xref: /linux/arch/mips/cavium-octeon/setup.c (revision c0c914eca7f251c70facc37dfebeaf176601918d)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 2004-2007 Cavium Networks
7  * Copyright (C) 2008, 2009 Wind River Systems
8  *   written by Ralf Baechle <ralf@linux-mips.org>
9  */
10 #include <linux/compiler.h>
11 #include <linux/vmalloc.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/console.h>
15 #include <linux/delay.h>
16 #include <linux/export.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/serial.h>
20 #include <linux/smp.h>
21 #include <linux/types.h>
22 #include <linux/string.h>	/* for memset */
23 #include <linux/tty.h>
24 #include <linux/time.h>
25 #include <linux/platform_device.h>
26 #include <linux/serial_core.h>
27 #include <linux/serial_8250.h>
28 #include <linux/of_fdt.h>
29 #include <linux/libfdt.h>
30 #include <linux/kexec.h>
31 
32 #include <asm/processor.h>
33 #include <asm/reboot.h>
34 #include <asm/smp-ops.h>
35 #include <asm/irq_cpu.h>
36 #include <asm/mipsregs.h>
37 #include <asm/bootinfo.h>
38 #include <asm/sections.h>
39 #include <asm/time.h>
40 
41 #include <asm/octeon/octeon.h>
42 #include <asm/octeon/pci-octeon.h>
43 #include <asm/octeon/cvmx-mio-defs.h>
44 #include <asm/octeon/cvmx-rst-defs.h>
45 
46 extern struct plat_smp_ops octeon_smp_ops;
47 
48 #ifdef CONFIG_PCI
49 extern void pci_console_init(const char *arg);
50 #endif
51 
52 static unsigned long long MAX_MEMORY = 512ull << 20;
53 
54 DEFINE_SEMAPHORE(octeon_bootbus_sem);
55 EXPORT_SYMBOL(octeon_bootbus_sem);
56 
57 struct octeon_boot_descriptor *octeon_boot_desc_ptr;
58 
59 struct cvmx_bootinfo *octeon_bootinfo;
60 EXPORT_SYMBOL(octeon_bootinfo);
61 
62 static unsigned long long RESERVE_LOW_MEM = 0ull;
63 #ifdef CONFIG_KEXEC
64 #ifdef CONFIG_SMP
65 /*
66  * Wait for relocation code is prepared and send
67  * secondary CPUs to spin until kernel is relocated.
68  */
69 static void octeon_kexec_smp_down(void *ignored)
70 {
71 	int cpu = smp_processor_id();
72 
73 	local_irq_disable();
74 	set_cpu_online(cpu, false);
75 	while (!atomic_read(&kexec_ready_to_reboot))
76 		cpu_relax();
77 
78 	asm volatile (
79 	"	sync						\n"
80 	"	synci	($0)					\n");
81 
82 	relocated_kexec_smp_wait(NULL);
83 }
84 #endif
85 
86 #define OCTEON_DDR0_BASE    (0x0ULL)
87 #define OCTEON_DDR0_SIZE    (0x010000000ULL)
88 #define OCTEON_DDR1_BASE    (0x410000000ULL)
89 #define OCTEON_DDR1_SIZE    (0x010000000ULL)
90 #define OCTEON_DDR2_BASE    (0x020000000ULL)
91 #define OCTEON_DDR2_SIZE    (0x3e0000000ULL)
92 #define OCTEON_MAX_PHY_MEM_SIZE (16*1024*1024*1024ULL)
93 
94 static struct kimage *kimage_ptr;
95 
96 static void kexec_bootmem_init(uint64_t mem_size, uint32_t low_reserved_bytes)
97 {
98 	int64_t addr;
99 	struct cvmx_bootmem_desc *bootmem_desc;
100 
101 	bootmem_desc = cvmx_bootmem_get_desc();
102 
103 	if (mem_size > OCTEON_MAX_PHY_MEM_SIZE) {
104 		mem_size = OCTEON_MAX_PHY_MEM_SIZE;
105 		pr_err("Error: requested memory too large,"
106 		       "truncating to maximum size\n");
107 	}
108 
109 	bootmem_desc->major_version = CVMX_BOOTMEM_DESC_MAJ_VER;
110 	bootmem_desc->minor_version = CVMX_BOOTMEM_DESC_MIN_VER;
111 
112 	addr = (OCTEON_DDR0_BASE + RESERVE_LOW_MEM + low_reserved_bytes);
113 	bootmem_desc->head_addr = 0;
114 
115 	if (mem_size <= OCTEON_DDR0_SIZE) {
116 		__cvmx_bootmem_phy_free(addr,
117 				mem_size - RESERVE_LOW_MEM -
118 				low_reserved_bytes, 0);
119 		return;
120 	}
121 
122 	__cvmx_bootmem_phy_free(addr,
123 			OCTEON_DDR0_SIZE - RESERVE_LOW_MEM -
124 			low_reserved_bytes, 0);
125 
126 	mem_size -= OCTEON_DDR0_SIZE;
127 
128 	if (mem_size > OCTEON_DDR1_SIZE) {
129 		__cvmx_bootmem_phy_free(OCTEON_DDR1_BASE, OCTEON_DDR1_SIZE, 0);
130 		__cvmx_bootmem_phy_free(OCTEON_DDR2_BASE,
131 				mem_size - OCTEON_DDR1_SIZE, 0);
132 	} else
133 		__cvmx_bootmem_phy_free(OCTEON_DDR1_BASE, mem_size, 0);
134 }
135 
136 static int octeon_kexec_prepare(struct kimage *image)
137 {
138 	int i;
139 	char *bootloader = "kexec";
140 
141 	octeon_boot_desc_ptr->argc = 0;
142 	for (i = 0; i < image->nr_segments; i++) {
143 		if (!strncmp(bootloader, (char *)image->segment[i].buf,
144 				strlen(bootloader))) {
145 			/*
146 			 * convert command line string to array
147 			 * of parameters (as bootloader does).
148 			 */
149 			int argc = 0, offt;
150 			char *str = (char *)image->segment[i].buf;
151 			char *ptr = strchr(str, ' ');
152 			while (ptr && (OCTEON_ARGV_MAX_ARGS > argc)) {
153 				*ptr = '\0';
154 				if (ptr[1] != ' ') {
155 					offt = (int)(ptr - str + 1);
156 					octeon_boot_desc_ptr->argv[argc] =
157 						image->segment[i].mem + offt;
158 					argc++;
159 				}
160 				ptr = strchr(ptr + 1, ' ');
161 			}
162 			octeon_boot_desc_ptr->argc = argc;
163 			break;
164 		}
165 	}
166 
167 	/*
168 	 * Information about segments will be needed during pre-boot memory
169 	 * initialization.
170 	 */
171 	kimage_ptr = image;
172 	return 0;
173 }
174 
175 static void octeon_generic_shutdown(void)
176 {
177 	int i;
178 #ifdef CONFIG_SMP
179 	int cpu;
180 #endif
181 	struct cvmx_bootmem_desc *bootmem_desc;
182 	void *named_block_array_ptr;
183 
184 	bootmem_desc = cvmx_bootmem_get_desc();
185 	named_block_array_ptr =
186 		cvmx_phys_to_ptr(bootmem_desc->named_block_array_addr);
187 
188 #ifdef CONFIG_SMP
189 	/* disable watchdogs */
190 	for_each_online_cpu(cpu)
191 		cvmx_write_csr(CVMX_CIU_WDOGX(cpu_logical_map(cpu)), 0);
192 #else
193 	cvmx_write_csr(CVMX_CIU_WDOGX(cvmx_get_core_num()), 0);
194 #endif
195 	if (kimage_ptr != kexec_crash_image) {
196 		memset(named_block_array_ptr,
197 			0x0,
198 			CVMX_BOOTMEM_NUM_NAMED_BLOCKS *
199 			sizeof(struct cvmx_bootmem_named_block_desc));
200 		/*
201 		 * Mark all memory (except low 0x100000 bytes) as free.
202 		 * It is the same thing that bootloader does.
203 		 */
204 		kexec_bootmem_init(octeon_bootinfo->dram_size*1024ULL*1024ULL,
205 				0x100000);
206 		/*
207 		 * Allocate all segments to avoid their corruption during boot.
208 		 */
209 		for (i = 0; i < kimage_ptr->nr_segments; i++)
210 			cvmx_bootmem_alloc_address(
211 				kimage_ptr->segment[i].memsz + 2*PAGE_SIZE,
212 				kimage_ptr->segment[i].mem - PAGE_SIZE,
213 				PAGE_SIZE);
214 	} else {
215 		/*
216 		 * Do not mark all memory as free. Free only named sections
217 		 * leaving the rest of memory unchanged.
218 		 */
219 		struct cvmx_bootmem_named_block_desc *ptr =
220 			(struct cvmx_bootmem_named_block_desc *)
221 			named_block_array_ptr;
222 
223 		for (i = 0; i < bootmem_desc->named_block_num_blocks; i++)
224 			if (ptr[i].size)
225 				cvmx_bootmem_free_named(ptr[i].name);
226 	}
227 	kexec_args[2] = 1UL; /* running on octeon_main_processor */
228 	kexec_args[3] = (unsigned long)octeon_boot_desc_ptr;
229 #ifdef CONFIG_SMP
230 	secondary_kexec_args[2] = 0UL; /* running on secondary cpu */
231 	secondary_kexec_args[3] = (unsigned long)octeon_boot_desc_ptr;
232 #endif
233 }
234 
235 static void octeon_shutdown(void)
236 {
237 	octeon_generic_shutdown();
238 #ifdef CONFIG_SMP
239 	smp_call_function(octeon_kexec_smp_down, NULL, 0);
240 	smp_wmb();
241 	while (num_online_cpus() > 1) {
242 		cpu_relax();
243 		mdelay(1);
244 	}
245 #endif
246 }
247 
248 static void octeon_crash_shutdown(struct pt_regs *regs)
249 {
250 	octeon_generic_shutdown();
251 	default_machine_crash_shutdown(regs);
252 }
253 
254 #endif /* CONFIG_KEXEC */
255 
256 #ifdef CONFIG_CAVIUM_RESERVE32
257 uint64_t octeon_reserve32_memory;
258 EXPORT_SYMBOL(octeon_reserve32_memory);
259 #endif
260 
261 #ifdef CONFIG_KEXEC
262 /* crashkernel cmdline parameter is parsed _after_ memory setup
263  * we also parse it here (workaround for EHB5200) */
264 static uint64_t crashk_size, crashk_base;
265 #endif
266 
267 static int octeon_uart;
268 
269 extern asmlinkage void handle_int(void);
270 
271 /**
272  * Return non zero if we are currently running in the Octeon simulator
273  *
274  * Returns
275  */
276 int octeon_is_simulation(void)
277 {
278 	return octeon_bootinfo->board_type == CVMX_BOARD_TYPE_SIM;
279 }
280 EXPORT_SYMBOL(octeon_is_simulation);
281 
282 /**
283  * Return true if Octeon is in PCI Host mode. This means
284  * Linux can control the PCI bus.
285  *
286  * Returns Non zero if Octeon in host mode.
287  */
288 int octeon_is_pci_host(void)
289 {
290 #ifdef CONFIG_PCI
291 	return octeon_bootinfo->config_flags & CVMX_BOOTINFO_CFG_FLAG_PCI_HOST;
292 #else
293 	return 0;
294 #endif
295 }
296 
297 /**
298  * Get the clock rate of Octeon
299  *
300  * Returns Clock rate in HZ
301  */
302 uint64_t octeon_get_clock_rate(void)
303 {
304 	struct cvmx_sysinfo *sysinfo = cvmx_sysinfo_get();
305 
306 	return sysinfo->cpu_clock_hz;
307 }
308 EXPORT_SYMBOL(octeon_get_clock_rate);
309 
310 static u64 octeon_io_clock_rate;
311 
312 u64 octeon_get_io_clock_rate(void)
313 {
314 	return octeon_io_clock_rate;
315 }
316 EXPORT_SYMBOL(octeon_get_io_clock_rate);
317 
318 
319 /**
320  * Write to the LCD display connected to the bootbus. This display
321  * exists on most Cavium evaluation boards. If it doesn't exist, then
322  * this function doesn't do anything.
323  *
324  * @s:	    String to write
325  */
326 void octeon_write_lcd(const char *s)
327 {
328 	if (octeon_bootinfo->led_display_base_addr) {
329 		void __iomem *lcd_address =
330 			ioremap_nocache(octeon_bootinfo->led_display_base_addr,
331 					8);
332 		int i;
333 		for (i = 0; i < 8; i++, s++) {
334 			if (*s)
335 				iowrite8(*s, lcd_address + i);
336 			else
337 				iowrite8(' ', lcd_address + i);
338 		}
339 		iounmap(lcd_address);
340 	}
341 }
342 
343 /**
344  * Return the console uart passed by the bootloader
345  *
346  * Returns uart	  (0 or 1)
347  */
348 int octeon_get_boot_uart(void)
349 {
350 	int uart;
351 #ifdef CONFIG_CAVIUM_OCTEON_2ND_KERNEL
352 	uart = 1;
353 #else
354 	uart = (octeon_boot_desc_ptr->flags & OCTEON_BL_FLAG_CONSOLE_UART1) ?
355 		1 : 0;
356 #endif
357 	return uart;
358 }
359 
360 /**
361  * Get the coremask Linux was booted on.
362  *
363  * Returns Core mask
364  */
365 int octeon_get_boot_coremask(void)
366 {
367 	return octeon_boot_desc_ptr->core_mask;
368 }
369 
370 /**
371  * Check the hardware BIST results for a CPU
372  */
373 void octeon_check_cpu_bist(void)
374 {
375 	const int coreid = cvmx_get_core_num();
376 	unsigned long long mask;
377 	unsigned long long bist_val;
378 
379 	/* Check BIST results for COP0 registers */
380 	mask = 0x1f00000000ull;
381 	bist_val = read_octeon_c0_icacheerr();
382 	if (bist_val & mask)
383 		pr_err("Core%d BIST Failure: CacheErr(icache) = 0x%llx\n",
384 		       coreid, bist_val);
385 
386 	bist_val = read_octeon_c0_dcacheerr();
387 	if (bist_val & 1)
388 		pr_err("Core%d L1 Dcache parity error: "
389 		       "CacheErr(dcache) = 0x%llx\n",
390 		       coreid, bist_val);
391 
392 	mask = 0xfc00000000000000ull;
393 	bist_val = read_c0_cvmmemctl();
394 	if (bist_val & mask)
395 		pr_err("Core%d BIST Failure: COP0_CVM_MEM_CTL = 0x%llx\n",
396 		       coreid, bist_val);
397 
398 	write_octeon_c0_dcacheerr(0);
399 }
400 
401 /**
402  * Reboot Octeon
403  *
404  * @command: Command to pass to the bootloader. Currently ignored.
405  */
406 static void octeon_restart(char *command)
407 {
408 	/* Disable all watchdogs before soft reset. They don't get cleared */
409 #ifdef CONFIG_SMP
410 	int cpu;
411 	for_each_online_cpu(cpu)
412 		cvmx_write_csr(CVMX_CIU_WDOGX(cpu_logical_map(cpu)), 0);
413 #else
414 	cvmx_write_csr(CVMX_CIU_WDOGX(cvmx_get_core_num()), 0);
415 #endif
416 
417 	mb();
418 	while (1)
419 		if (OCTEON_IS_OCTEON3())
420 			cvmx_write_csr(CVMX_RST_SOFT_RST, 1);
421 		else
422 			cvmx_write_csr(CVMX_CIU_SOFT_RST, 1);
423 }
424 
425 
426 /**
427  * Permanently stop a core.
428  *
429  * @arg: Ignored.
430  */
431 static void octeon_kill_core(void *arg)
432 {
433 	if (octeon_is_simulation())
434 		/* A break instruction causes the simulator stop a core */
435 		asm volatile ("break" ::: "memory");
436 
437 	local_irq_disable();
438 	/* Disable watchdog on this core. */
439 	cvmx_write_csr(CVMX_CIU_WDOGX(cvmx_get_core_num()), 0);
440 	/* Spin in a low power mode. */
441 	while (true)
442 		asm volatile ("wait" ::: "memory");
443 }
444 
445 
446 /**
447  * Halt the system
448  */
449 static void octeon_halt(void)
450 {
451 	smp_call_function(octeon_kill_core, NULL, 0);
452 
453 	switch (octeon_bootinfo->board_type) {
454 	case CVMX_BOARD_TYPE_NAO38:
455 		/* Driving a 1 to GPIO 12 shuts off this board */
456 		cvmx_write_csr(CVMX_GPIO_BIT_CFGX(12), 1);
457 		cvmx_write_csr(CVMX_GPIO_TX_SET, 0x1000);
458 		break;
459 	default:
460 		octeon_write_lcd("PowerOff");
461 		break;
462 	}
463 
464 	octeon_kill_core(NULL);
465 }
466 
467 static char __read_mostly octeon_system_type[80];
468 
469 static int __init init_octeon_system_type(void)
470 {
471 	snprintf(octeon_system_type, sizeof(octeon_system_type), "%s (%s)",
472 		cvmx_board_type_to_string(octeon_bootinfo->board_type),
473 		octeon_model_get_string(read_c0_prid()));
474 
475 	return 0;
476 }
477 early_initcall(init_octeon_system_type);
478 
479 /**
480  * Return a string representing the system type
481  *
482  * Returns
483  */
484 const char *octeon_board_type_string(void)
485 {
486 	return octeon_system_type;
487 }
488 
489 const char *get_system_type(void)
490 	__attribute__ ((alias("octeon_board_type_string")));
491 
492 void octeon_user_io_init(void)
493 {
494 	union octeon_cvmemctl cvmmemctl;
495 	union cvmx_iob_fau_timeout fau_timeout;
496 	union cvmx_pow_nw_tim nm_tim;
497 
498 	/* Get the current settings for CP0_CVMMEMCTL_REG */
499 	cvmmemctl.u64 = read_c0_cvmmemctl();
500 	/* R/W If set, marked write-buffer entries time out the same
501 	 * as as other entries; if clear, marked write-buffer entries
502 	 * use the maximum timeout. */
503 	cvmmemctl.s.dismarkwblongto = 1;
504 	/* R/W If set, a merged store does not clear the write-buffer
505 	 * entry timeout state. */
506 	cvmmemctl.s.dismrgclrwbto = 0;
507 	/* R/W Two bits that are the MSBs of the resultant CVMSEG LM
508 	 * word location for an IOBDMA. The other 8 bits come from the
509 	 * SCRADDR field of the IOBDMA. */
510 	cvmmemctl.s.iobdmascrmsb = 0;
511 	/* R/W If set, SYNCWS and SYNCS only order marked stores; if
512 	 * clear, SYNCWS and SYNCS only order unmarked
513 	 * stores. SYNCWSMARKED has no effect when DISSYNCWS is
514 	 * set. */
515 	cvmmemctl.s.syncwsmarked = 0;
516 	/* R/W If set, SYNCWS acts as SYNCW and SYNCS acts as SYNC. */
517 	cvmmemctl.s.dissyncws = 0;
518 	/* R/W If set, no stall happens on write buffer full. */
519 	if (OCTEON_IS_MODEL(OCTEON_CN38XX_PASS2))
520 		cvmmemctl.s.diswbfst = 1;
521 	else
522 		cvmmemctl.s.diswbfst = 0;
523 	/* R/W If set (and SX set), supervisor-level loads/stores can
524 	 * use XKPHYS addresses with <48>==0 */
525 	cvmmemctl.s.xkmemenas = 0;
526 
527 	/* R/W If set (and UX set), user-level loads/stores can use
528 	 * XKPHYS addresses with VA<48>==0 */
529 	cvmmemctl.s.xkmemenau = 0;
530 
531 	/* R/W If set (and SX set), supervisor-level loads/stores can
532 	 * use XKPHYS addresses with VA<48>==1 */
533 	cvmmemctl.s.xkioenas = 0;
534 
535 	/* R/W If set (and UX set), user-level loads/stores can use
536 	 * XKPHYS addresses with VA<48>==1 */
537 	cvmmemctl.s.xkioenau = 0;
538 
539 	/* R/W If set, all stores act as SYNCW (NOMERGE must be set
540 	 * when this is set) RW, reset to 0. */
541 	cvmmemctl.s.allsyncw = 0;
542 
543 	/* R/W If set, no stores merge, and all stores reach the
544 	 * coherent bus in order. */
545 	cvmmemctl.s.nomerge = 0;
546 	/* R/W Selects the bit in the counter used for DID time-outs 0
547 	 * = 231, 1 = 230, 2 = 229, 3 = 214. Actual time-out is
548 	 * between 1x and 2x this interval. For example, with
549 	 * DIDTTO=3, expiration interval is between 16K and 32K. */
550 	cvmmemctl.s.didtto = 0;
551 	/* R/W If set, the (mem) CSR clock never turns off. */
552 	cvmmemctl.s.csrckalwys = 0;
553 	/* R/W If set, mclk never turns off. */
554 	cvmmemctl.s.mclkalwys = 0;
555 	/* R/W Selects the bit in the counter used for write buffer
556 	 * flush time-outs (WBFLT+11) is the bit position in an
557 	 * internal counter used to determine expiration. The write
558 	 * buffer expires between 1x and 2x this interval. For
559 	 * example, with WBFLT = 0, a write buffer expires between 2K
560 	 * and 4K cycles after the write buffer entry is allocated. */
561 	cvmmemctl.s.wbfltime = 0;
562 	/* R/W If set, do not put Istream in the L2 cache. */
563 	cvmmemctl.s.istrnol2 = 0;
564 
565 	/*
566 	 * R/W The write buffer threshold. As per erratum Core-14752
567 	 * for CN63XX, a sc/scd might fail if the write buffer is
568 	 * full.  Lowering WBTHRESH greatly lowers the chances of the
569 	 * write buffer ever being full and triggering the erratum.
570 	 */
571 	if (OCTEON_IS_MODEL(OCTEON_CN63XX_PASS1_X))
572 		cvmmemctl.s.wbthresh = 4;
573 	else
574 		cvmmemctl.s.wbthresh = 10;
575 
576 	/* R/W If set, CVMSEG is available for loads/stores in
577 	 * kernel/debug mode. */
578 #if CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE > 0
579 	cvmmemctl.s.cvmsegenak = 1;
580 #else
581 	cvmmemctl.s.cvmsegenak = 0;
582 #endif
583 	/* R/W If set, CVMSEG is available for loads/stores in
584 	 * supervisor mode. */
585 	cvmmemctl.s.cvmsegenas = 0;
586 	/* R/W If set, CVMSEG is available for loads/stores in user
587 	 * mode. */
588 	cvmmemctl.s.cvmsegenau = 0;
589 
590 	write_c0_cvmmemctl(cvmmemctl.u64);
591 
592 	/* Setup of CVMSEG is done in kernel-entry-init.h */
593 	if (smp_processor_id() == 0)
594 		pr_notice("CVMSEG size: %d cache lines (%d bytes)\n",
595 			  CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE,
596 			  CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE * 128);
597 
598 	/* Set a default for the hardware timeouts */
599 	fau_timeout.u64 = 0;
600 	fau_timeout.s.tout_val = 0xfff;
601 	/* Disable tagwait FAU timeout */
602 	fau_timeout.s.tout_enb = 0;
603 	cvmx_write_csr(CVMX_IOB_FAU_TIMEOUT, fau_timeout.u64);
604 
605 	nm_tim.u64 = 0;
606 	/* 4096 cycles */
607 	nm_tim.s.nw_tim = 3;
608 	cvmx_write_csr(CVMX_POW_NW_TIM, nm_tim.u64);
609 
610 	write_octeon_c0_icacheerr(0);
611 	write_c0_derraddr1(0);
612 }
613 
614 /**
615  * Early entry point for arch setup
616  */
617 void __init prom_init(void)
618 {
619 	struct cvmx_sysinfo *sysinfo;
620 	const char *arg;
621 	char *p;
622 	int i;
623 	u64 t;
624 	int argc;
625 #ifdef CONFIG_CAVIUM_RESERVE32
626 	int64_t addr = -1;
627 #endif
628 	/*
629 	 * The bootloader passes a pointer to the boot descriptor in
630 	 * $a3, this is available as fw_arg3.
631 	 */
632 	octeon_boot_desc_ptr = (struct octeon_boot_descriptor *)fw_arg3;
633 	octeon_bootinfo =
634 		cvmx_phys_to_ptr(octeon_boot_desc_ptr->cvmx_desc_vaddr);
635 	cvmx_bootmem_init(cvmx_phys_to_ptr(octeon_bootinfo->phy_mem_desc_addr));
636 
637 	sysinfo = cvmx_sysinfo_get();
638 	memset(sysinfo, 0, sizeof(*sysinfo));
639 	sysinfo->system_dram_size = octeon_bootinfo->dram_size << 20;
640 	sysinfo->phy_mem_desc_ptr =
641 		cvmx_phys_to_ptr(octeon_bootinfo->phy_mem_desc_addr);
642 	sysinfo->core_mask = octeon_bootinfo->core_mask;
643 	sysinfo->exception_base_addr = octeon_bootinfo->exception_base_addr;
644 	sysinfo->cpu_clock_hz = octeon_bootinfo->eclock_hz;
645 	sysinfo->dram_data_rate_hz = octeon_bootinfo->dclock_hz * 2;
646 	sysinfo->board_type = octeon_bootinfo->board_type;
647 	sysinfo->board_rev_major = octeon_bootinfo->board_rev_major;
648 	sysinfo->board_rev_minor = octeon_bootinfo->board_rev_minor;
649 	memcpy(sysinfo->mac_addr_base, octeon_bootinfo->mac_addr_base,
650 	       sizeof(sysinfo->mac_addr_base));
651 	sysinfo->mac_addr_count = octeon_bootinfo->mac_addr_count;
652 	memcpy(sysinfo->board_serial_number,
653 	       octeon_bootinfo->board_serial_number,
654 	       sizeof(sysinfo->board_serial_number));
655 	sysinfo->compact_flash_common_base_addr =
656 		octeon_bootinfo->compact_flash_common_base_addr;
657 	sysinfo->compact_flash_attribute_base_addr =
658 		octeon_bootinfo->compact_flash_attribute_base_addr;
659 	sysinfo->led_display_base_addr = octeon_bootinfo->led_display_base_addr;
660 	sysinfo->dfa_ref_clock_hz = octeon_bootinfo->dfa_ref_clock_hz;
661 	sysinfo->bootloader_config_flags = octeon_bootinfo->config_flags;
662 
663 	if (OCTEON_IS_OCTEON2()) {
664 		/* I/O clock runs at a different rate than the CPU. */
665 		union cvmx_mio_rst_boot rst_boot;
666 		rst_boot.u64 = cvmx_read_csr(CVMX_MIO_RST_BOOT);
667 		octeon_io_clock_rate = 50000000 * rst_boot.s.pnr_mul;
668 	} else if (OCTEON_IS_OCTEON3()) {
669 		/* I/O clock runs at a different rate than the CPU. */
670 		union cvmx_rst_boot rst_boot;
671 		rst_boot.u64 = cvmx_read_csr(CVMX_RST_BOOT);
672 		octeon_io_clock_rate = 50000000 * rst_boot.s.pnr_mul;
673 	} else {
674 		octeon_io_clock_rate = sysinfo->cpu_clock_hz;
675 	}
676 
677 	t = read_c0_cvmctl();
678 	if ((t & (1ull << 27)) == 0) {
679 		/*
680 		 * Setup the multiplier save/restore code if
681 		 * CvmCtl[NOMUL] clear.
682 		 */
683 		void *save;
684 		void *save_end;
685 		void *restore;
686 		void *restore_end;
687 		int save_len;
688 		int restore_len;
689 		int save_max = (char *)octeon_mult_save_end -
690 			(char *)octeon_mult_save;
691 		int restore_max = (char *)octeon_mult_restore_end -
692 			(char *)octeon_mult_restore;
693 		if (current_cpu_data.cputype == CPU_CAVIUM_OCTEON3) {
694 			save = octeon_mult_save3;
695 			save_end = octeon_mult_save3_end;
696 			restore = octeon_mult_restore3;
697 			restore_end = octeon_mult_restore3_end;
698 		} else {
699 			save = octeon_mult_save2;
700 			save_end = octeon_mult_save2_end;
701 			restore = octeon_mult_restore2;
702 			restore_end = octeon_mult_restore2_end;
703 		}
704 		save_len = (char *)save_end - (char *)save;
705 		restore_len = (char *)restore_end - (char *)restore;
706 		if (!WARN_ON(save_len > save_max ||
707 				restore_len > restore_max)) {
708 			memcpy(octeon_mult_save, save, save_len);
709 			memcpy(octeon_mult_restore, restore, restore_len);
710 		}
711 	}
712 
713 	/*
714 	 * Only enable the LED controller if we're running on a CN38XX, CN58XX,
715 	 * or CN56XX. The CN30XX and CN31XX don't have an LED controller.
716 	 */
717 	if (!octeon_is_simulation() &&
718 	    octeon_has_feature(OCTEON_FEATURE_LED_CONTROLLER)) {
719 		cvmx_write_csr(CVMX_LED_EN, 0);
720 		cvmx_write_csr(CVMX_LED_PRT, 0);
721 		cvmx_write_csr(CVMX_LED_DBG, 0);
722 		cvmx_write_csr(CVMX_LED_PRT_FMT, 0);
723 		cvmx_write_csr(CVMX_LED_UDD_CNTX(0), 32);
724 		cvmx_write_csr(CVMX_LED_UDD_CNTX(1), 32);
725 		cvmx_write_csr(CVMX_LED_UDD_DATX(0), 0);
726 		cvmx_write_csr(CVMX_LED_UDD_DATX(1), 0);
727 		cvmx_write_csr(CVMX_LED_EN, 1);
728 	}
729 #ifdef CONFIG_CAVIUM_RESERVE32
730 	/*
731 	 * We need to temporarily allocate all memory in the reserve32
732 	 * region. This makes sure the kernel doesn't allocate this
733 	 * memory when it is getting memory from the
734 	 * bootloader. Later, after the memory allocations are
735 	 * complete, the reserve32 will be freed.
736 	 *
737 	 * Allocate memory for RESERVED32 aligned on 2MB boundary. This
738 	 * is in case we later use hugetlb entries with it.
739 	 */
740 	addr = cvmx_bootmem_phy_named_block_alloc(CONFIG_CAVIUM_RESERVE32 << 20,
741 						0, 0, 2 << 20,
742 						"CAVIUM_RESERVE32", 0);
743 	if (addr < 0)
744 		pr_err("Failed to allocate CAVIUM_RESERVE32 memory area\n");
745 	else
746 		octeon_reserve32_memory = addr;
747 #endif
748 
749 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2
750 	if (cvmx_read_csr(CVMX_L2D_FUS3) & (3ull << 34)) {
751 		pr_info("Skipping L2 locking due to reduced L2 cache size\n");
752 	} else {
753 		uint32_t __maybe_unused ebase = read_c0_ebase() & 0x3ffff000;
754 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_TLB
755 		/* TLB refill */
756 		cvmx_l2c_lock_mem_region(ebase, 0x100);
757 #endif
758 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_EXCEPTION
759 		/* General exception */
760 		cvmx_l2c_lock_mem_region(ebase + 0x180, 0x80);
761 #endif
762 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_LOW_LEVEL_INTERRUPT
763 		/* Interrupt handler */
764 		cvmx_l2c_lock_mem_region(ebase + 0x200, 0x80);
765 #endif
766 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_INTERRUPT
767 		cvmx_l2c_lock_mem_region(__pa_symbol(handle_int), 0x100);
768 		cvmx_l2c_lock_mem_region(__pa_symbol(plat_irq_dispatch), 0x80);
769 #endif
770 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_MEMCPY
771 		cvmx_l2c_lock_mem_region(__pa_symbol(memcpy), 0x480);
772 #endif
773 	}
774 #endif
775 
776 	octeon_check_cpu_bist();
777 
778 	octeon_uart = octeon_get_boot_uart();
779 
780 #ifdef CONFIG_SMP
781 	octeon_write_lcd("LinuxSMP");
782 #else
783 	octeon_write_lcd("Linux");
784 #endif
785 
786 	octeon_setup_delays();
787 
788 	/*
789 	 * BIST should always be enabled when doing a soft reset. L2
790 	 * Cache locking for instance is not cleared unless BIST is
791 	 * enabled.  Unfortunately due to a chip errata G-200 for
792 	 * Cn38XX and CN31XX, BIST msut be disabled on these parts.
793 	 */
794 	if (OCTEON_IS_MODEL(OCTEON_CN38XX_PASS2) ||
795 	    OCTEON_IS_MODEL(OCTEON_CN31XX))
796 		cvmx_write_csr(CVMX_CIU_SOFT_BIST, 0);
797 	else
798 		cvmx_write_csr(CVMX_CIU_SOFT_BIST, 1);
799 
800 	/* Default to 64MB in the simulator to speed things up */
801 	if (octeon_is_simulation())
802 		MAX_MEMORY = 64ull << 20;
803 
804 	arg = strstr(arcs_cmdline, "mem=");
805 	if (arg) {
806 		MAX_MEMORY = memparse(arg + 4, &p);
807 		if (MAX_MEMORY == 0)
808 			MAX_MEMORY = 32ull << 30;
809 		if (*p == '@')
810 			RESERVE_LOW_MEM = memparse(p + 1, &p);
811 	}
812 
813 	arcs_cmdline[0] = 0;
814 	argc = octeon_boot_desc_ptr->argc;
815 	for (i = 0; i < argc; i++) {
816 		const char *arg =
817 			cvmx_phys_to_ptr(octeon_boot_desc_ptr->argv[i]);
818 		if ((strncmp(arg, "MEM=", 4) == 0) ||
819 		    (strncmp(arg, "mem=", 4) == 0)) {
820 			MAX_MEMORY = memparse(arg + 4, &p);
821 			if (MAX_MEMORY == 0)
822 				MAX_MEMORY = 32ull << 30;
823 			if (*p == '@')
824 				RESERVE_LOW_MEM = memparse(p + 1, &p);
825 #ifdef CONFIG_KEXEC
826 		} else if (strncmp(arg, "crashkernel=", 12) == 0) {
827 			crashk_size = memparse(arg+12, &p);
828 			if (*p == '@')
829 				crashk_base = memparse(p+1, &p);
830 			strcat(arcs_cmdline, " ");
831 			strcat(arcs_cmdline, arg);
832 			/*
833 			 * To do: switch parsing to new style, something like:
834 			 * parse_crashkernel(arg, sysinfo->system_dram_size,
835 			 *		  &crashk_size, &crashk_base);
836 			 */
837 #endif
838 		} else if (strlen(arcs_cmdline) + strlen(arg) + 1 <
839 			   sizeof(arcs_cmdline) - 1) {
840 			strcat(arcs_cmdline, " ");
841 			strcat(arcs_cmdline, arg);
842 		}
843 	}
844 
845 	if (strstr(arcs_cmdline, "console=") == NULL) {
846 #ifdef CONFIG_CAVIUM_OCTEON_2ND_KERNEL
847 		strcat(arcs_cmdline, " console=ttyS0,115200");
848 #else
849 		if (octeon_uart == 1)
850 			strcat(arcs_cmdline, " console=ttyS1,115200");
851 		else
852 			strcat(arcs_cmdline, " console=ttyS0,115200");
853 #endif
854 	}
855 
856 	mips_hpt_frequency = octeon_get_clock_rate();
857 
858 	octeon_init_cvmcount();
859 
860 	_machine_restart = octeon_restart;
861 	_machine_halt = octeon_halt;
862 
863 #ifdef CONFIG_KEXEC
864 	_machine_kexec_shutdown = octeon_shutdown;
865 	_machine_crash_shutdown = octeon_crash_shutdown;
866 	_machine_kexec_prepare = octeon_kexec_prepare;
867 #endif
868 
869 	octeon_user_io_init();
870 	register_smp_ops(&octeon_smp_ops);
871 }
872 
873 /* Exclude a single page from the regions obtained in plat_mem_setup. */
874 #ifndef CONFIG_CRASH_DUMP
875 static __init void memory_exclude_page(u64 addr, u64 *mem, u64 *size)
876 {
877 	if (addr > *mem && addr < *mem + *size) {
878 		u64 inc = addr - *mem;
879 		add_memory_region(*mem, inc, BOOT_MEM_RAM);
880 		*mem += inc;
881 		*size -= inc;
882 	}
883 
884 	if (addr == *mem && *size > PAGE_SIZE) {
885 		*mem += PAGE_SIZE;
886 		*size -= PAGE_SIZE;
887 	}
888 }
889 #endif /* CONFIG_CRASH_DUMP */
890 
891 void __init plat_mem_setup(void)
892 {
893 	uint64_t mem_alloc_size;
894 	uint64_t total;
895 	uint64_t crashk_end;
896 #ifndef CONFIG_CRASH_DUMP
897 	int64_t memory;
898 	uint64_t kernel_start;
899 	uint64_t kernel_size;
900 #endif
901 
902 	total = 0;
903 	crashk_end = 0;
904 
905 	/*
906 	 * The Mips memory init uses the first memory location for
907 	 * some memory vectors. When SPARSEMEM is in use, it doesn't
908 	 * verify that the size is big enough for the final
909 	 * vectors. Making the smallest chuck 4MB seems to be enough
910 	 * to consistently work.
911 	 */
912 	mem_alloc_size = 4 << 20;
913 	if (mem_alloc_size > MAX_MEMORY)
914 		mem_alloc_size = MAX_MEMORY;
915 
916 /* Crashkernel ignores bootmem list. It relies on mem=X@Y option */
917 #ifdef CONFIG_CRASH_DUMP
918 	add_memory_region(RESERVE_LOW_MEM, MAX_MEMORY, BOOT_MEM_RAM);
919 	total += MAX_MEMORY;
920 #else
921 #ifdef CONFIG_KEXEC
922 	if (crashk_size > 0) {
923 		add_memory_region(crashk_base, crashk_size, BOOT_MEM_RAM);
924 		crashk_end = crashk_base + crashk_size;
925 	}
926 #endif
927 	/*
928 	 * When allocating memory, we want incrementing addresses from
929 	 * bootmem_alloc so the code in add_memory_region can merge
930 	 * regions next to each other.
931 	 */
932 	cvmx_bootmem_lock();
933 	while ((boot_mem_map.nr_map < BOOT_MEM_MAP_MAX)
934 		&& (total < MAX_MEMORY)) {
935 		memory = cvmx_bootmem_phy_alloc(mem_alloc_size,
936 						__pa_symbol(&_end), -1,
937 						0x100000,
938 						CVMX_BOOTMEM_FLAG_NO_LOCKING);
939 		if (memory >= 0) {
940 			u64 size = mem_alloc_size;
941 #ifdef CONFIG_KEXEC
942 			uint64_t end;
943 #endif
944 
945 			/*
946 			 * exclude a page at the beginning and end of
947 			 * the 256MB PCIe 'hole' so the kernel will not
948 			 * try to allocate multi-page buffers that
949 			 * span the discontinuity.
950 			 */
951 			memory_exclude_page(CVMX_PCIE_BAR1_PHYS_BASE,
952 					    &memory, &size);
953 			memory_exclude_page(CVMX_PCIE_BAR1_PHYS_BASE +
954 					    CVMX_PCIE_BAR1_PHYS_SIZE,
955 					    &memory, &size);
956 #ifdef CONFIG_KEXEC
957 			end = memory + mem_alloc_size;
958 
959 			/*
960 			 * This function automatically merges address regions
961 			 * next to each other if they are received in
962 			 * incrementing order
963 			 */
964 			if (memory < crashk_base && end >  crashk_end) {
965 				/* region is fully in */
966 				add_memory_region(memory,
967 						  crashk_base - memory,
968 						  BOOT_MEM_RAM);
969 				total += crashk_base - memory;
970 				add_memory_region(crashk_end,
971 						  end - crashk_end,
972 						  BOOT_MEM_RAM);
973 				total += end - crashk_end;
974 				continue;
975 			}
976 
977 			if (memory >= crashk_base && end <= crashk_end)
978 				/*
979 				 * Entire memory region is within the new
980 				 *  kernel's memory, ignore it.
981 				 */
982 				continue;
983 
984 			if (memory > crashk_base && memory < crashk_end &&
985 			    end > crashk_end) {
986 				/*
987 				 * Overlap with the beginning of the region,
988 				 * reserve the beginning.
989 				  */
990 				mem_alloc_size -= crashk_end - memory;
991 				memory = crashk_end;
992 			} else if (memory < crashk_base && end > crashk_base &&
993 				   end < crashk_end)
994 				/*
995 				 * Overlap with the beginning of the region,
996 				 * chop of end.
997 				 */
998 				mem_alloc_size -= end - crashk_base;
999 #endif
1000 			add_memory_region(memory, mem_alloc_size, BOOT_MEM_RAM);
1001 			total += mem_alloc_size;
1002 			/* Recovering mem_alloc_size */
1003 			mem_alloc_size = 4 << 20;
1004 		} else {
1005 			break;
1006 		}
1007 	}
1008 	cvmx_bootmem_unlock();
1009 	/* Add the memory region for the kernel. */
1010 	kernel_start = (unsigned long) _text;
1011 	kernel_size = _end - _text;
1012 
1013 	/* Adjust for physical offset. */
1014 	kernel_start &= ~0xffffffff80000000ULL;
1015 	add_memory_region(kernel_start, kernel_size, BOOT_MEM_RAM);
1016 #endif /* CONFIG_CRASH_DUMP */
1017 
1018 #ifdef CONFIG_CAVIUM_RESERVE32
1019 	/*
1020 	 * Now that we've allocated the kernel memory it is safe to
1021 	 * free the reserved region. We free it here so that builtin
1022 	 * drivers can use the memory.
1023 	 */
1024 	if (octeon_reserve32_memory)
1025 		cvmx_bootmem_free_named("CAVIUM_RESERVE32");
1026 #endif /* CONFIG_CAVIUM_RESERVE32 */
1027 
1028 	if (total == 0)
1029 		panic("Unable to allocate memory from "
1030 		      "cvmx_bootmem_phy_alloc");
1031 }
1032 
1033 /*
1034  * Emit one character to the boot UART.	 Exported for use by the
1035  * watchdog timer.
1036  */
1037 int prom_putchar(char c)
1038 {
1039 	uint64_t lsrval;
1040 
1041 	/* Spin until there is room */
1042 	do {
1043 		lsrval = cvmx_read_csr(CVMX_MIO_UARTX_LSR(octeon_uart));
1044 	} while ((lsrval & 0x20) == 0);
1045 
1046 	/* Write the byte */
1047 	cvmx_write_csr(CVMX_MIO_UARTX_THR(octeon_uart), c & 0xffull);
1048 	return 1;
1049 }
1050 EXPORT_SYMBOL(prom_putchar);
1051 
1052 void __init prom_free_prom_memory(void)
1053 {
1054 	if (CAVIUM_OCTEON_DCACHE_PREFETCH_WAR) {
1055 		/* Check for presence of Core-14449 fix.  */
1056 		u32 insn;
1057 		u32 *foo;
1058 
1059 		foo = &insn;
1060 
1061 		asm volatile("# before" : : : "memory");
1062 		prefetch(foo);
1063 		asm volatile(
1064 			".set push\n\t"
1065 			".set noreorder\n\t"
1066 			"bal 1f\n\t"
1067 			"nop\n"
1068 			"1:\tlw %0,-12($31)\n\t"
1069 			".set pop\n\t"
1070 			: "=r" (insn) : : "$31", "memory");
1071 
1072 		if ((insn >> 26) != 0x33)
1073 			panic("No PREF instruction at Core-14449 probe point.");
1074 
1075 		if (((insn >> 16) & 0x1f) != 28)
1076 			panic("OCTEON II DCache prefetch workaround not in place (%04x).\n"
1077 			      "Please build kernel with proper options (CONFIG_CAVIUM_CN63XXP1).",
1078 			      insn);
1079 	}
1080 }
1081 
1082 int octeon_prune_device_tree(void);
1083 
1084 extern const char __appended_dtb;
1085 extern const char __dtb_octeon_3xxx_begin;
1086 extern const char __dtb_octeon_68xx_begin;
1087 void __init device_tree_init(void)
1088 {
1089 	const void *fdt;
1090 	bool do_prune;
1091 
1092 #ifdef CONFIG_MIPS_ELF_APPENDED_DTB
1093 	if (!fdt_check_header(&__appended_dtb)) {
1094 		fdt = &__appended_dtb;
1095 		do_prune = false;
1096 		pr_info("Using appended Device Tree.\n");
1097 	} else
1098 #endif
1099 	if (octeon_bootinfo->minor_version >= 3 && octeon_bootinfo->fdt_addr) {
1100 		fdt = phys_to_virt(octeon_bootinfo->fdt_addr);
1101 		if (fdt_check_header(fdt))
1102 			panic("Corrupt Device Tree passed to kernel.");
1103 		do_prune = false;
1104 		pr_info("Using passed Device Tree.\n");
1105 	} else if (OCTEON_IS_MODEL(OCTEON_CN68XX)) {
1106 		fdt = &__dtb_octeon_68xx_begin;
1107 		do_prune = true;
1108 	} else {
1109 		fdt = &__dtb_octeon_3xxx_begin;
1110 		do_prune = true;
1111 	}
1112 
1113 	initial_boot_params = (void *)fdt;
1114 
1115 	if (do_prune) {
1116 		octeon_prune_device_tree();
1117 		pr_info("Using internal Device Tree.\n");
1118 	}
1119 	unflatten_and_copy_device_tree();
1120 }
1121 
1122 static int __initdata disable_octeon_edac_p;
1123 
1124 static int __init disable_octeon_edac(char *str)
1125 {
1126 	disable_octeon_edac_p = 1;
1127 	return 0;
1128 }
1129 early_param("disable_octeon_edac", disable_octeon_edac);
1130 
1131 static char *edac_device_names[] = {
1132 	"octeon_l2c_edac",
1133 	"octeon_pc_edac",
1134 };
1135 
1136 static int __init edac_devinit(void)
1137 {
1138 	struct platform_device *dev;
1139 	int i, err = 0;
1140 	int num_lmc;
1141 	char *name;
1142 
1143 	if (disable_octeon_edac_p)
1144 		return 0;
1145 
1146 	for (i = 0; i < ARRAY_SIZE(edac_device_names); i++) {
1147 		name = edac_device_names[i];
1148 		dev = platform_device_register_simple(name, -1, NULL, 0);
1149 		if (IS_ERR(dev)) {
1150 			pr_err("Registration of %s failed!\n", name);
1151 			err = PTR_ERR(dev);
1152 		}
1153 	}
1154 
1155 	num_lmc = OCTEON_IS_MODEL(OCTEON_CN68XX) ? 4 :
1156 		(OCTEON_IS_MODEL(OCTEON_CN56XX) ? 2 : 1);
1157 	for (i = 0; i < num_lmc; i++) {
1158 		dev = platform_device_register_simple("octeon_lmc_edac",
1159 						      i, NULL, 0);
1160 		if (IS_ERR(dev)) {
1161 			pr_err("Registration of octeon_lmc_edac %d failed!\n", i);
1162 			err = PTR_ERR(dev);
1163 		}
1164 	}
1165 
1166 	return err;
1167 }
1168 device_initcall(edac_devinit);
1169 
1170 static void __initdata *octeon_dummy_iospace;
1171 
1172 static int __init octeon_no_pci_init(void)
1173 {
1174 	/*
1175 	 * Initially assume there is no PCI. The PCI/PCIe platform code will
1176 	 * later re-initialize these to correct values if they are present.
1177 	 */
1178 	octeon_dummy_iospace = vzalloc(IO_SPACE_LIMIT);
1179 	set_io_port_base((unsigned long)octeon_dummy_iospace);
1180 	ioport_resource.start = MAX_RESOURCE;
1181 	ioport_resource.end = 0;
1182 	return 0;
1183 }
1184 core_initcall(octeon_no_pci_init);
1185 
1186 static int __init octeon_no_pci_release(void)
1187 {
1188 	/*
1189 	 * Release the allocated memory if a real IO space is there.
1190 	 */
1191 	if ((unsigned long)octeon_dummy_iospace != mips_io_port_base)
1192 		vfree(octeon_dummy_iospace);
1193 	return 0;
1194 }
1195 late_initcall(octeon_no_pci_release);
1196