1 /* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * Copyright (C) 2004-2007 Cavium Networks 7 * Copyright (C) 2008, 2009 Wind River Systems 8 * written by Ralf Baechle <ralf@linux-mips.org> 9 */ 10 #include <linux/compiler.h> 11 #include <linux/vmalloc.h> 12 #include <linux/init.h> 13 #include <linux/kernel.h> 14 #include <linux/console.h> 15 #include <linux/delay.h> 16 #include <linux/export.h> 17 #include <linux/interrupt.h> 18 #include <linux/io.h> 19 #include <linux/serial.h> 20 #include <linux/smp.h> 21 #include <linux/types.h> 22 #include <linux/string.h> /* for memset */ 23 #include <linux/tty.h> 24 #include <linux/time.h> 25 #include <linux/platform_device.h> 26 #include <linux/serial_core.h> 27 #include <linux/serial_8250.h> 28 #include <linux/of_fdt.h> 29 #include <linux/libfdt.h> 30 #include <linux/kexec.h> 31 32 #include <asm/processor.h> 33 #include <asm/reboot.h> 34 #include <asm/smp-ops.h> 35 #include <asm/irq_cpu.h> 36 #include <asm/mipsregs.h> 37 #include <asm/bootinfo.h> 38 #include <asm/sections.h> 39 #include <asm/time.h> 40 41 #include <asm/octeon/octeon.h> 42 #include <asm/octeon/pci-octeon.h> 43 #include <asm/octeon/cvmx-mio-defs.h> 44 #include <asm/octeon/cvmx-rst-defs.h> 45 46 extern struct plat_smp_ops octeon_smp_ops; 47 48 #ifdef CONFIG_PCI 49 extern void pci_console_init(const char *arg); 50 #endif 51 52 static unsigned long long MAX_MEMORY = 512ull << 20; 53 54 DEFINE_SEMAPHORE(octeon_bootbus_sem); 55 EXPORT_SYMBOL(octeon_bootbus_sem); 56 57 struct octeon_boot_descriptor *octeon_boot_desc_ptr; 58 59 struct cvmx_bootinfo *octeon_bootinfo; 60 EXPORT_SYMBOL(octeon_bootinfo); 61 62 static unsigned long long RESERVE_LOW_MEM = 0ull; 63 #ifdef CONFIG_KEXEC 64 #ifdef CONFIG_SMP 65 /* 66 * Wait for relocation code is prepared and send 67 * secondary CPUs to spin until kernel is relocated. 68 */ 69 static void octeon_kexec_smp_down(void *ignored) 70 { 71 int cpu = smp_processor_id(); 72 73 local_irq_disable(); 74 set_cpu_online(cpu, false); 75 while (!atomic_read(&kexec_ready_to_reboot)) 76 cpu_relax(); 77 78 asm volatile ( 79 " sync \n" 80 " synci ($0) \n"); 81 82 relocated_kexec_smp_wait(NULL); 83 } 84 #endif 85 86 #define OCTEON_DDR0_BASE (0x0ULL) 87 #define OCTEON_DDR0_SIZE (0x010000000ULL) 88 #define OCTEON_DDR1_BASE (0x410000000ULL) 89 #define OCTEON_DDR1_SIZE (0x010000000ULL) 90 #define OCTEON_DDR2_BASE (0x020000000ULL) 91 #define OCTEON_DDR2_SIZE (0x3e0000000ULL) 92 #define OCTEON_MAX_PHY_MEM_SIZE (16*1024*1024*1024ULL) 93 94 static struct kimage *kimage_ptr; 95 96 static void kexec_bootmem_init(uint64_t mem_size, uint32_t low_reserved_bytes) 97 { 98 int64_t addr; 99 struct cvmx_bootmem_desc *bootmem_desc; 100 101 bootmem_desc = cvmx_bootmem_get_desc(); 102 103 if (mem_size > OCTEON_MAX_PHY_MEM_SIZE) { 104 mem_size = OCTEON_MAX_PHY_MEM_SIZE; 105 pr_err("Error: requested memory too large," 106 "truncating to maximum size\n"); 107 } 108 109 bootmem_desc->major_version = CVMX_BOOTMEM_DESC_MAJ_VER; 110 bootmem_desc->minor_version = CVMX_BOOTMEM_DESC_MIN_VER; 111 112 addr = (OCTEON_DDR0_BASE + RESERVE_LOW_MEM + low_reserved_bytes); 113 bootmem_desc->head_addr = 0; 114 115 if (mem_size <= OCTEON_DDR0_SIZE) { 116 __cvmx_bootmem_phy_free(addr, 117 mem_size - RESERVE_LOW_MEM - 118 low_reserved_bytes, 0); 119 return; 120 } 121 122 __cvmx_bootmem_phy_free(addr, 123 OCTEON_DDR0_SIZE - RESERVE_LOW_MEM - 124 low_reserved_bytes, 0); 125 126 mem_size -= OCTEON_DDR0_SIZE; 127 128 if (mem_size > OCTEON_DDR1_SIZE) { 129 __cvmx_bootmem_phy_free(OCTEON_DDR1_BASE, OCTEON_DDR1_SIZE, 0); 130 __cvmx_bootmem_phy_free(OCTEON_DDR2_BASE, 131 mem_size - OCTEON_DDR1_SIZE, 0); 132 } else 133 __cvmx_bootmem_phy_free(OCTEON_DDR1_BASE, mem_size, 0); 134 } 135 136 static int octeon_kexec_prepare(struct kimage *image) 137 { 138 int i; 139 char *bootloader = "kexec"; 140 141 octeon_boot_desc_ptr->argc = 0; 142 for (i = 0; i < image->nr_segments; i++) { 143 if (!strncmp(bootloader, (char *)image->segment[i].buf, 144 strlen(bootloader))) { 145 /* 146 * convert command line string to array 147 * of parameters (as bootloader does). 148 */ 149 int argc = 0, offt; 150 char *str = (char *)image->segment[i].buf; 151 char *ptr = strchr(str, ' '); 152 while (ptr && (OCTEON_ARGV_MAX_ARGS > argc)) { 153 *ptr = '\0'; 154 if (ptr[1] != ' ') { 155 offt = (int)(ptr - str + 1); 156 octeon_boot_desc_ptr->argv[argc] = 157 image->segment[i].mem + offt; 158 argc++; 159 } 160 ptr = strchr(ptr + 1, ' '); 161 } 162 octeon_boot_desc_ptr->argc = argc; 163 break; 164 } 165 } 166 167 /* 168 * Information about segments will be needed during pre-boot memory 169 * initialization. 170 */ 171 kimage_ptr = image; 172 return 0; 173 } 174 175 static void octeon_generic_shutdown(void) 176 { 177 int i; 178 #ifdef CONFIG_SMP 179 int cpu; 180 #endif 181 struct cvmx_bootmem_desc *bootmem_desc; 182 void *named_block_array_ptr; 183 184 bootmem_desc = cvmx_bootmem_get_desc(); 185 named_block_array_ptr = 186 cvmx_phys_to_ptr(bootmem_desc->named_block_array_addr); 187 188 #ifdef CONFIG_SMP 189 /* disable watchdogs */ 190 for_each_online_cpu(cpu) 191 cvmx_write_csr(CVMX_CIU_WDOGX(cpu_logical_map(cpu)), 0); 192 #else 193 cvmx_write_csr(CVMX_CIU_WDOGX(cvmx_get_core_num()), 0); 194 #endif 195 if (kimage_ptr != kexec_crash_image) { 196 memset(named_block_array_ptr, 197 0x0, 198 CVMX_BOOTMEM_NUM_NAMED_BLOCKS * 199 sizeof(struct cvmx_bootmem_named_block_desc)); 200 /* 201 * Mark all memory (except low 0x100000 bytes) as free. 202 * It is the same thing that bootloader does. 203 */ 204 kexec_bootmem_init(octeon_bootinfo->dram_size*1024ULL*1024ULL, 205 0x100000); 206 /* 207 * Allocate all segments to avoid their corruption during boot. 208 */ 209 for (i = 0; i < kimage_ptr->nr_segments; i++) 210 cvmx_bootmem_alloc_address( 211 kimage_ptr->segment[i].memsz + 2*PAGE_SIZE, 212 kimage_ptr->segment[i].mem - PAGE_SIZE, 213 PAGE_SIZE); 214 } else { 215 /* 216 * Do not mark all memory as free. Free only named sections 217 * leaving the rest of memory unchanged. 218 */ 219 struct cvmx_bootmem_named_block_desc *ptr = 220 (struct cvmx_bootmem_named_block_desc *) 221 named_block_array_ptr; 222 223 for (i = 0; i < bootmem_desc->named_block_num_blocks; i++) 224 if (ptr[i].size) 225 cvmx_bootmem_free_named(ptr[i].name); 226 } 227 kexec_args[2] = 1UL; /* running on octeon_main_processor */ 228 kexec_args[3] = (unsigned long)octeon_boot_desc_ptr; 229 #ifdef CONFIG_SMP 230 secondary_kexec_args[2] = 0UL; /* running on secondary cpu */ 231 secondary_kexec_args[3] = (unsigned long)octeon_boot_desc_ptr; 232 #endif 233 } 234 235 static void octeon_shutdown(void) 236 { 237 octeon_generic_shutdown(); 238 #ifdef CONFIG_SMP 239 smp_call_function(octeon_kexec_smp_down, NULL, 0); 240 smp_wmb(); 241 while (num_online_cpus() > 1) { 242 cpu_relax(); 243 mdelay(1); 244 } 245 #endif 246 } 247 248 static void octeon_crash_shutdown(struct pt_regs *regs) 249 { 250 octeon_generic_shutdown(); 251 default_machine_crash_shutdown(regs); 252 } 253 254 #endif /* CONFIG_KEXEC */ 255 256 #ifdef CONFIG_CAVIUM_RESERVE32 257 uint64_t octeon_reserve32_memory; 258 EXPORT_SYMBOL(octeon_reserve32_memory); 259 #endif 260 261 #ifdef CONFIG_KEXEC 262 /* crashkernel cmdline parameter is parsed _after_ memory setup 263 * we also parse it here (workaround for EHB5200) */ 264 static uint64_t crashk_size, crashk_base; 265 #endif 266 267 static int octeon_uart; 268 269 extern asmlinkage void handle_int(void); 270 271 /** 272 * Return non zero if we are currently running in the Octeon simulator 273 * 274 * Returns 275 */ 276 int octeon_is_simulation(void) 277 { 278 return octeon_bootinfo->board_type == CVMX_BOARD_TYPE_SIM; 279 } 280 EXPORT_SYMBOL(octeon_is_simulation); 281 282 /** 283 * Return true if Octeon is in PCI Host mode. This means 284 * Linux can control the PCI bus. 285 * 286 * Returns Non zero if Octeon in host mode. 287 */ 288 int octeon_is_pci_host(void) 289 { 290 #ifdef CONFIG_PCI 291 return octeon_bootinfo->config_flags & CVMX_BOOTINFO_CFG_FLAG_PCI_HOST; 292 #else 293 return 0; 294 #endif 295 } 296 297 /** 298 * Get the clock rate of Octeon 299 * 300 * Returns Clock rate in HZ 301 */ 302 uint64_t octeon_get_clock_rate(void) 303 { 304 struct cvmx_sysinfo *sysinfo = cvmx_sysinfo_get(); 305 306 return sysinfo->cpu_clock_hz; 307 } 308 EXPORT_SYMBOL(octeon_get_clock_rate); 309 310 static u64 octeon_io_clock_rate; 311 312 u64 octeon_get_io_clock_rate(void) 313 { 314 return octeon_io_clock_rate; 315 } 316 EXPORT_SYMBOL(octeon_get_io_clock_rate); 317 318 319 /** 320 * Write to the LCD display connected to the bootbus. This display 321 * exists on most Cavium evaluation boards. If it doesn't exist, then 322 * this function doesn't do anything. 323 * 324 * @s: String to write 325 */ 326 void octeon_write_lcd(const char *s) 327 { 328 if (octeon_bootinfo->led_display_base_addr) { 329 void __iomem *lcd_address = 330 ioremap_nocache(octeon_bootinfo->led_display_base_addr, 331 8); 332 int i; 333 for (i = 0; i < 8; i++, s++) { 334 if (*s) 335 iowrite8(*s, lcd_address + i); 336 else 337 iowrite8(' ', lcd_address + i); 338 } 339 iounmap(lcd_address); 340 } 341 } 342 343 /** 344 * Return the console uart passed by the bootloader 345 * 346 * Returns uart (0 or 1) 347 */ 348 int octeon_get_boot_uart(void) 349 { 350 int uart; 351 #ifdef CONFIG_CAVIUM_OCTEON_2ND_KERNEL 352 uart = 1; 353 #else 354 uart = (octeon_boot_desc_ptr->flags & OCTEON_BL_FLAG_CONSOLE_UART1) ? 355 1 : 0; 356 #endif 357 return uart; 358 } 359 360 /** 361 * Get the coremask Linux was booted on. 362 * 363 * Returns Core mask 364 */ 365 int octeon_get_boot_coremask(void) 366 { 367 return octeon_boot_desc_ptr->core_mask; 368 } 369 370 /** 371 * Check the hardware BIST results for a CPU 372 */ 373 void octeon_check_cpu_bist(void) 374 { 375 const int coreid = cvmx_get_core_num(); 376 unsigned long long mask; 377 unsigned long long bist_val; 378 379 /* Check BIST results for COP0 registers */ 380 mask = 0x1f00000000ull; 381 bist_val = read_octeon_c0_icacheerr(); 382 if (bist_val & mask) 383 pr_err("Core%d BIST Failure: CacheErr(icache) = 0x%llx\n", 384 coreid, bist_val); 385 386 bist_val = read_octeon_c0_dcacheerr(); 387 if (bist_val & 1) 388 pr_err("Core%d L1 Dcache parity error: " 389 "CacheErr(dcache) = 0x%llx\n", 390 coreid, bist_val); 391 392 mask = 0xfc00000000000000ull; 393 bist_val = read_c0_cvmmemctl(); 394 if (bist_val & mask) 395 pr_err("Core%d BIST Failure: COP0_CVM_MEM_CTL = 0x%llx\n", 396 coreid, bist_val); 397 398 write_octeon_c0_dcacheerr(0); 399 } 400 401 /** 402 * Reboot Octeon 403 * 404 * @command: Command to pass to the bootloader. Currently ignored. 405 */ 406 static void octeon_restart(char *command) 407 { 408 /* Disable all watchdogs before soft reset. They don't get cleared */ 409 #ifdef CONFIG_SMP 410 int cpu; 411 for_each_online_cpu(cpu) 412 cvmx_write_csr(CVMX_CIU_WDOGX(cpu_logical_map(cpu)), 0); 413 #else 414 cvmx_write_csr(CVMX_CIU_WDOGX(cvmx_get_core_num()), 0); 415 #endif 416 417 mb(); 418 while (1) 419 if (OCTEON_IS_OCTEON3()) 420 cvmx_write_csr(CVMX_RST_SOFT_RST, 1); 421 else 422 cvmx_write_csr(CVMX_CIU_SOFT_RST, 1); 423 } 424 425 426 /** 427 * Permanently stop a core. 428 * 429 * @arg: Ignored. 430 */ 431 static void octeon_kill_core(void *arg) 432 { 433 if (octeon_is_simulation()) 434 /* A break instruction causes the simulator stop a core */ 435 asm volatile ("break" ::: "memory"); 436 437 local_irq_disable(); 438 /* Disable watchdog on this core. */ 439 cvmx_write_csr(CVMX_CIU_WDOGX(cvmx_get_core_num()), 0); 440 /* Spin in a low power mode. */ 441 while (true) 442 asm volatile ("wait" ::: "memory"); 443 } 444 445 446 /** 447 * Halt the system 448 */ 449 static void octeon_halt(void) 450 { 451 smp_call_function(octeon_kill_core, NULL, 0); 452 453 switch (octeon_bootinfo->board_type) { 454 case CVMX_BOARD_TYPE_NAO38: 455 /* Driving a 1 to GPIO 12 shuts off this board */ 456 cvmx_write_csr(CVMX_GPIO_BIT_CFGX(12), 1); 457 cvmx_write_csr(CVMX_GPIO_TX_SET, 0x1000); 458 break; 459 default: 460 octeon_write_lcd("PowerOff"); 461 break; 462 } 463 464 octeon_kill_core(NULL); 465 } 466 467 static char __read_mostly octeon_system_type[80]; 468 469 static int __init init_octeon_system_type(void) 470 { 471 snprintf(octeon_system_type, sizeof(octeon_system_type), "%s (%s)", 472 cvmx_board_type_to_string(octeon_bootinfo->board_type), 473 octeon_model_get_string(read_c0_prid())); 474 475 return 0; 476 } 477 early_initcall(init_octeon_system_type); 478 479 /** 480 * Return a string representing the system type 481 * 482 * Returns 483 */ 484 const char *octeon_board_type_string(void) 485 { 486 return octeon_system_type; 487 } 488 489 const char *get_system_type(void) 490 __attribute__ ((alias("octeon_board_type_string"))); 491 492 void octeon_user_io_init(void) 493 { 494 union octeon_cvmemctl cvmmemctl; 495 union cvmx_iob_fau_timeout fau_timeout; 496 union cvmx_pow_nw_tim nm_tim; 497 498 /* Get the current settings for CP0_CVMMEMCTL_REG */ 499 cvmmemctl.u64 = read_c0_cvmmemctl(); 500 /* R/W If set, marked write-buffer entries time out the same 501 * as as other entries; if clear, marked write-buffer entries 502 * use the maximum timeout. */ 503 cvmmemctl.s.dismarkwblongto = 1; 504 /* R/W If set, a merged store does not clear the write-buffer 505 * entry timeout state. */ 506 cvmmemctl.s.dismrgclrwbto = 0; 507 /* R/W Two bits that are the MSBs of the resultant CVMSEG LM 508 * word location for an IOBDMA. The other 8 bits come from the 509 * SCRADDR field of the IOBDMA. */ 510 cvmmemctl.s.iobdmascrmsb = 0; 511 /* R/W If set, SYNCWS and SYNCS only order marked stores; if 512 * clear, SYNCWS and SYNCS only order unmarked 513 * stores. SYNCWSMARKED has no effect when DISSYNCWS is 514 * set. */ 515 cvmmemctl.s.syncwsmarked = 0; 516 /* R/W If set, SYNCWS acts as SYNCW and SYNCS acts as SYNC. */ 517 cvmmemctl.s.dissyncws = 0; 518 /* R/W If set, no stall happens on write buffer full. */ 519 if (OCTEON_IS_MODEL(OCTEON_CN38XX_PASS2)) 520 cvmmemctl.s.diswbfst = 1; 521 else 522 cvmmemctl.s.diswbfst = 0; 523 /* R/W If set (and SX set), supervisor-level loads/stores can 524 * use XKPHYS addresses with <48>==0 */ 525 cvmmemctl.s.xkmemenas = 0; 526 527 /* R/W If set (and UX set), user-level loads/stores can use 528 * XKPHYS addresses with VA<48>==0 */ 529 cvmmemctl.s.xkmemenau = 0; 530 531 /* R/W If set (and SX set), supervisor-level loads/stores can 532 * use XKPHYS addresses with VA<48>==1 */ 533 cvmmemctl.s.xkioenas = 0; 534 535 /* R/W If set (and UX set), user-level loads/stores can use 536 * XKPHYS addresses with VA<48>==1 */ 537 cvmmemctl.s.xkioenau = 0; 538 539 /* R/W If set, all stores act as SYNCW (NOMERGE must be set 540 * when this is set) RW, reset to 0. */ 541 cvmmemctl.s.allsyncw = 0; 542 543 /* R/W If set, no stores merge, and all stores reach the 544 * coherent bus in order. */ 545 cvmmemctl.s.nomerge = 0; 546 /* R/W Selects the bit in the counter used for DID time-outs 0 547 * = 231, 1 = 230, 2 = 229, 3 = 214. Actual time-out is 548 * between 1x and 2x this interval. For example, with 549 * DIDTTO=3, expiration interval is between 16K and 32K. */ 550 cvmmemctl.s.didtto = 0; 551 /* R/W If set, the (mem) CSR clock never turns off. */ 552 cvmmemctl.s.csrckalwys = 0; 553 /* R/W If set, mclk never turns off. */ 554 cvmmemctl.s.mclkalwys = 0; 555 /* R/W Selects the bit in the counter used for write buffer 556 * flush time-outs (WBFLT+11) is the bit position in an 557 * internal counter used to determine expiration. The write 558 * buffer expires between 1x and 2x this interval. For 559 * example, with WBFLT = 0, a write buffer expires between 2K 560 * and 4K cycles after the write buffer entry is allocated. */ 561 cvmmemctl.s.wbfltime = 0; 562 /* R/W If set, do not put Istream in the L2 cache. */ 563 cvmmemctl.s.istrnol2 = 0; 564 565 /* 566 * R/W The write buffer threshold. As per erratum Core-14752 567 * for CN63XX, a sc/scd might fail if the write buffer is 568 * full. Lowering WBTHRESH greatly lowers the chances of the 569 * write buffer ever being full and triggering the erratum. 570 */ 571 if (OCTEON_IS_MODEL(OCTEON_CN63XX_PASS1_X)) 572 cvmmemctl.s.wbthresh = 4; 573 else 574 cvmmemctl.s.wbthresh = 10; 575 576 /* R/W If set, CVMSEG is available for loads/stores in 577 * kernel/debug mode. */ 578 #if CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE > 0 579 cvmmemctl.s.cvmsegenak = 1; 580 #else 581 cvmmemctl.s.cvmsegenak = 0; 582 #endif 583 /* R/W If set, CVMSEG is available for loads/stores in 584 * supervisor mode. */ 585 cvmmemctl.s.cvmsegenas = 0; 586 /* R/W If set, CVMSEG is available for loads/stores in user 587 * mode. */ 588 cvmmemctl.s.cvmsegenau = 0; 589 590 write_c0_cvmmemctl(cvmmemctl.u64); 591 592 /* Setup of CVMSEG is done in kernel-entry-init.h */ 593 if (smp_processor_id() == 0) 594 pr_notice("CVMSEG size: %d cache lines (%d bytes)\n", 595 CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE, 596 CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE * 128); 597 598 /* Set a default for the hardware timeouts */ 599 fau_timeout.u64 = 0; 600 fau_timeout.s.tout_val = 0xfff; 601 /* Disable tagwait FAU timeout */ 602 fau_timeout.s.tout_enb = 0; 603 cvmx_write_csr(CVMX_IOB_FAU_TIMEOUT, fau_timeout.u64); 604 605 nm_tim.u64 = 0; 606 /* 4096 cycles */ 607 nm_tim.s.nw_tim = 3; 608 cvmx_write_csr(CVMX_POW_NW_TIM, nm_tim.u64); 609 610 write_octeon_c0_icacheerr(0); 611 write_c0_derraddr1(0); 612 } 613 614 /** 615 * Early entry point for arch setup 616 */ 617 void __init prom_init(void) 618 { 619 struct cvmx_sysinfo *sysinfo; 620 const char *arg; 621 char *p; 622 int i; 623 u64 t; 624 int argc; 625 #ifdef CONFIG_CAVIUM_RESERVE32 626 int64_t addr = -1; 627 #endif 628 /* 629 * The bootloader passes a pointer to the boot descriptor in 630 * $a3, this is available as fw_arg3. 631 */ 632 octeon_boot_desc_ptr = (struct octeon_boot_descriptor *)fw_arg3; 633 octeon_bootinfo = 634 cvmx_phys_to_ptr(octeon_boot_desc_ptr->cvmx_desc_vaddr); 635 cvmx_bootmem_init(cvmx_phys_to_ptr(octeon_bootinfo->phy_mem_desc_addr)); 636 637 sysinfo = cvmx_sysinfo_get(); 638 memset(sysinfo, 0, sizeof(*sysinfo)); 639 sysinfo->system_dram_size = octeon_bootinfo->dram_size << 20; 640 sysinfo->phy_mem_desc_ptr = 641 cvmx_phys_to_ptr(octeon_bootinfo->phy_mem_desc_addr); 642 sysinfo->core_mask = octeon_bootinfo->core_mask; 643 sysinfo->exception_base_addr = octeon_bootinfo->exception_base_addr; 644 sysinfo->cpu_clock_hz = octeon_bootinfo->eclock_hz; 645 sysinfo->dram_data_rate_hz = octeon_bootinfo->dclock_hz * 2; 646 sysinfo->board_type = octeon_bootinfo->board_type; 647 sysinfo->board_rev_major = octeon_bootinfo->board_rev_major; 648 sysinfo->board_rev_minor = octeon_bootinfo->board_rev_minor; 649 memcpy(sysinfo->mac_addr_base, octeon_bootinfo->mac_addr_base, 650 sizeof(sysinfo->mac_addr_base)); 651 sysinfo->mac_addr_count = octeon_bootinfo->mac_addr_count; 652 memcpy(sysinfo->board_serial_number, 653 octeon_bootinfo->board_serial_number, 654 sizeof(sysinfo->board_serial_number)); 655 sysinfo->compact_flash_common_base_addr = 656 octeon_bootinfo->compact_flash_common_base_addr; 657 sysinfo->compact_flash_attribute_base_addr = 658 octeon_bootinfo->compact_flash_attribute_base_addr; 659 sysinfo->led_display_base_addr = octeon_bootinfo->led_display_base_addr; 660 sysinfo->dfa_ref_clock_hz = octeon_bootinfo->dfa_ref_clock_hz; 661 sysinfo->bootloader_config_flags = octeon_bootinfo->config_flags; 662 663 if (OCTEON_IS_OCTEON2()) { 664 /* I/O clock runs at a different rate than the CPU. */ 665 union cvmx_mio_rst_boot rst_boot; 666 rst_boot.u64 = cvmx_read_csr(CVMX_MIO_RST_BOOT); 667 octeon_io_clock_rate = 50000000 * rst_boot.s.pnr_mul; 668 } else if (OCTEON_IS_OCTEON3()) { 669 /* I/O clock runs at a different rate than the CPU. */ 670 union cvmx_rst_boot rst_boot; 671 rst_boot.u64 = cvmx_read_csr(CVMX_RST_BOOT); 672 octeon_io_clock_rate = 50000000 * rst_boot.s.pnr_mul; 673 } else { 674 octeon_io_clock_rate = sysinfo->cpu_clock_hz; 675 } 676 677 t = read_c0_cvmctl(); 678 if ((t & (1ull << 27)) == 0) { 679 /* 680 * Setup the multiplier save/restore code if 681 * CvmCtl[NOMUL] clear. 682 */ 683 void *save; 684 void *save_end; 685 void *restore; 686 void *restore_end; 687 int save_len; 688 int restore_len; 689 int save_max = (char *)octeon_mult_save_end - 690 (char *)octeon_mult_save; 691 int restore_max = (char *)octeon_mult_restore_end - 692 (char *)octeon_mult_restore; 693 if (current_cpu_data.cputype == CPU_CAVIUM_OCTEON3) { 694 save = octeon_mult_save3; 695 save_end = octeon_mult_save3_end; 696 restore = octeon_mult_restore3; 697 restore_end = octeon_mult_restore3_end; 698 } else { 699 save = octeon_mult_save2; 700 save_end = octeon_mult_save2_end; 701 restore = octeon_mult_restore2; 702 restore_end = octeon_mult_restore2_end; 703 } 704 save_len = (char *)save_end - (char *)save; 705 restore_len = (char *)restore_end - (char *)restore; 706 if (!WARN_ON(save_len > save_max || 707 restore_len > restore_max)) { 708 memcpy(octeon_mult_save, save, save_len); 709 memcpy(octeon_mult_restore, restore, restore_len); 710 } 711 } 712 713 /* 714 * Only enable the LED controller if we're running on a CN38XX, CN58XX, 715 * or CN56XX. The CN30XX and CN31XX don't have an LED controller. 716 */ 717 if (!octeon_is_simulation() && 718 octeon_has_feature(OCTEON_FEATURE_LED_CONTROLLER)) { 719 cvmx_write_csr(CVMX_LED_EN, 0); 720 cvmx_write_csr(CVMX_LED_PRT, 0); 721 cvmx_write_csr(CVMX_LED_DBG, 0); 722 cvmx_write_csr(CVMX_LED_PRT_FMT, 0); 723 cvmx_write_csr(CVMX_LED_UDD_CNTX(0), 32); 724 cvmx_write_csr(CVMX_LED_UDD_CNTX(1), 32); 725 cvmx_write_csr(CVMX_LED_UDD_DATX(0), 0); 726 cvmx_write_csr(CVMX_LED_UDD_DATX(1), 0); 727 cvmx_write_csr(CVMX_LED_EN, 1); 728 } 729 #ifdef CONFIG_CAVIUM_RESERVE32 730 /* 731 * We need to temporarily allocate all memory in the reserve32 732 * region. This makes sure the kernel doesn't allocate this 733 * memory when it is getting memory from the 734 * bootloader. Later, after the memory allocations are 735 * complete, the reserve32 will be freed. 736 * 737 * Allocate memory for RESERVED32 aligned on 2MB boundary. This 738 * is in case we later use hugetlb entries with it. 739 */ 740 addr = cvmx_bootmem_phy_named_block_alloc(CONFIG_CAVIUM_RESERVE32 << 20, 741 0, 0, 2 << 20, 742 "CAVIUM_RESERVE32", 0); 743 if (addr < 0) 744 pr_err("Failed to allocate CAVIUM_RESERVE32 memory area\n"); 745 else 746 octeon_reserve32_memory = addr; 747 #endif 748 749 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2 750 if (cvmx_read_csr(CVMX_L2D_FUS3) & (3ull << 34)) { 751 pr_info("Skipping L2 locking due to reduced L2 cache size\n"); 752 } else { 753 uint32_t __maybe_unused ebase = read_c0_ebase() & 0x3ffff000; 754 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_TLB 755 /* TLB refill */ 756 cvmx_l2c_lock_mem_region(ebase, 0x100); 757 #endif 758 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_EXCEPTION 759 /* General exception */ 760 cvmx_l2c_lock_mem_region(ebase + 0x180, 0x80); 761 #endif 762 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_LOW_LEVEL_INTERRUPT 763 /* Interrupt handler */ 764 cvmx_l2c_lock_mem_region(ebase + 0x200, 0x80); 765 #endif 766 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_INTERRUPT 767 cvmx_l2c_lock_mem_region(__pa_symbol(handle_int), 0x100); 768 cvmx_l2c_lock_mem_region(__pa_symbol(plat_irq_dispatch), 0x80); 769 #endif 770 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_MEMCPY 771 cvmx_l2c_lock_mem_region(__pa_symbol(memcpy), 0x480); 772 #endif 773 } 774 #endif 775 776 octeon_check_cpu_bist(); 777 778 octeon_uart = octeon_get_boot_uart(); 779 780 #ifdef CONFIG_SMP 781 octeon_write_lcd("LinuxSMP"); 782 #else 783 octeon_write_lcd("Linux"); 784 #endif 785 786 octeon_setup_delays(); 787 788 /* 789 * BIST should always be enabled when doing a soft reset. L2 790 * Cache locking for instance is not cleared unless BIST is 791 * enabled. Unfortunately due to a chip errata G-200 for 792 * Cn38XX and CN31XX, BIST msut be disabled on these parts. 793 */ 794 if (OCTEON_IS_MODEL(OCTEON_CN38XX_PASS2) || 795 OCTEON_IS_MODEL(OCTEON_CN31XX)) 796 cvmx_write_csr(CVMX_CIU_SOFT_BIST, 0); 797 else 798 cvmx_write_csr(CVMX_CIU_SOFT_BIST, 1); 799 800 /* Default to 64MB in the simulator to speed things up */ 801 if (octeon_is_simulation()) 802 MAX_MEMORY = 64ull << 20; 803 804 arg = strstr(arcs_cmdline, "mem="); 805 if (arg) { 806 MAX_MEMORY = memparse(arg + 4, &p); 807 if (MAX_MEMORY == 0) 808 MAX_MEMORY = 32ull << 30; 809 if (*p == '@') 810 RESERVE_LOW_MEM = memparse(p + 1, &p); 811 } 812 813 arcs_cmdline[0] = 0; 814 argc = octeon_boot_desc_ptr->argc; 815 for (i = 0; i < argc; i++) { 816 const char *arg = 817 cvmx_phys_to_ptr(octeon_boot_desc_ptr->argv[i]); 818 if ((strncmp(arg, "MEM=", 4) == 0) || 819 (strncmp(arg, "mem=", 4) == 0)) { 820 MAX_MEMORY = memparse(arg + 4, &p); 821 if (MAX_MEMORY == 0) 822 MAX_MEMORY = 32ull << 30; 823 if (*p == '@') 824 RESERVE_LOW_MEM = memparse(p + 1, &p); 825 #ifdef CONFIG_KEXEC 826 } else if (strncmp(arg, "crashkernel=", 12) == 0) { 827 crashk_size = memparse(arg+12, &p); 828 if (*p == '@') 829 crashk_base = memparse(p+1, &p); 830 strcat(arcs_cmdline, " "); 831 strcat(arcs_cmdline, arg); 832 /* 833 * To do: switch parsing to new style, something like: 834 * parse_crashkernel(arg, sysinfo->system_dram_size, 835 * &crashk_size, &crashk_base); 836 */ 837 #endif 838 } else if (strlen(arcs_cmdline) + strlen(arg) + 1 < 839 sizeof(arcs_cmdline) - 1) { 840 strcat(arcs_cmdline, " "); 841 strcat(arcs_cmdline, arg); 842 } 843 } 844 845 if (strstr(arcs_cmdline, "console=") == NULL) { 846 #ifdef CONFIG_CAVIUM_OCTEON_2ND_KERNEL 847 strcat(arcs_cmdline, " console=ttyS0,115200"); 848 #else 849 if (octeon_uart == 1) 850 strcat(arcs_cmdline, " console=ttyS1,115200"); 851 else 852 strcat(arcs_cmdline, " console=ttyS0,115200"); 853 #endif 854 } 855 856 mips_hpt_frequency = octeon_get_clock_rate(); 857 858 octeon_init_cvmcount(); 859 860 _machine_restart = octeon_restart; 861 _machine_halt = octeon_halt; 862 863 #ifdef CONFIG_KEXEC 864 _machine_kexec_shutdown = octeon_shutdown; 865 _machine_crash_shutdown = octeon_crash_shutdown; 866 _machine_kexec_prepare = octeon_kexec_prepare; 867 #endif 868 869 octeon_user_io_init(); 870 register_smp_ops(&octeon_smp_ops); 871 } 872 873 /* Exclude a single page from the regions obtained in plat_mem_setup. */ 874 #ifndef CONFIG_CRASH_DUMP 875 static __init void memory_exclude_page(u64 addr, u64 *mem, u64 *size) 876 { 877 if (addr > *mem && addr < *mem + *size) { 878 u64 inc = addr - *mem; 879 add_memory_region(*mem, inc, BOOT_MEM_RAM); 880 *mem += inc; 881 *size -= inc; 882 } 883 884 if (addr == *mem && *size > PAGE_SIZE) { 885 *mem += PAGE_SIZE; 886 *size -= PAGE_SIZE; 887 } 888 } 889 #endif /* CONFIG_CRASH_DUMP */ 890 891 void __init plat_mem_setup(void) 892 { 893 uint64_t mem_alloc_size; 894 uint64_t total; 895 uint64_t crashk_end; 896 #ifndef CONFIG_CRASH_DUMP 897 int64_t memory; 898 uint64_t kernel_start; 899 uint64_t kernel_size; 900 #endif 901 902 total = 0; 903 crashk_end = 0; 904 905 /* 906 * The Mips memory init uses the first memory location for 907 * some memory vectors. When SPARSEMEM is in use, it doesn't 908 * verify that the size is big enough for the final 909 * vectors. Making the smallest chuck 4MB seems to be enough 910 * to consistently work. 911 */ 912 mem_alloc_size = 4 << 20; 913 if (mem_alloc_size > MAX_MEMORY) 914 mem_alloc_size = MAX_MEMORY; 915 916 /* Crashkernel ignores bootmem list. It relies on mem=X@Y option */ 917 #ifdef CONFIG_CRASH_DUMP 918 add_memory_region(RESERVE_LOW_MEM, MAX_MEMORY, BOOT_MEM_RAM); 919 total += MAX_MEMORY; 920 #else 921 #ifdef CONFIG_KEXEC 922 if (crashk_size > 0) { 923 add_memory_region(crashk_base, crashk_size, BOOT_MEM_RAM); 924 crashk_end = crashk_base + crashk_size; 925 } 926 #endif 927 /* 928 * When allocating memory, we want incrementing addresses from 929 * bootmem_alloc so the code in add_memory_region can merge 930 * regions next to each other. 931 */ 932 cvmx_bootmem_lock(); 933 while ((boot_mem_map.nr_map < BOOT_MEM_MAP_MAX) 934 && (total < MAX_MEMORY)) { 935 memory = cvmx_bootmem_phy_alloc(mem_alloc_size, 936 __pa_symbol(&_end), -1, 937 0x100000, 938 CVMX_BOOTMEM_FLAG_NO_LOCKING); 939 if (memory >= 0) { 940 u64 size = mem_alloc_size; 941 #ifdef CONFIG_KEXEC 942 uint64_t end; 943 #endif 944 945 /* 946 * exclude a page at the beginning and end of 947 * the 256MB PCIe 'hole' so the kernel will not 948 * try to allocate multi-page buffers that 949 * span the discontinuity. 950 */ 951 memory_exclude_page(CVMX_PCIE_BAR1_PHYS_BASE, 952 &memory, &size); 953 memory_exclude_page(CVMX_PCIE_BAR1_PHYS_BASE + 954 CVMX_PCIE_BAR1_PHYS_SIZE, 955 &memory, &size); 956 #ifdef CONFIG_KEXEC 957 end = memory + mem_alloc_size; 958 959 /* 960 * This function automatically merges address regions 961 * next to each other if they are received in 962 * incrementing order 963 */ 964 if (memory < crashk_base && end > crashk_end) { 965 /* region is fully in */ 966 add_memory_region(memory, 967 crashk_base - memory, 968 BOOT_MEM_RAM); 969 total += crashk_base - memory; 970 add_memory_region(crashk_end, 971 end - crashk_end, 972 BOOT_MEM_RAM); 973 total += end - crashk_end; 974 continue; 975 } 976 977 if (memory >= crashk_base && end <= crashk_end) 978 /* 979 * Entire memory region is within the new 980 * kernel's memory, ignore it. 981 */ 982 continue; 983 984 if (memory > crashk_base && memory < crashk_end && 985 end > crashk_end) { 986 /* 987 * Overlap with the beginning of the region, 988 * reserve the beginning. 989 */ 990 mem_alloc_size -= crashk_end - memory; 991 memory = crashk_end; 992 } else if (memory < crashk_base && end > crashk_base && 993 end < crashk_end) 994 /* 995 * Overlap with the beginning of the region, 996 * chop of end. 997 */ 998 mem_alloc_size -= end - crashk_base; 999 #endif 1000 add_memory_region(memory, mem_alloc_size, BOOT_MEM_RAM); 1001 total += mem_alloc_size; 1002 /* Recovering mem_alloc_size */ 1003 mem_alloc_size = 4 << 20; 1004 } else { 1005 break; 1006 } 1007 } 1008 cvmx_bootmem_unlock(); 1009 /* Add the memory region for the kernel. */ 1010 kernel_start = (unsigned long) _text; 1011 kernel_size = _end - _text; 1012 1013 /* Adjust for physical offset. */ 1014 kernel_start &= ~0xffffffff80000000ULL; 1015 add_memory_region(kernel_start, kernel_size, BOOT_MEM_RAM); 1016 #endif /* CONFIG_CRASH_DUMP */ 1017 1018 #ifdef CONFIG_CAVIUM_RESERVE32 1019 /* 1020 * Now that we've allocated the kernel memory it is safe to 1021 * free the reserved region. We free it here so that builtin 1022 * drivers can use the memory. 1023 */ 1024 if (octeon_reserve32_memory) 1025 cvmx_bootmem_free_named("CAVIUM_RESERVE32"); 1026 #endif /* CONFIG_CAVIUM_RESERVE32 */ 1027 1028 if (total == 0) 1029 panic("Unable to allocate memory from " 1030 "cvmx_bootmem_phy_alloc"); 1031 } 1032 1033 /* 1034 * Emit one character to the boot UART. Exported for use by the 1035 * watchdog timer. 1036 */ 1037 int prom_putchar(char c) 1038 { 1039 uint64_t lsrval; 1040 1041 /* Spin until there is room */ 1042 do { 1043 lsrval = cvmx_read_csr(CVMX_MIO_UARTX_LSR(octeon_uart)); 1044 } while ((lsrval & 0x20) == 0); 1045 1046 /* Write the byte */ 1047 cvmx_write_csr(CVMX_MIO_UARTX_THR(octeon_uart), c & 0xffull); 1048 return 1; 1049 } 1050 EXPORT_SYMBOL(prom_putchar); 1051 1052 void __init prom_free_prom_memory(void) 1053 { 1054 if (CAVIUM_OCTEON_DCACHE_PREFETCH_WAR) { 1055 /* Check for presence of Core-14449 fix. */ 1056 u32 insn; 1057 u32 *foo; 1058 1059 foo = &insn; 1060 1061 asm volatile("# before" : : : "memory"); 1062 prefetch(foo); 1063 asm volatile( 1064 ".set push\n\t" 1065 ".set noreorder\n\t" 1066 "bal 1f\n\t" 1067 "nop\n" 1068 "1:\tlw %0,-12($31)\n\t" 1069 ".set pop\n\t" 1070 : "=r" (insn) : : "$31", "memory"); 1071 1072 if ((insn >> 26) != 0x33) 1073 panic("No PREF instruction at Core-14449 probe point."); 1074 1075 if (((insn >> 16) & 0x1f) != 28) 1076 panic("OCTEON II DCache prefetch workaround not in place (%04x).\n" 1077 "Please build kernel with proper options (CONFIG_CAVIUM_CN63XXP1).", 1078 insn); 1079 } 1080 } 1081 1082 int octeon_prune_device_tree(void); 1083 1084 extern const char __appended_dtb; 1085 extern const char __dtb_octeon_3xxx_begin; 1086 extern const char __dtb_octeon_68xx_begin; 1087 void __init device_tree_init(void) 1088 { 1089 const void *fdt; 1090 bool do_prune; 1091 1092 #ifdef CONFIG_MIPS_ELF_APPENDED_DTB 1093 if (!fdt_check_header(&__appended_dtb)) { 1094 fdt = &__appended_dtb; 1095 do_prune = false; 1096 pr_info("Using appended Device Tree.\n"); 1097 } else 1098 #endif 1099 if (octeon_bootinfo->minor_version >= 3 && octeon_bootinfo->fdt_addr) { 1100 fdt = phys_to_virt(octeon_bootinfo->fdt_addr); 1101 if (fdt_check_header(fdt)) 1102 panic("Corrupt Device Tree passed to kernel."); 1103 do_prune = false; 1104 pr_info("Using passed Device Tree.\n"); 1105 } else if (OCTEON_IS_MODEL(OCTEON_CN68XX)) { 1106 fdt = &__dtb_octeon_68xx_begin; 1107 do_prune = true; 1108 } else { 1109 fdt = &__dtb_octeon_3xxx_begin; 1110 do_prune = true; 1111 } 1112 1113 initial_boot_params = (void *)fdt; 1114 1115 if (do_prune) { 1116 octeon_prune_device_tree(); 1117 pr_info("Using internal Device Tree.\n"); 1118 } 1119 unflatten_and_copy_device_tree(); 1120 } 1121 1122 static int __initdata disable_octeon_edac_p; 1123 1124 static int __init disable_octeon_edac(char *str) 1125 { 1126 disable_octeon_edac_p = 1; 1127 return 0; 1128 } 1129 early_param("disable_octeon_edac", disable_octeon_edac); 1130 1131 static char *edac_device_names[] = { 1132 "octeon_l2c_edac", 1133 "octeon_pc_edac", 1134 }; 1135 1136 static int __init edac_devinit(void) 1137 { 1138 struct platform_device *dev; 1139 int i, err = 0; 1140 int num_lmc; 1141 char *name; 1142 1143 if (disable_octeon_edac_p) 1144 return 0; 1145 1146 for (i = 0; i < ARRAY_SIZE(edac_device_names); i++) { 1147 name = edac_device_names[i]; 1148 dev = platform_device_register_simple(name, -1, NULL, 0); 1149 if (IS_ERR(dev)) { 1150 pr_err("Registration of %s failed!\n", name); 1151 err = PTR_ERR(dev); 1152 } 1153 } 1154 1155 num_lmc = OCTEON_IS_MODEL(OCTEON_CN68XX) ? 4 : 1156 (OCTEON_IS_MODEL(OCTEON_CN56XX) ? 2 : 1); 1157 for (i = 0; i < num_lmc; i++) { 1158 dev = platform_device_register_simple("octeon_lmc_edac", 1159 i, NULL, 0); 1160 if (IS_ERR(dev)) { 1161 pr_err("Registration of octeon_lmc_edac %d failed!\n", i); 1162 err = PTR_ERR(dev); 1163 } 1164 } 1165 1166 return err; 1167 } 1168 device_initcall(edac_devinit); 1169 1170 static void __initdata *octeon_dummy_iospace; 1171 1172 static int __init octeon_no_pci_init(void) 1173 { 1174 /* 1175 * Initially assume there is no PCI. The PCI/PCIe platform code will 1176 * later re-initialize these to correct values if they are present. 1177 */ 1178 octeon_dummy_iospace = vzalloc(IO_SPACE_LIMIT); 1179 set_io_port_base((unsigned long)octeon_dummy_iospace); 1180 ioport_resource.start = MAX_RESOURCE; 1181 ioport_resource.end = 0; 1182 return 0; 1183 } 1184 core_initcall(octeon_no_pci_init); 1185 1186 static int __init octeon_no_pci_release(void) 1187 { 1188 /* 1189 * Release the allocated memory if a real IO space is there. 1190 */ 1191 if ((unsigned long)octeon_dummy_iospace != mips_io_port_base) 1192 vfree(octeon_dummy_iospace); 1193 return 0; 1194 } 1195 late_initcall(octeon_no_pci_release); 1196