 /**
295  * Get the clock rate of Octeon
296  *
297  * Returns Clock rate in HZ
298  */
299 uint64_t octeon_get_clock_rate(void)
300 {
301 	struct cvmx_sysinfo *sysinfo = cvmx_sysinfo_get();
302 
303 	return sysinfo->cpu_clock_hz;
304 }
305 EXPORT_SYMBOL(octeon_get_clock_rate);
306 
307 static u64 octeon_io_clock_rate;
308 
309 u64 octeon_get_io_clock_rate(void)
310 {
311 	return octeon_io_clock_rate;
312 }
313 EXPORT_SYMBOL(octeon_get_io_clock_rate);
314 
315 
316 /**
317  * Write to the LCD display connected to the bootbus. This display
318  * exists on most Cavium evaluation boards. If it doesn't exist, then
319  * this function doesn't do anything.
320  *
321  * @s:	    String to write
322  */
323 void octeon_write_lcd(const char *s)
324 {
325 	if (octeon_bootinfo->led_display_base_addr) {
326 		void __iomem *lcd_address =
327 			ioremap_nocache(octeon_bootinfo->led_display_base_addr,
328 					8);
329 		int i;
330 		for (i = 0; i < 8; i++, s++) {
331 			if (*s)
332 				iowrite8(*s, lcd_address + i);
333 			else
334 				iowrite8(' ', lcd_address + i);
335 		}
336 		iounmap(lcd_address);
337 	}
338 }
339 
340 /**
341  * Return the console uart passed by the bootloader
342  *
343  * Returns uart	  (0 or 1)
344  */
345 int octeon_get_boot_uart(void)
346 {
347 	int uart;
348 #ifdef CONFIG_CAVIUM_OCTEON_2ND_KERNEL
349 	uart = 1;
350 #else
351 	uart = (octeon_boot_desc_ptr->flags & OCTEON_BL_FLAG_CONSOLE_UART1) ?
352 		1 : 0;
353 #endif
354 	return uart;
355 }
356 
357 /**
358  * Get the coremask Linux was booted on.
359  *
360  * Returns Core mask
361  */
362 int octeon_get_boot_coremask(void)
363 {
364 	return octeon_boot_desc_ptr->core_mask;
365 }
366 
367 /**
368  * Check the hardware BIST results for a CPU
369  */
370 void octeon_check_cpu_bist(void)
371 {
372 	const int coreid = cvmx_get_core_num();
373 	unsigned long long mask;
374 	unsigned long long bist_val;
375 
376 	/* Check BIST results for COP0 registers */
377 	mask = 0x1f00000000ull;
378 	bist_val = read_octeon_c0_icacheerr();
379 	if (bist_val & mask)
380 		pr_err("Core%d BIST Failure: CacheErr(icache) = 0x%llx\n",
381 		       coreid, bist_val);
382 
383 	bist_val = read_octeon_c0_dcacheerr();
384 	if (bist_val & 1)
385 		pr_err("Core%d L1 Dcache parity error: "
386 		       "CacheErr(dcache) = 0x%llx\n",
387 		       coreid, bist_val);
388 
389 	mask = 0xfc00000000000000ull;
390 	bist_val = read_c0_cvmmemctl();
391 	if (bist_val & mask)
392 		pr_err("Core%d BIST Failure: COP0_CVM_MEM_CTL = 0x%llx\n",
393 		       coreid, bist_val);
394 
395 	write_octeon_c0_dcacheerr(0);
396 }
397 
398 /**
399  * Reboot Octeon
400  *
401  * @command: Command to pass to the bootloader. Currently ignored.
402  */
403 static void octeon_restart(char *command)
404 {
405 	/* Disable all watchdogs before soft reset. They don't get cleared */
406 #ifdef CONFIG_SMP
407 	int cpu;
408 	for_each_online_cpu(cpu)
409 		cvmx_write_csr(CVMX_CIU_WDOGX(cpu_logical_map(cpu)), 0);
410 #else
411 	cvmx_write_csr(CVMX_CIU_WDOGX(cvmx_get_core_num()), 0);
412 #endif
413 
414 	mb();
415 	while (1)
416 		cvmx_write_csr(CVMX_CIU_SOFT_RST, 1);
417 }
418 
419 
420 /**
421  * Permanently stop a core.
422  *
423  * @arg: Ignored.
424  */
425 static void octeon_kill_core(void *arg)
426 {
427 	if (octeon_is_simulation())
428 		/* A break instruction causes the simulator stop a core */
429 		asm volatile ("break" ::: "memory");
430 
431 	local_irq_disable();
432 	/* Disable watchdog on this core. */
433 	cvmx_write_csr(CVMX_CIU_WDOGX(cvmx_get_core_num()), 0);
434 	/* Spin in a low power mode. */
435 	while (true)
436 		asm volatile ("wait" ::: "memory");
437 }
438 
439 
440 /**
441  * Halt the system
442  */
443 static void octeon_halt(void)
444 {
445 	smp_call_function(octeon_kill_core, NULL, 0);
446 
447 	switch (octeon_bootinfo->board_type) {
448 	case CVMX_BOARD_TYPE_NAO38:
449 		/* Driving a 1 to GPIO 12 shuts off this board */
450 		cvmx_write_csr(CVMX_GPIO_BIT_CFGX(12), 1);
451 		cvmx_write_csr(CVMX_GPIO_TX_SET, 0x1000);
452 		break;
453 	default:
454 		octeon_write_lcd("PowerOff");
455 		break;
456 	}
457 
458 	octeon_kill_core(NULL);
459 }
460 
461 /**
462  * Return a string representing the system type
463  *
464  * Returns
465  */
466 const char *octeon_board_type_string(void)
467 {
468 	static char name[80];
469 	sprintf(name, "%s (%s)",
470 		cvmx_board_type_to_string(octeon_bootinfo->board_type),
471 		octeon_model_get_string(read_c0_prid()));
472 	return name;
473 }
474 
475 const char *get_system_type(void)
476 	__attribute__ ((alias("octeon_board_type_string")));
477 
478 void octeon_user_io_init(void)
479 {
480 	union octeon_cvmemctl cvmmemctl;
481 	union cvmx_iob_fau_timeout fau_timeout;
482 	union cvmx_pow_nw_tim nm_tim;
483 
484 	/* Get the current settings for CP0_CVMMEMCTL_REG */
485 	cvmmemctl.u64 = read_c0_cvmmemctl();
486 	/* R/W If set, marked write-buffer entries time out the same
487 	 * as as other entries; if clear, marked write-buffer entries
488 	 * use the maximum timeout. */
489 	cvmmemctl.s.dismarkwblongto = 1;
490 	/* R/W If set, a merged store does not clear the write-buffer
491 	 * entry timeout state. */
492 	cvmmemctl.s.dismrgclrwbto = 0;
493 	/* R/W Two bits that are the MSBs of the resultant CVMSEG LM
494 	 * word location for an IOBDMA. The other 8 bits come from the
495 	 * SCRADDR field of the IOBDMA. */
496 	cvmmemctl.s.iobdmascrmsb = 0;
497 	/* R/W If set, SYNCWS and SYNCS only order marked stores; if
498 	 * clear, SYNCWS and SYNCS only order unmarked
499 	 * stores. SYNCWSMARKED has no effect when DISSYNCWS is
500 	 * set. */
501 	cvmmemctl.s.syncwsmarked = 0;
502 	/* R/W If set, SYNCWS acts as SYNCW and SYNCS acts as SYNC. */
503 	cvmmemctl.s.dissyncws = 0;
504 	/* R/W If set, no stall happens on write buffer full. */
505 	if (OCTEON_IS_MODEL(OCTEON_CN38XX_PASS2))
506 		cvmmemctl.s.diswbfst = 1;
507 	else
508 		cvmmemctl.s.diswbfst = 0;
509 	/* R/W If set (and SX set), supervisor-level loads/stores can
510 	 * use XKPHYS addresses with <48>==0 */
511 	cvmmemctl.s.xkmemenas = 0;
512 
513 	/* R/W If set (and UX set), user-level loads/stores can use
514 	 * XKPHYS addresses with VA<48>==0 */
515 	cvmmemctl.s.xkmemenau = 0;
516 
517 	/* R/W If set (and SX set), supervisor-level loads/stores can
518 	 * use XKPHYS addresses with VA<48>==1 */
519 	cvmmemctl.s.xkioenas = 0;
520 
521 	/* R/W If set (and UX set), user-level loads/stores can use
522 	 * XKPHYS addresses with VA<48>==1 */
523 	cvmmemctl.s.xkioenau = 0;
524 
525 	/* R/W If set, all stores act as SYNCW (NOMERGE must be set
526 	 * when this is set) RW, reset to 0. */
527 	cvmmemctl.s.allsyncw = 0;
528 
529 	/* R/W If set, no stores merge, and all stores reach the
530 	 * coherent bus in order. */
531 	cvmmemctl.s.nomerge = 0;
532 	/* R/W Selects the bit in the counter used for DID time-outs 0
533 	 * = 231, 1 = 230, 2 = 229, 3 = 214. Actual time-out is
534 	 * between 1x and 2x this interval. For example, with
535 	 * DIDTTO=3, expiration interval is between 16K and 32K. */
536 	cvmmemctl.s.didtto = 0;
537 	/* R/W If set, the (mem) CSR clock never turns off. */
538 	cvmmemctl.s.csrckalwys = 0;
539 	/* R/W If set, mclk never turns off. */
540 	cvmmemctl.s.mclkalwys = 0;
541 	/* R/W Selects the bit in the counter used for write buffer
542 	 * flush time-outs (WBFLT+11) is the bit position in an
543 	 * internal counter used to determine expiration. The write
544 	 * buffer expires between 1x and 2x this interval. For
545 	 * example, with WBFLT = 0, a write buffer expires between 2K
546 	 * and 4K cycles after the write buffer entry is allocated. */
547 	cvmmemctl.s.wbfltime = 0;
548 	/* R/W If set, do not put Istream in the L2 cache. */
549 	cvmmemctl.s.istrnol2 = 0;
550 
551 	/*
552 	 * R/W The write buffer threshold. As per erratum Core-14752
553 	 * for CN63XX, a sc/scd might fail if the write buffer is
554 	 * full.  Lowering WBTHRESH greatly lowers the chances of the
555 	 * write buffer ever being full and triggering the erratum.
556 	 */
557 	if (OCTEON_IS_MODEL(OCTEON_CN63XX_PASS1_X))
558 		cvmmemctl.s.wbthresh = 4;
559 	else
560 		cvmmemctl.s.wbthresh = 10;
561 
562 	/* R/W If set, CVMSEG is available for loads/stores in
563 	 * kernel/debug mode. */
564 #if CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE > 0
565 	cvmmemctl.s.cvmsegenak = 1;
566 #else
567 	cvmmemctl.s.cvmsegenak = 0;
568 #endif
569 	/* R/W If set, CVMSEG is available for loads/stores in
570 	 * supervisor mode. */
571 	cvmmemctl.s.cvmsegenas = 0;
572 	/* R/W If set, CVMSEG is available for loads/stores in user
573 	 * mode. */
574 	cvmmemctl.s.cvmsegenau = 0;
575 	/* R/W Size of local memory in cache blocks, 54 (6912 bytes)
576 	 * is max legal value. */
577 	cvmmemctl.s.lmemsz = CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE;
578 
579 	write_c0_cvmmemctl(cvmmemctl.u64);
580 
581 	if (smp_processor_id() == 0)
582 		pr_notice("CVMSEG size: %d cache lines (%d bytes)\n",
583 			  CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE,
584 			  CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE * 128);
585 
586 	/* Set a default for the hardware timeouts */
587 	fau_timeout.u64 = 0;
588 	fau_timeout.s.tout_val = 0xfff;
589 	/* Disable tagwait FAU timeout */
590 	fau_timeout.s.tout_enb = 0;
591 	cvmx_write_csr(CVMX_IOB_FAU_TIMEOUT, fau_timeout.u64);
592 
593 	nm_tim.u64 = 0;
594 	/* 4096 cycles */
595 	nm_tim.s.nw_tim = 3;
596 	cvmx_write_csr(CVMX_POW_NW_TIM, nm_tim.u64);
597 
598 	write_octeon_c0_icacheerr(0);
599 	write_c0_derraddr1(0);
600 }
601 
602 /**
603  * Early entry point for arch setup
604  */
605 void __init prom_init(void)
606 {
607 	struct cvmx_sysinfo *sysinfo;
608 	const char *arg;
609 	char *p;
610 	int i;
611 	int argc;
612 #ifdef CONFIG_CAVIUM_RESERVE32
613 	int64_t addr = -1;
614 #endif
615 	/*
616 	 * The bootloader passes a pointer to the boot descriptor in
617 	 * $a3, this is available as fw_arg3.
618 	 */
619 	octeon_boot_desc_ptr = (struct octeon_boot_descriptor *)fw_arg3;
620 	octeon_bootinfo =
621 		cvmx_phys_to_ptr(octeon_boot_desc_ptr->cvmx_desc_vaddr);
622 	cvmx_bootmem_init(cvmx_phys_to_ptr(octeon_bootinfo->phy_mem_desc_addr));
623 
624 	sysinfo = cvmx_sysinfo_get();
625 	memset(sysinfo, 0, sizeof(*sysinfo));
626 	sysinfo->system_dram_size = octeon_bootinfo->dram_size << 20;
627 	sysinfo->phy_mem_desc_ptr =
628 		cvmx_phys_to_ptr(octeon_bootinfo->phy_mem_desc_addr);
629 	sysinfo->core_mask = octeon_bootinfo->core_mask;
630 	sysinfo->exception_base_addr = octeon_bootinfo->exception_base_addr;
631 	sysinfo->cpu_clock_hz = octeon_bootinfo->eclock_hz;
632 	sysinfo->dram_data_rate_hz = octeon_bootinfo->dclock_hz * 2;
633 	sysinfo->board_type = octeon_bootinfo->board_type;
634 	sysinfo->board_rev_major = octeon_bootinfo->board_rev_major;
635 	sysinfo->board_rev_minor = octeon_bootinfo->board_rev_minor;
636 	memcpy(sysinfo->mac_addr_base, octeon_bootinfo->mac_addr_base,
637 	       sizeof(sysinfo->mac_addr_base));
638 	sysinfo->mac_addr_count = octeon_bootinfo->mac_addr_count;
639 	memcpy(sysinfo->board_serial_number,
640 	       octeon_bootinfo->board_serial_number,
641 	       sizeof(sysinfo->board_serial_number));
642 	sysinfo->compact_flash_common_base_addr =
643 		octeon_bootinfo->compact_flash_common_base_addr;
644 	sysinfo->compact_flash_attribute_base_addr =
645 		octeon_bootinfo->compact_flash_attribute_base_addr;
646 	sysinfo->led_display_base_addr = octeon_bootinfo->led_display_base_addr;
647 	sysinfo->dfa_ref_clock_hz = octeon_bootinfo->dfa_ref_clock_hz;
648 	sysinfo->bootloader_config_flags = octeon_bootinfo->config_flags;
649 
650 	if (OCTEON_IS_MODEL(OCTEON_CN6XXX)) {
651 		/* I/O clock runs at a different rate than the CPU. */
652 		union cvmx_mio_rst_boot rst_boot;
653 		rst_boot.u64 = cvmx_read_csr(CVMX_MIO_RST_BOOT);
654 		octeon_io_clock_rate = 50000000 * rst_boot.s.pnr_mul;
655 	} else {
656 		octeon_io_clock_rate = sysinfo->cpu_clock_hz;
657 	}
658 
659 	/*
660 	 * Only enable the LED controller if we're running on a CN38XX, CN58XX,
661 	 * or CN56XX. The CN30XX and CN31XX don't have an LED controller.
662 	 */
663 	if (!octeon_is_simulation() &&
664 	    octeon_has_feature(OCTEON_FEATURE_LED_CONTROLLER)) {
665 		cvmx_write_csr(CVMX_LED_EN, 0);
666 		cvmx_write_csr(CVMX_LED_PRT, 0);
667 		cvmx_write_csr(CVMX_LED_DBG, 0);
668 		cvmx_write_csr(CVMX_LED_PRT_FMT, 0);
669 		cvmx_write_csr(CVMX_LED_UDD_CNTX(0), 32);
670 		cvmx_write_csr(CVMX_LED_UDD_CNTX(1), 32);
671 		cvmx_write_csr(CVMX_LED_UDD_DATX(0), 0);
672 		cvmx_write_csr(CVMX_LED_UDD_DATX(1), 0);
673 		cvmx_write_csr(CVMX_LED_EN, 1);
674 	}
675 #ifdef CONFIG_CAVIUM_RESERVE32
676 	/*
677 	 * We need to temporarily allocate all memory in the reserve32
678 	 * region. This makes sure the kernel doesn't allocate this
679 	 * memory when it is getting memory from the
680 	 * bootloader. Later, after the memory allocations are
681 	 * complete, the reserve32 will be freed.
682 	 *
683 	 * Allocate memory for RESERVED32 aligned on 2MB boundary. This
684 	 * is in case we later use hugetlb entries with it.
685 	 */
686 	addr = cvmx_bootmem_phy_named_block_alloc(CONFIG_CAVIUM_RESERVE32 << 20,
687 						0, 0, 2 << 20,
688 						"CAVIUM_RESERVE32", 0);
689 	if (addr < 0)
690 		pr_err("Failed to allocate CAVIUM_RESERVE32 memory area\n");
691 	else
692 		octeon_reserve32_memory = addr;
693 #endif
694 
695 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2
696 	if (cvmx_read_csr(CVMX_L2D_FUS3) & (3ull << 34)) {
697 		pr_info("Skipping L2 locking due to reduced L2 cache size\n");
698 	} else {
699 		uint32_t __maybe_unused ebase = read_c0_ebase() & 0x3ffff000;
700 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_TLB
701 		/* TLB refill */
702 		cvmx_l2c_lock_mem_region(ebase, 0x100);
703 #endif
704 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_EXCEPTION
705 		/* General exception */
706 		cvmx_l2c_lock_mem_region(ebase + 0x180, 0x80);
707 #endif
708 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_LOW_LEVEL_INTERRUPT
709 		/* Interrupt handler */
710 		cvmx_l2c_lock_mem_region(ebase + 0x200, 0x80);
711 #endif
712 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_INTERRUPT
713 		cvmx_l2c_lock_mem_region(__pa_symbol(handle_int), 0x100);
714 		cvmx_l2c_lock_mem_region(__pa_symbol(plat_irq_dispatch), 0x80);
715 #endif
716 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_MEMCPY
717 		cvmx_l2c_lock_mem_region(__pa_symbol(memcpy), 0x480);
718 #endif
719 	}
720 #endif
721 
722 	octeon_check_cpu_bist();
723 
724 	octeon_uart = octeon_get_boot_uart();
725 
726 #ifdef CONFIG_SMP
727 	octeon_write_lcd("LinuxSMP");
728 #else
729 	octeon_write_lcd("Linux");
730 #endif
731 
732 #ifdef CONFIG_CAVIUM_GDB
733 	/*
734 	 * When debugging the linux kernel, force the cores to enter
735 	 * the debug exception handler to break in.
736 	 */
737 	if (octeon_get_boot_debug_flag()) {
738 		cvmx_write_csr(CVMX_CIU_DINT, 1 << cvmx_get_core_num());
739 		cvmx_read_csr(CVMX_CIU_DINT);
740 	}
741 #endif
742 
743 	octeon_setup_delays();
744 
745 	/*
746 	 * BIST should always be enabled when doing a soft reset. L2
747 	 * Cache locking for instance is not cleared unless BIST is
748 	 * enabled.  Unfortunately due to a chip errata G-200 for
749 	 * Cn38XX and CN31XX, BIST msut be disabled on these parts.
750 	 */
751 	if (OCTEON_IS_MODEL(OCTEON_CN38XX_PASS2) ||
752 	    OCTEON_IS_MODEL(OCTEON_CN31XX))
753 		cvmx_write_csr(CVMX_CIU_SOFT_BIST, 0);
754 	else
755 		cvmx_write_csr(CVMX_CIU_SOFT_BIST, 1);
756 
757 	/* Default to 64MB in the simulator to speed things up */
758 	if (octeon_is_simulation())
759 		MAX_MEMORY = 64ull << 20;
760 
761 	arg = strstr(arcs_cmdline, "mem=");
762 	if (arg) {
763 		MAX_MEMORY = memparse(arg + 4, &p);
764 		if (MAX_MEMORY == 0)
765 			MAX_MEMORY = 32ull << 30;
766 		if (*p == '@')
767 			RESERVE_LOW_MEM = memparse(p + 1, &p);
768 	}
769 
770 	arcs_cmdline[0] = 0;
771 	argc = octeon_boot_desc_ptr->argc;
772 	for (i = 0; i < argc; i++) {
773 		const char *arg =
774 			cvmx_phys_to_ptr(octeon_boot_desc_ptr->argv[i]);
775 		if ((strncmp(arg, "MEM=", 4) == 0) ||
776 		    (strncmp(arg, "mem=", 4) == 0)) {
777 			MAX_MEMORY = memparse(arg + 4, &p);
778 			if (MAX_MEMORY == 0)
779 				MAX_MEMORY = 32ull << 30;
780 			if (*p == '@')
781 				RESERVE_LOW_MEM = memparse(p + 1, &p);
782 		} else if (strcmp(arg, "ecc_verbose") == 0) {
783 #ifdef CONFIG_CAVIUM_REPORT_SINGLE_BIT_ECC
784 			__cvmx_interrupt_ecc_report_single_bit_errors = 1;
785 			pr_notice("Reporting of single bit ECC errors is "
786 				  "turned on\n");
787 #endif
788 #ifdef CONFIG_KEXEC
789 		} else if (strncmp(arg, "crashkernel=", 12) == 0) {
790 			crashk_size = memparse(arg+12, &p);
791 			if (*p == '@')
792 				crashk_base = memparse(p+1, &p);
793 			strcat(arcs_cmdline, " ");
794 			strcat(arcs_cmdline, arg);
795 			/*
796 			 * To do: switch parsing to new style, something like:
797 			 * parse_crashkernel(arg, sysinfo->system_dram_size,
798 			 *		  &crashk_size, &crashk_base);
799 			 */
800 #endif
801 		} else if (strlen(arcs_cmdline) + strlen(arg) + 1 <
802 			   sizeof(arcs_cmdline) - 1) {
803 			strcat(arcs_cmdline, " ");
804 			strcat(arcs_cmdline, arg);
805 		}
806 	}
807 
808 	if (strstr(arcs_cmdline, "console=") == NULL) {
809 #ifdef CONFIG_CAVIUM_OCTEON_2ND_KERNEL
810 		strcat(arcs_cmdline, " console=ttyS0,115200");
811 #else
812 		if (octeon_uart == 1)
813 			strcat(arcs_cmdline, " console=ttyS1,115200");
814 		else
815 			strcat(arcs_cmdline, " console=ttyS0,115200");
816 #endif
817 	}
818 
819 	if (octeon_is_simulation()) {
820 		/*
821 		 * The simulator uses a mtdram device pre filled with
822 		 * the filesystem. Also specify the calibration delay
823 		 * to avoid calculating it every time.
824 		 */
825 		strcat(arcs_cmdline, " rw root=1f00 slram=root,0x40000000,+1073741824");
826 	}
827 
828 	mips_hpt_frequency = octeon_get_clock_rate();
829 
830 	octeon_init_cvmcount();
831 
832 	_machine_restart = octeon_restart;
833 	_machine_halt = octeon_halt;
834 
835 #ifdef CONFIG_KEXEC
836 	_machine_kexec_shutdown = octeon_shutdown;
837 	_machine_crash_shutdown = octeon_crash_shutdown;
838 	_machine_kexec_prepare = octeon_kexec_prepare;
839 #endif
840 
841 	octeon_user_io_init();
842 	register_smp_ops(&octeon_smp_ops);
843 }
844 
845 /* Exclude a single page from the regions obtained in plat_mem_setup. */
846 #ifndef CONFIG_CRASH_DUMP
847 static __init void memory_exclude_page(u64 addr, u64 *mem, u64 *size)
848 {
849 	if (addr > *mem && addr < *mem + *size) {
850 		u64 inc = addr - *mem;
851 		add_memory_region(*mem, inc, BOOT_MEM_RAM);
852 		*mem += inc;
853 		*size -= inc;
854 	}
855 
856 	if (addr == *mem && *size > PAGE_SIZE) {
857 		*mem += PAGE_SIZE;
858 		*size -= PAGE_SIZE;
859 	}
860 }
861 #endif /* CONFIG_CRASH_DUMP */
862 
863 void __init plat_mem_setup(void)
864 {
865 	uint64_t mem_alloc_size;
866 	uint64_t total;
867 	uint64_t crashk_end;
868 #ifndef CONFIG_CRASH_DUMP
869 	int64_t memory;
870 	uint64_t kernel_start;
871 	uint64_t kernel_size;
872 #endif
873 
874 	total = 0;
875 	crashk_end = 0;
876 
877 	/*
878 	 * The Mips memory init uses the first memory location for
879 	 * some memory vectors. When SPARSEMEM is in use, it doesn't
880 	 * verify that the size is big enough for the final
881 	 * vectors. Making the smallest chuck 4MB seems to be enough
882 	 * to consistently work.
883 	 */
884 	mem_alloc_size = 4 << 20;
885 	if (mem_alloc_size > MAX_MEMORY)
886 		mem_alloc_size = MAX_MEMORY;
887 
888 /* Crashkernel ignores bootmem list. It relies on mem=X@Y option */
889 #ifdef CONFIG_CRASH_DUMP
890 	add_memory_region(RESERVE_LOW_MEM, MAX_MEMORY, BOOT_MEM_RAM);
891 	total += MAX_MEMORY;
892 #else
893 #ifdef CONFIG_KEXEC
894 	if (crashk_size > 0) {
895 		add_memory_region(crashk_base, crashk_size, BOOT_MEM_RAM);
896 		crashk_end = crashk_base + crashk_size;
897 	}
898 #endif
899 	/*
900 	 * When allocating memory, we want incrementing addresses from
901 	 * bootmem_alloc so the code in add_memory_region can merge
902 	 * regions next to each other.
903 	 */
904 	cvmx_bootmem_lock();
905 	while ((boot_mem_map.nr_map < BOOT_MEM_MAP_MAX)
906 		&& (total < MAX_MEMORY)) {
907 		memory = cvmx_bootmem_phy_alloc(mem_alloc_size,
908 						__pa_symbol(&__init_end), -1,
909 						0x100000,
910 						CVMX_BOOTMEM_FLAG_NO_LOCKING);
911 		if (memory >= 0) {
912 			u64 size = mem_alloc_size;
913 #ifdef CONFIG_KEXEC
914 			uint64_t end;
915 #endif
916 
917 			/*
918 			 * exclude a page at the beginning and end of
919 			 * the 256MB PCIe 'hole' so the kernel will not
920 			 * try to allocate multi-page buffers that
921 			 * span the discontinuity.
922 			 */
923 			memory_exclude_page(CVMX_PCIE_BAR1_PHYS_BASE,
924 					    &memory, &size);
925 			memory_exclude_page(CVMX_PCIE_BAR1_PHYS_BASE +
926 					    CVMX_PCIE_BAR1_PHYS_SIZE,
927 					    &memory, &size);
928 #ifdef CONFIG_KEXEC
929 			end = memory + mem_alloc_size;
930 
931 			/*
932 			 * This function automatically merges address regions
933 			 * next to each other if they are received in
934 			 * incrementing order
935 			 */
936 			if (memory < crashk_base && end >  crashk_end) {
937 				/* region is fully in */
938 				add_memory_region(memory,
939 						  crashk_base - memory,
940 						  BOOT_MEM_RAM);
941 				total += crashk_base - memory;
942 				add_memory_region(crashk_end,
943 						  end - crashk_end,
944 						  BOOT_MEM_RAM);
945 				total += end - crashk_end;
946 				continue;
947 			}
948 
949 			if (memory >= crashk_base && end <= crashk_end)
950 				/*
951 				 * Entire memory region is within the new
952 				 *  kernel's memory, ignore it.
953 				 */
954 				continue;
955 
956 			if (memory > crashk_base && memory < crashk_end &&
957 			    end > crashk_end) {
958 				/*
959 				 * Overlap with the beginning of the region,
960 				 * reserve the beginning.
961 				  */
962 				mem_alloc_size -= crashk_end - memory;
963 				memory = crashk_end;
964 			} else if (memory < crashk_base && end > crashk_base &&
965 				   end < crashk_end)
966 				/*
967 				 * Overlap with the beginning of the region,
968 				 * chop of end.
969 				 */
970 				mem_alloc_size -= end - crashk_base;
971 #endif
972 			add_memory_region(memory, mem_alloc_size, BOOT_MEM_RAM);
973 			total += mem_alloc_size;
974 			/* Recovering mem_alloc_size */
975 			mem_alloc_size = 4 << 20;
976 		} else {
977 			break;
978 		}
979 	}
980 	cvmx_bootmem_unlock();
981 	/* Add the memory region for the kernel. */
982 	kernel_start = (unsigned long) _text;
983 	kernel_size = _end - _text;
984 
985 	/* Adjust for physical offset. */
986 	kernel_start &= ~0xffffffff80000000ULL;
987 	add_memory_region(kernel_start, kernel_size, BOOT_MEM_RAM);
988 #endif /* CONFIG_CRASH_DUMP */
989 
990 #ifdef CONFIG_CAVIUM_RESERVE32
991 	/*
992 	 * Now that we've allocated the kernel memory it is safe to
993 	 * free the reserved region. We free it here so that builtin
994 	 * drivers can use the memory.
995 	 */
996 	if (octeon_reserve32_memory)
997 		cvmx_bootmem_free_named("CAVIUM_RESERVE32");
998 #endif /* CONFIG_CAVIUM_RESERVE32 */
999 
1000 	if (total == 0)
1001 		panic("Unable to allocate memory from "
1002 		      "cvmx_bootmem_phy_alloc");
1003 }
1004 
1005 /*
1006  * Emit one character to the boot UART.	 Exported for use by the
1007  * watchdog timer.
1008  */
1009 int prom_putchar(char c)
1010 {
1011 	uint64_t lsrval;
1012 
1013 	/* Spin until there is room */
1014 	do {
1015 		lsrval = cvmx_read_csr(CVMX_MIO_UARTX_LSR(octeon_uart));
1016 	} while ((lsrval & 0x20) == 0);
1017 
1018 	/* Write the byte */
1019 	cvmx_write_csr(CVMX_MIO_UARTX_THR(octeon_uart), c & 0xffull);
1020 	return 1;
1021 }
1022 EXPORT_SYMBOL(prom_putchar);
1023 
1024 void prom_free_prom_memory(void)
1025 {
1026 	if (OCTEON_IS_MODEL(OCTEON_CN63XX_PASS1_X)) {
1027 		/* Check for presence of Core-14449 fix.  */
1028 		u32 insn;
1029 		u32 *foo;
1030 
1031 		foo = &insn;
1032 
1033 		asm volatile("# before" : : : "memory");
1034 		prefetch(foo);
1035 		asm volatile(
1036 			".set push\n\t"
1037 			".set noreorder\n\t"
1038 			"bal 1f\n\t"
1039 			"nop\n"
1040 			"1:\tlw %0,-12($31)\n\t"
1041 			".set pop\n\t"
1042 			: "=r" (insn) : : "$31", "memory");
1043 
1044 		if ((insn >> 26) != 0x33)
1045 			panic("No PREF instruction at Core-14449 probe point.");
1046 
1047 		if (((insn >> 16) & 0x1f) != 28)
1048 			panic("Core-14449 WAR not in place (%04x).\n"
1049 			      "Please build kernel with proper options (CONFIG_CAVIUM_CN63XXP1).", insn);
1050 	}
1051 }
1052 
1053 int octeon_prune_device_tree(void);
1054 
1055 extern const char __dtb_octeon_3xxx_begin;
1056 extern const char __dtb_octeon_3xxx_end;
1057 extern const char __dtb_octeon_68xx_begin;
1058 extern const char __dtb_octeon_68xx_end;
1059 void __init device_tree_init(void)
1060 {
1061 	int dt_size;
1062 	struct boot_param_header *fdt;
1063 	bool do_prune;
1064 
1065 	if (octeon_bootinfo->minor_version >= 3 && octeon_bootinfo->fdt_addr) {
1066 		fdt = phys_to_virt(octeon_bootinfo->fdt_addr);
1067 		if (fdt_check_header(fdt))
1068 			panic("Corrupt Device Tree passed to kernel.");
1069 		dt_size = be32_to_cpu(fdt->totalsize);
1070 		do_prune = false;
1071 	} else if (OCTEON_IS_MODEL(OCTEON_CN68XX)) {
1072 		fdt = (struct boot_param_header *)&__dtb_octeon_68xx_begin;
1073 		dt_size = &__dtb_octeon_68xx_end - &__dtb_octeon_68xx_begin;
1074 		do_prune = true;
1075 	} else {
1076 		fdt = (struct boot_param_header *)&__dtb_octeon_3xxx_begin;
1077 		dt_size = &__dtb_octeon_3xxx_end - &__dtb_octeon_3xxx_begin;
1078 		do_prune = true;
1079 	}
1080 
1081 	/* Copy the default tree from init memory. */
1082 	initial_boot_params = early_init_dt_alloc_memory_arch(dt_size, 8);
1083 	if (initial_boot_params == NULL)
1084 		panic("Could not allocate initial_boot_params");
1085 	memcpy(initial_boot_params, fdt, dt_size);
1086 
1087 	if (do_prune) {
1088 		octeon_prune_device_tree();
1089 		pr_info("Using internal Device Tree.\n");
1090 	} else {
1091 		pr_info("Using passed Device Tree.\n");
1092 	}
1093 	unflatten_device_tree();
1094 }
1095 
1096 static int __initdata disable_octeon_edac_p;
1097 
1098 static int __init disable_octeon_edac(char *str)
1099 {
1100 	disable_octeon_edac_p = 1;
1101 	return 0;
1102 }
1103 early_param("disable_octeon_edac", disable_octeon_edac);
1104 
1105 static char *edac_device_names[] = {
1106 	"octeon_l2c_edac",
1107 	"octeon_pc_edac",
1108 };
1109 
1110 static int __init edac_devinit(void)
1111 {
1112 	struct platform_device *dev;
1113 	int i, err = 0;
1114 	int num_lmc;
1115 	char *name;
1116 
1117 	if (disable_octeon_edac_p)
1118 		return 0;
1119 
1120 	for (i = 0; i < ARRAY_SIZE(edac_device_names); i++) {
1121 		name = edac_device_names[i];
1122 		dev = platform_device_register_simple(name, -1, NULL, 0);
1123 		if (IS_ERR(dev)) {
1124 			pr_err("Registation of %s failed!\n", name);
1125 			err = PTR_ERR(dev);
1126 		}
1127 	}
1128 
1129 	num_lmc = OCTEON_IS_MODEL(OCTEON_CN68XX) ? 4 :
1130 		(OCTEON_IS_MODEL(OCTEON_CN56XX) ? 2 : 1);
1131 	for (i = 0; i < num_lmc; i++) {
1132 		dev = platform_device_register_simple("octeon_lmc_edac",
1133 						      i, NULL, 0);
1134 		if (IS_ERR(dev)) {
1135 			pr_err("Registation of octeon_lmc_edac %d failed!\n", i);
1136 			err = PTR_ERR(dev);
1137 		}
1138 	}
1139 
1140 	return err;
1141 }
1142 device_initcall(edac_devinit);
1143 
1144 static void __initdata *octeon_dummy_iospace;
1145 
1146 static int __init octeon_no_pci_init(void)
1147 {
1148 	/*
1149 	 * Initially assume there is no PCI. The PCI/PCIe platform code will
1150 	 * later re-initialize these to correct values if they are present.
1151 	 */
1152 	octeon_dummy_iospace = vzalloc(IO_SPACE_LIMIT);
1153 	set_io_port_base((unsigned long)octeon_dummy_iospace);
1154 	ioport_resource.start = MAX_RESOURCE;
1155 	ioport_resource.end = 0;
1156 	return 0;
1157 }
1158 core_initcall(octeon_no_pci_init);
1159 
1160 static int __init octeon_no_pci_release(void)
1161 {
1162 	/*
1163 	 * Release the allocated memory if a real IO space is there.
1164 	 */
1165 	if ((unsigned long)octeon_dummy_iospace != mips_io_port_base)
1166 		vfree(octeon_dummy_iospace);
1167 	return 0;
1168 }
1169 late_initcall(octeon_no_pci_release);
1170