1 /* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * Copyright (C) 2004-2007 Cavium Networks 7 * Copyright (C) 2008, 2009 Wind River Systems 8 * written by Ralf Baechle <ralf@linux-mips.org> 9 */ 10 #include <linux/compiler.h> 11 #include <linux/vmalloc.h> 12 #include <linux/init.h> 13 #include <linux/kernel.h> 14 #include <linux/console.h> 15 #include <linux/delay.h> 16 #include <linux/export.h> 17 #include <linux/interrupt.h> 18 #include <linux/io.h> 19 #include <linux/memblock.h> 20 #include <linux/serial.h> 21 #include <linux/smp.h> 22 #include <linux/types.h> 23 #include <linux/string.h> /* for memset */ 24 #include <linux/tty.h> 25 #include <linux/time.h> 26 #include <linux/platform_device.h> 27 #include <linux/serial_core.h> 28 #include <linux/serial_8250.h> 29 #include <linux/of_fdt.h> 30 #include <linux/libfdt.h> 31 #include <linux/kexec.h> 32 33 #include <asm/processor.h> 34 #include <asm/reboot.h> 35 #include <asm/smp-ops.h> 36 #include <asm/irq_cpu.h> 37 #include <asm/mipsregs.h> 38 #include <asm/bootinfo.h> 39 #include <asm/sections.h> 40 #include <asm/fw/fw.h> 41 #include <asm/setup.h> 42 #include <asm/prom.h> 43 #include <asm/time.h> 44 45 #include <asm/octeon/octeon.h> 46 #include <asm/octeon/pci-octeon.h> 47 #include <asm/octeon/cvmx-rst-defs.h> 48 49 /* 50 * TRUE for devices having registers with little-endian byte 51 * order, FALSE for registers with native-endian byte order. 52 * PCI mandates little-endian, USB and SATA are configuraable, 53 * but we chose little-endian for these. 54 */ 55 const bool octeon_should_swizzle_table[256] = { 56 [0x00] = true, /* bootbus/CF */ 57 [0x1b] = true, /* PCI mmio window */ 58 [0x1c] = true, /* PCI mmio window */ 59 [0x1d] = true, /* PCI mmio window */ 60 [0x1e] = true, /* PCI mmio window */ 61 [0x68] = true, /* OCTEON III USB */ 62 [0x69] = true, /* OCTEON III USB */ 63 [0x6c] = true, /* OCTEON III SATA */ 64 [0x6f] = true, /* OCTEON II USB */ 65 }; 66 EXPORT_SYMBOL(octeon_should_swizzle_table); 67 68 #ifdef CONFIG_PCI 69 extern void pci_console_init(const char *arg); 70 #endif 71 72 static unsigned long long max_memory = ULLONG_MAX; 73 static unsigned long long reserve_low_mem; 74 75 DEFINE_SEMAPHORE(octeon_bootbus_sem); 76 EXPORT_SYMBOL(octeon_bootbus_sem); 77 78 static struct octeon_boot_descriptor *octeon_boot_desc_ptr; 79 80 struct cvmx_bootinfo *octeon_bootinfo; 81 EXPORT_SYMBOL(octeon_bootinfo); 82 83 #ifdef CONFIG_KEXEC 84 #ifdef CONFIG_SMP 85 /* 86 * Wait for relocation code is prepared and send 87 * secondary CPUs to spin until kernel is relocated. 88 */ 89 static void octeon_kexec_smp_down(void *ignored) 90 { 91 int cpu = smp_processor_id(); 92 93 local_irq_disable(); 94 set_cpu_online(cpu, false); 95 while (!atomic_read(&kexec_ready_to_reboot)) 96 cpu_relax(); 97 98 asm volatile ( 99 " sync \n" 100 " synci ($0) \n"); 101 102 kexec_reboot(); 103 } 104 #endif 105 106 #define OCTEON_DDR0_BASE (0x0ULL) 107 #define OCTEON_DDR0_SIZE (0x010000000ULL) 108 #define OCTEON_DDR1_BASE (0x410000000ULL) 109 #define OCTEON_DDR1_SIZE (0x010000000ULL) 110 #define OCTEON_DDR2_BASE (0x020000000ULL) 111 #define OCTEON_DDR2_SIZE (0x3e0000000ULL) 112 #define OCTEON_MAX_PHY_MEM_SIZE (16*1024*1024*1024ULL) 113 114 static struct kimage *kimage_ptr; 115 116 static void kexec_bootmem_init(uint64_t mem_size, uint32_t low_reserved_bytes) 117 { 118 int64_t addr; 119 struct cvmx_bootmem_desc *bootmem_desc; 120 121 bootmem_desc = cvmx_bootmem_get_desc(); 122 123 if (mem_size > OCTEON_MAX_PHY_MEM_SIZE) { 124 mem_size = OCTEON_MAX_PHY_MEM_SIZE; 125 pr_err("Error: requested memory too large," 126 "truncating to maximum size\n"); 127 } 128 129 bootmem_desc->major_version = CVMX_BOOTMEM_DESC_MAJ_VER; 130 bootmem_desc->minor_version = CVMX_BOOTMEM_DESC_MIN_VER; 131 132 addr = (OCTEON_DDR0_BASE + reserve_low_mem + low_reserved_bytes); 133 bootmem_desc->head_addr = 0; 134 135 if (mem_size <= OCTEON_DDR0_SIZE) { 136 __cvmx_bootmem_phy_free(addr, 137 mem_size - reserve_low_mem - 138 low_reserved_bytes, 0); 139 return; 140 } 141 142 __cvmx_bootmem_phy_free(addr, 143 OCTEON_DDR0_SIZE - reserve_low_mem - 144 low_reserved_bytes, 0); 145 146 mem_size -= OCTEON_DDR0_SIZE; 147 148 if (mem_size > OCTEON_DDR1_SIZE) { 149 __cvmx_bootmem_phy_free(OCTEON_DDR1_BASE, OCTEON_DDR1_SIZE, 0); 150 __cvmx_bootmem_phy_free(OCTEON_DDR2_BASE, 151 mem_size - OCTEON_DDR1_SIZE, 0); 152 } else 153 __cvmx_bootmem_phy_free(OCTEON_DDR1_BASE, mem_size, 0); 154 } 155 156 static int octeon_kexec_prepare(struct kimage *image) 157 { 158 int i; 159 char *bootloader = "kexec"; 160 161 octeon_boot_desc_ptr->argc = 0; 162 for (i = 0; i < image->nr_segments; i++) { 163 if (!strncmp(bootloader, (char *)image->segment[i].buf, 164 strlen(bootloader))) { 165 /* 166 * convert command line string to array 167 * of parameters (as bootloader does). 168 */ 169 int argc = 0, offt; 170 char *str = (char *)image->segment[i].buf; 171 char *ptr = strchr(str, ' '); 172 while (ptr && (OCTEON_ARGV_MAX_ARGS > argc)) { 173 *ptr = '\0'; 174 if (ptr[1] != ' ') { 175 offt = (int)(ptr - str + 1); 176 octeon_boot_desc_ptr->argv[argc] = 177 image->segment[i].mem + offt; 178 argc++; 179 } 180 ptr = strchr(ptr + 1, ' '); 181 } 182 octeon_boot_desc_ptr->argc = argc; 183 break; 184 } 185 } 186 187 /* 188 * Information about segments will be needed during pre-boot memory 189 * initialization. 190 */ 191 kimage_ptr = image; 192 return 0; 193 } 194 195 static void octeon_generic_shutdown(void) 196 { 197 int i; 198 #ifdef CONFIG_SMP 199 int cpu; 200 #endif 201 struct cvmx_bootmem_desc *bootmem_desc; 202 void *named_block_array_ptr; 203 204 bootmem_desc = cvmx_bootmem_get_desc(); 205 named_block_array_ptr = 206 cvmx_phys_to_ptr(bootmem_desc->named_block_array_addr); 207 208 #ifdef CONFIG_SMP 209 /* disable watchdogs */ 210 for_each_online_cpu(cpu) 211 cvmx_write_csr(CVMX_CIU_WDOGX(cpu_logical_map(cpu)), 0); 212 #else 213 cvmx_write_csr(CVMX_CIU_WDOGX(cvmx_get_core_num()), 0); 214 #endif 215 if (kimage_ptr != kexec_crash_image) { 216 memset(named_block_array_ptr, 217 0x0, 218 CVMX_BOOTMEM_NUM_NAMED_BLOCKS * 219 sizeof(struct cvmx_bootmem_named_block_desc)); 220 /* 221 * Mark all memory (except low 0x100000 bytes) as free. 222 * It is the same thing that bootloader does. 223 */ 224 kexec_bootmem_init(octeon_bootinfo->dram_size*1024ULL*1024ULL, 225 0x100000); 226 /* 227 * Allocate all segments to avoid their corruption during boot. 228 */ 229 for (i = 0; i < kimage_ptr->nr_segments; i++) 230 cvmx_bootmem_alloc_address( 231 kimage_ptr->segment[i].memsz + 2*PAGE_SIZE, 232 kimage_ptr->segment[i].mem - PAGE_SIZE, 233 PAGE_SIZE); 234 } else { 235 /* 236 * Do not mark all memory as free. Free only named sections 237 * leaving the rest of memory unchanged. 238 */ 239 struct cvmx_bootmem_named_block_desc *ptr = 240 (struct cvmx_bootmem_named_block_desc *) 241 named_block_array_ptr; 242 243 for (i = 0; i < bootmem_desc->named_block_num_blocks; i++) 244 if (ptr[i].size) 245 cvmx_bootmem_free_named(ptr[i].name); 246 } 247 kexec_args[2] = 1UL; /* running on octeon_main_processor */ 248 kexec_args[3] = (unsigned long)octeon_boot_desc_ptr; 249 #ifdef CONFIG_SMP 250 secondary_kexec_args[2] = 0UL; /* running on secondary cpu */ 251 secondary_kexec_args[3] = (unsigned long)octeon_boot_desc_ptr; 252 #endif 253 } 254 255 static void octeon_shutdown(void) 256 { 257 octeon_generic_shutdown(); 258 #ifdef CONFIG_SMP 259 smp_call_function(octeon_kexec_smp_down, NULL, 0); 260 smp_wmb(); 261 while (num_online_cpus() > 1) { 262 cpu_relax(); 263 mdelay(1); 264 } 265 #endif 266 } 267 268 static void octeon_crash_shutdown(struct pt_regs *regs) 269 { 270 octeon_generic_shutdown(); 271 default_machine_crash_shutdown(regs); 272 } 273 274 #ifdef CONFIG_SMP 275 void octeon_crash_smp_send_stop(void) 276 { 277 int cpu; 278 279 /* disable watchdogs */ 280 for_each_online_cpu(cpu) 281 cvmx_write_csr(CVMX_CIU_WDOGX(cpu_logical_map(cpu)), 0); 282 } 283 #endif 284 285 #endif /* CONFIG_KEXEC */ 286 287 uint64_t octeon_reserve32_memory; 288 EXPORT_SYMBOL(octeon_reserve32_memory); 289 290 #ifdef CONFIG_KEXEC 291 /* crashkernel cmdline parameter is parsed _after_ memory setup 292 * we also parse it here (workaround for EHB5200) */ 293 static uint64_t crashk_size, crashk_base; 294 #endif 295 296 static int octeon_uart; 297 298 extern asmlinkage void handle_int(void); 299 300 /** 301 * octeon_is_simulation - Return non-zero if we are currently running 302 * in the Octeon simulator 303 * 304 * Return: non-0 if running in the Octeon simulator, 0 otherwise 305 */ 306 int octeon_is_simulation(void) 307 { 308 return octeon_bootinfo->board_type == CVMX_BOARD_TYPE_SIM; 309 } 310 EXPORT_SYMBOL(octeon_is_simulation); 311 312 /** 313 * octeon_is_pci_host - Return true if Octeon is in PCI Host mode. This means 314 * Linux can control the PCI bus. 315 * 316 * Return: Non-zero if Octeon is in host mode. 317 */ 318 int octeon_is_pci_host(void) 319 { 320 #ifdef CONFIG_PCI 321 return octeon_bootinfo->config_flags & CVMX_BOOTINFO_CFG_FLAG_PCI_HOST; 322 #else 323 return 0; 324 #endif 325 } 326 327 /** 328 * octeon_get_clock_rate - Get the clock rate of Octeon 329 * 330 * Return: Clock rate in HZ 331 */ 332 uint64_t octeon_get_clock_rate(void) 333 { 334 struct cvmx_sysinfo *sysinfo = cvmx_sysinfo_get(); 335 336 return sysinfo->cpu_clock_hz; 337 } 338 EXPORT_SYMBOL(octeon_get_clock_rate); 339 340 static u64 octeon_io_clock_rate; 341 342 u64 octeon_get_io_clock_rate(void) 343 { 344 return octeon_io_clock_rate; 345 } 346 EXPORT_SYMBOL(octeon_get_io_clock_rate); 347 348 349 /** 350 * octeon_write_lcd - Write to the LCD display connected to the bootbus. 351 * @s: String to write 352 * 353 * This display exists on most Cavium evaluation boards. If it doesn't exist, 354 * then this function doesn't do anything. 355 */ 356 static void octeon_write_lcd(const char *s) 357 { 358 if (octeon_bootinfo->led_display_base_addr) { 359 void __iomem *lcd_address = 360 ioremap(octeon_bootinfo->led_display_base_addr, 361 8); 362 int i; 363 for (i = 0; i < 8; i++, s++) { 364 if (*s) 365 iowrite8(*s, lcd_address + i); 366 else 367 iowrite8(' ', lcd_address + i); 368 } 369 iounmap(lcd_address); 370 } 371 } 372 373 /** 374 * octeon_get_boot_uart - Return the console uart passed by the bootloader 375 * 376 * Return: uart number (0 or 1) 377 */ 378 static int octeon_get_boot_uart(void) 379 { 380 return (octeon_boot_desc_ptr->flags & OCTEON_BL_FLAG_CONSOLE_UART1) ? 381 1 : 0; 382 } 383 384 /** 385 * octeon_get_boot_coremask - Get the coremask Linux was booted on. 386 * 387 * Return: Core mask 388 */ 389 int octeon_get_boot_coremask(void) 390 { 391 return octeon_boot_desc_ptr->core_mask; 392 } 393 394 /** 395 * octeon_check_cpu_bist - Check the hardware BIST results for a CPU 396 */ 397 void octeon_check_cpu_bist(void) 398 { 399 const int coreid = cvmx_get_core_num(); 400 unsigned long long mask; 401 unsigned long long bist_val; 402 403 /* Check BIST results for COP0 registers */ 404 mask = 0x1f00000000ull; 405 bist_val = read_octeon_c0_icacheerr(); 406 if (bist_val & mask) 407 pr_err("Core%d BIST Failure: CacheErr(icache) = 0x%llx\n", 408 coreid, bist_val); 409 410 bist_val = read_octeon_c0_dcacheerr(); 411 if (bist_val & 1) 412 pr_err("Core%d L1 Dcache parity error: " 413 "CacheErr(dcache) = 0x%llx\n", 414 coreid, bist_val); 415 416 mask = 0xfc00000000000000ull; 417 bist_val = read_c0_cvmmemctl(); 418 if (bist_val & mask) 419 pr_err("Core%d BIST Failure: COP0_CVM_MEM_CTL = 0x%llx\n", 420 coreid, bist_val); 421 422 write_octeon_c0_dcacheerr(0); 423 } 424 425 /** 426 * octeon_restart - Reboot Octeon 427 * 428 * @command: Command to pass to the bootloader. Currently ignored. 429 */ 430 static void octeon_restart(char *command) 431 { 432 /* Disable all watchdogs before soft reset. They don't get cleared */ 433 #ifdef CONFIG_SMP 434 int cpu; 435 for_each_online_cpu(cpu) 436 cvmx_write_csr(CVMX_CIU_WDOGX(cpu_logical_map(cpu)), 0); 437 #else 438 cvmx_write_csr(CVMX_CIU_WDOGX(cvmx_get_core_num()), 0); 439 #endif 440 441 mb(); 442 while (1) 443 if (OCTEON_IS_OCTEON3()) 444 cvmx_write_csr(CVMX_RST_SOFT_RST, 1); 445 else 446 cvmx_write_csr(CVMX_CIU_SOFT_RST, 1); 447 } 448 449 450 /** 451 * octeon_kill_core - Permanently stop a core. 452 * 453 * @arg: Ignored. 454 */ 455 static void octeon_kill_core(void *arg) 456 { 457 if (octeon_is_simulation()) 458 /* A break instruction causes the simulator stop a core */ 459 asm volatile ("break" ::: "memory"); 460 461 local_irq_disable(); 462 /* Disable watchdog on this core. */ 463 cvmx_write_csr(CVMX_CIU_WDOGX(cvmx_get_core_num()), 0); 464 /* Spin in a low power mode. */ 465 while (true) 466 asm volatile ("wait" ::: "memory"); 467 } 468 469 470 /** 471 * octeon_halt - Halt the system 472 */ 473 static void octeon_halt(void) 474 { 475 smp_call_function(octeon_kill_core, NULL, 0); 476 477 switch (octeon_bootinfo->board_type) { 478 case CVMX_BOARD_TYPE_NAO38: 479 /* Driving a 1 to GPIO 12 shuts off this board */ 480 cvmx_write_csr(CVMX_GPIO_BIT_CFGX(12), 1); 481 cvmx_write_csr(CVMX_GPIO_TX_SET, 0x1000); 482 break; 483 default: 484 octeon_write_lcd("PowerOff"); 485 break; 486 } 487 488 octeon_kill_core(NULL); 489 } 490 491 static char __read_mostly octeon_system_type[80]; 492 493 static void __init init_octeon_system_type(void) 494 { 495 char const *board_type; 496 497 board_type = cvmx_board_type_to_string(octeon_bootinfo->board_type); 498 if (board_type == NULL) { 499 struct device_node *root; 500 int ret; 501 502 root = of_find_node_by_path("/"); 503 ret = of_property_read_string(root, "model", &board_type); 504 of_node_put(root); 505 if (ret) 506 board_type = "Unsupported Board"; 507 } 508 509 snprintf(octeon_system_type, sizeof(octeon_system_type), "%s (%s)", 510 board_type, octeon_model_get_string(read_c0_prid())); 511 } 512 513 /** 514 * octeon_board_type_string - Return a string representing the system type 515 * 516 * Return: system type string 517 */ 518 const char *octeon_board_type_string(void) 519 { 520 return octeon_system_type; 521 } 522 523 const char *get_system_type(void) 524 __attribute__ ((alias("octeon_board_type_string"))); 525 526 void octeon_user_io_init(void) 527 { 528 union octeon_cvmemctl cvmmemctl; 529 530 /* Get the current settings for CP0_CVMMEMCTL_REG */ 531 cvmmemctl.u64 = read_c0_cvmmemctl(); 532 /* R/W If set, marked write-buffer entries time out the same 533 * as as other entries; if clear, marked write-buffer entries 534 * use the maximum timeout. */ 535 cvmmemctl.s.dismarkwblongto = 1; 536 /* R/W If set, a merged store does not clear the write-buffer 537 * entry timeout state. */ 538 cvmmemctl.s.dismrgclrwbto = 0; 539 /* R/W Two bits that are the MSBs of the resultant CVMSEG LM 540 * word location for an IOBDMA. The other 8 bits come from the 541 * SCRADDR field of the IOBDMA. */ 542 cvmmemctl.s.iobdmascrmsb = 0; 543 /* R/W If set, SYNCWS and SYNCS only order marked stores; if 544 * clear, SYNCWS and SYNCS only order unmarked 545 * stores. SYNCWSMARKED has no effect when DISSYNCWS is 546 * set. */ 547 cvmmemctl.s.syncwsmarked = 0; 548 /* R/W If set, SYNCWS acts as SYNCW and SYNCS acts as SYNC. */ 549 cvmmemctl.s.dissyncws = 0; 550 /* R/W If set, no stall happens on write buffer full. */ 551 if (OCTEON_IS_MODEL(OCTEON_CN38XX_PASS2)) 552 cvmmemctl.s.diswbfst = 1; 553 else 554 cvmmemctl.s.diswbfst = 0; 555 /* R/W If set (and SX set), supervisor-level loads/stores can 556 * use XKPHYS addresses with <48>==0 */ 557 cvmmemctl.s.xkmemenas = 0; 558 559 /* R/W If set (and UX set), user-level loads/stores can use 560 * XKPHYS addresses with VA<48>==0 */ 561 cvmmemctl.s.xkmemenau = 0; 562 563 /* R/W If set (and SX set), supervisor-level loads/stores can 564 * use XKPHYS addresses with VA<48>==1 */ 565 cvmmemctl.s.xkioenas = 0; 566 567 /* R/W If set (and UX set), user-level loads/stores can use 568 * XKPHYS addresses with VA<48>==1 */ 569 cvmmemctl.s.xkioenau = 0; 570 571 /* R/W If set, all stores act as SYNCW (NOMERGE must be set 572 * when this is set) RW, reset to 0. */ 573 cvmmemctl.s.allsyncw = 0; 574 575 /* R/W If set, no stores merge, and all stores reach the 576 * coherent bus in order. */ 577 cvmmemctl.s.nomerge = 0; 578 /* R/W Selects the bit in the counter used for DID time-outs 0 579 * = 231, 1 = 230, 2 = 229, 3 = 214. Actual time-out is 580 * between 1x and 2x this interval. For example, with 581 * DIDTTO=3, expiration interval is between 16K and 32K. */ 582 cvmmemctl.s.didtto = 0; 583 /* R/W If set, the (mem) CSR clock never turns off. */ 584 cvmmemctl.s.csrckalwys = 0; 585 /* R/W If set, mclk never turns off. */ 586 cvmmemctl.s.mclkalwys = 0; 587 /* R/W Selects the bit in the counter used for write buffer 588 * flush time-outs (WBFLT+11) is the bit position in an 589 * internal counter used to determine expiration. The write 590 * buffer expires between 1x and 2x this interval. For 591 * example, with WBFLT = 0, a write buffer expires between 2K 592 * and 4K cycles after the write buffer entry is allocated. */ 593 cvmmemctl.s.wbfltime = 0; 594 /* R/W If set, do not put Istream in the L2 cache. */ 595 cvmmemctl.s.istrnol2 = 0; 596 597 /* 598 * R/W The write buffer threshold. As per erratum Core-14752 599 * for CN63XX, a sc/scd might fail if the write buffer is 600 * full. Lowering WBTHRESH greatly lowers the chances of the 601 * write buffer ever being full and triggering the erratum. 602 */ 603 if (OCTEON_IS_MODEL(OCTEON_CN63XX_PASS1_X)) 604 cvmmemctl.s.wbthresh = 4; 605 else 606 cvmmemctl.s.wbthresh = 10; 607 608 /* R/W If set, CVMSEG is available for loads/stores in 609 * kernel/debug mode. */ 610 #if CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE > 0 611 cvmmemctl.s.cvmsegenak = 1; 612 #else 613 cvmmemctl.s.cvmsegenak = 0; 614 #endif 615 /* R/W If set, CVMSEG is available for loads/stores in 616 * supervisor mode. */ 617 cvmmemctl.s.cvmsegenas = 0; 618 /* R/W If set, CVMSEG is available for loads/stores in user 619 * mode. */ 620 cvmmemctl.s.cvmsegenau = 0; 621 622 write_c0_cvmmemctl(cvmmemctl.u64); 623 624 /* Setup of CVMSEG is done in kernel-entry-init.h */ 625 if (smp_processor_id() == 0) 626 pr_notice("CVMSEG size: %d cache lines (%d bytes)\n", 627 CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE, 628 CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE * 128); 629 630 if (octeon_has_feature(OCTEON_FEATURE_FAU)) { 631 union cvmx_iob_fau_timeout fau_timeout; 632 633 /* Set a default for the hardware timeouts */ 634 fau_timeout.u64 = 0; 635 fau_timeout.s.tout_val = 0xfff; 636 /* Disable tagwait FAU timeout */ 637 fau_timeout.s.tout_enb = 0; 638 cvmx_write_csr(CVMX_IOB_FAU_TIMEOUT, fau_timeout.u64); 639 } 640 641 if ((!OCTEON_IS_MODEL(OCTEON_CN68XX) && 642 !OCTEON_IS_MODEL(OCTEON_CN7XXX)) || 643 OCTEON_IS_MODEL(OCTEON_CN70XX)) { 644 union cvmx_pow_nw_tim nm_tim; 645 646 nm_tim.u64 = 0; 647 /* 4096 cycles */ 648 nm_tim.s.nw_tim = 3; 649 cvmx_write_csr(CVMX_POW_NW_TIM, nm_tim.u64); 650 } 651 652 write_octeon_c0_icacheerr(0); 653 write_c0_derraddr1(0); 654 } 655 656 /** 657 * prom_init - Early entry point for arch setup 658 */ 659 void __init prom_init(void) 660 { 661 struct cvmx_sysinfo *sysinfo; 662 const char *arg; 663 char *p; 664 int i; 665 u64 t; 666 int argc; 667 /* 668 * The bootloader passes a pointer to the boot descriptor in 669 * $a3, this is available as fw_arg3. 670 */ 671 octeon_boot_desc_ptr = (struct octeon_boot_descriptor *)fw_arg3; 672 octeon_bootinfo = 673 cvmx_phys_to_ptr(octeon_boot_desc_ptr->cvmx_desc_vaddr); 674 cvmx_bootmem_init(cvmx_phys_to_ptr(octeon_bootinfo->phy_mem_desc_addr)); 675 676 sysinfo = cvmx_sysinfo_get(); 677 memset(sysinfo, 0, sizeof(*sysinfo)); 678 sysinfo->system_dram_size = octeon_bootinfo->dram_size << 20; 679 sysinfo->phy_mem_desc_addr = (u64)phys_to_virt(octeon_bootinfo->phy_mem_desc_addr); 680 681 if ((octeon_bootinfo->major_version > 1) || 682 (octeon_bootinfo->major_version == 1 && 683 octeon_bootinfo->minor_version >= 4)) 684 cvmx_coremask_copy(&sysinfo->core_mask, 685 &octeon_bootinfo->ext_core_mask); 686 else 687 cvmx_coremask_set64(&sysinfo->core_mask, 688 octeon_bootinfo->core_mask); 689 690 /* Some broken u-boot pass garbage in upper bits, clear them out */ 691 if (!OCTEON_IS_MODEL(OCTEON_CN78XX)) 692 for (i = 512; i < 1024; i++) 693 cvmx_coremask_clear_core(&sysinfo->core_mask, i); 694 695 sysinfo->exception_base_addr = octeon_bootinfo->exception_base_addr; 696 sysinfo->cpu_clock_hz = octeon_bootinfo->eclock_hz; 697 sysinfo->dram_data_rate_hz = octeon_bootinfo->dclock_hz * 2; 698 sysinfo->board_type = octeon_bootinfo->board_type; 699 sysinfo->board_rev_major = octeon_bootinfo->board_rev_major; 700 sysinfo->board_rev_minor = octeon_bootinfo->board_rev_minor; 701 memcpy(sysinfo->mac_addr_base, octeon_bootinfo->mac_addr_base, 702 sizeof(sysinfo->mac_addr_base)); 703 sysinfo->mac_addr_count = octeon_bootinfo->mac_addr_count; 704 memcpy(sysinfo->board_serial_number, 705 octeon_bootinfo->board_serial_number, 706 sizeof(sysinfo->board_serial_number)); 707 sysinfo->compact_flash_common_base_addr = 708 octeon_bootinfo->compact_flash_common_base_addr; 709 sysinfo->compact_flash_attribute_base_addr = 710 octeon_bootinfo->compact_flash_attribute_base_addr; 711 sysinfo->led_display_base_addr = octeon_bootinfo->led_display_base_addr; 712 sysinfo->dfa_ref_clock_hz = octeon_bootinfo->dfa_ref_clock_hz; 713 sysinfo->bootloader_config_flags = octeon_bootinfo->config_flags; 714 715 if (OCTEON_IS_OCTEON2()) { 716 /* I/O clock runs at a different rate than the CPU. */ 717 union cvmx_mio_rst_boot rst_boot; 718 rst_boot.u64 = cvmx_read_csr(CVMX_MIO_RST_BOOT); 719 octeon_io_clock_rate = 50000000 * rst_boot.s.pnr_mul; 720 } else if (OCTEON_IS_OCTEON3()) { 721 /* I/O clock runs at a different rate than the CPU. */ 722 union cvmx_rst_boot rst_boot; 723 rst_boot.u64 = cvmx_read_csr(CVMX_RST_BOOT); 724 octeon_io_clock_rate = 50000000 * rst_boot.s.pnr_mul; 725 } else { 726 octeon_io_clock_rate = sysinfo->cpu_clock_hz; 727 } 728 729 t = read_c0_cvmctl(); 730 if ((t & (1ull << 27)) == 0) { 731 /* 732 * Setup the multiplier save/restore code if 733 * CvmCtl[NOMUL] clear. 734 */ 735 void *save; 736 void *save_end; 737 void *restore; 738 void *restore_end; 739 int save_len; 740 int restore_len; 741 int save_max = (char *)octeon_mult_save_end - 742 (char *)octeon_mult_save; 743 int restore_max = (char *)octeon_mult_restore_end - 744 (char *)octeon_mult_restore; 745 if (current_cpu_data.cputype == CPU_CAVIUM_OCTEON3) { 746 save = octeon_mult_save3; 747 save_end = octeon_mult_save3_end; 748 restore = octeon_mult_restore3; 749 restore_end = octeon_mult_restore3_end; 750 } else { 751 save = octeon_mult_save2; 752 save_end = octeon_mult_save2_end; 753 restore = octeon_mult_restore2; 754 restore_end = octeon_mult_restore2_end; 755 } 756 save_len = (char *)save_end - (char *)save; 757 restore_len = (char *)restore_end - (char *)restore; 758 if (!WARN_ON(save_len > save_max || 759 restore_len > restore_max)) { 760 memcpy(octeon_mult_save, save, save_len); 761 memcpy(octeon_mult_restore, restore, restore_len); 762 } 763 } 764 765 /* 766 * Only enable the LED controller if we're running on a CN38XX, CN58XX, 767 * or CN56XX. The CN30XX and CN31XX don't have an LED controller. 768 */ 769 if (!octeon_is_simulation() && 770 octeon_has_feature(OCTEON_FEATURE_LED_CONTROLLER)) { 771 cvmx_write_csr(CVMX_LED_EN, 0); 772 cvmx_write_csr(CVMX_LED_PRT, 0); 773 cvmx_write_csr(CVMX_LED_DBG, 0); 774 cvmx_write_csr(CVMX_LED_PRT_FMT, 0); 775 cvmx_write_csr(CVMX_LED_UDD_CNTX(0), 32); 776 cvmx_write_csr(CVMX_LED_UDD_CNTX(1), 32); 777 cvmx_write_csr(CVMX_LED_UDD_DATX(0), 0); 778 cvmx_write_csr(CVMX_LED_UDD_DATX(1), 0); 779 cvmx_write_csr(CVMX_LED_EN, 1); 780 } 781 782 /* 783 * We need to temporarily allocate all memory in the reserve32 784 * region. This makes sure the kernel doesn't allocate this 785 * memory when it is getting memory from the 786 * bootloader. Later, after the memory allocations are 787 * complete, the reserve32 will be freed. 788 * 789 * Allocate memory for RESERVED32 aligned on 2MB boundary. This 790 * is in case we later use hugetlb entries with it. 791 */ 792 if (CONFIG_CAVIUM_RESERVE32) { 793 int64_t addr = 794 cvmx_bootmem_phy_named_block_alloc(CONFIG_CAVIUM_RESERVE32 << 20, 795 0, 0, 2 << 20, 796 "CAVIUM_RESERVE32", 0); 797 if (addr < 0) 798 pr_err("Failed to allocate CAVIUM_RESERVE32 memory area\n"); 799 else 800 octeon_reserve32_memory = addr; 801 } 802 803 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2 804 if (cvmx_read_csr(CVMX_L2D_FUS3) & (3ull << 34)) { 805 pr_info("Skipping L2 locking due to reduced L2 cache size\n"); 806 } else { 807 uint32_t __maybe_unused ebase = read_c0_ebase() & 0x3ffff000; 808 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_TLB 809 /* TLB refill */ 810 cvmx_l2c_lock_mem_region(ebase, 0x100); 811 #endif 812 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_EXCEPTION 813 /* General exception */ 814 cvmx_l2c_lock_mem_region(ebase + 0x180, 0x80); 815 #endif 816 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_LOW_LEVEL_INTERRUPT 817 /* Interrupt handler */ 818 cvmx_l2c_lock_mem_region(ebase + 0x200, 0x80); 819 #endif 820 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_INTERRUPT 821 cvmx_l2c_lock_mem_region(__pa_symbol(handle_int), 0x100); 822 cvmx_l2c_lock_mem_region(__pa_symbol(plat_irq_dispatch), 0x80); 823 #endif 824 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_MEMCPY 825 cvmx_l2c_lock_mem_region(__pa_symbol(memcpy), 0x480); 826 #endif 827 } 828 #endif 829 830 octeon_check_cpu_bist(); 831 832 octeon_uart = octeon_get_boot_uart(); 833 834 #ifdef CONFIG_SMP 835 octeon_write_lcd("LinuxSMP"); 836 #else 837 octeon_write_lcd("Linux"); 838 #endif 839 840 octeon_setup_delays(); 841 842 /* 843 * BIST should always be enabled when doing a soft reset. L2 844 * Cache locking for instance is not cleared unless BIST is 845 * enabled. Unfortunately due to a chip errata G-200 for 846 * Cn38XX and CN31XX, BIST must be disabled on these parts. 847 */ 848 if (OCTEON_IS_MODEL(OCTEON_CN38XX_PASS2) || 849 OCTEON_IS_MODEL(OCTEON_CN31XX)) 850 cvmx_write_csr(CVMX_CIU_SOFT_BIST, 0); 851 else 852 cvmx_write_csr(CVMX_CIU_SOFT_BIST, 1); 853 854 /* Default to 64MB in the simulator to speed things up */ 855 if (octeon_is_simulation()) 856 max_memory = 64ull << 20; 857 858 arg = strstr(arcs_cmdline, "mem="); 859 if (arg) { 860 max_memory = memparse(arg + 4, &p); 861 if (max_memory == 0) 862 max_memory = 32ull << 30; 863 if (*p == '@') 864 reserve_low_mem = memparse(p + 1, &p); 865 } 866 867 arcs_cmdline[0] = 0; 868 argc = octeon_boot_desc_ptr->argc; 869 for (i = 0; i < argc; i++) { 870 const char *arg = 871 cvmx_phys_to_ptr(octeon_boot_desc_ptr->argv[i]); 872 if ((strncmp(arg, "MEM=", 4) == 0) || 873 (strncmp(arg, "mem=", 4) == 0)) { 874 max_memory = memparse(arg + 4, &p); 875 if (max_memory == 0) 876 max_memory = 32ull << 30; 877 if (*p == '@') 878 reserve_low_mem = memparse(p + 1, &p); 879 #ifdef CONFIG_KEXEC 880 } else if (strncmp(arg, "crashkernel=", 12) == 0) { 881 crashk_size = memparse(arg+12, &p); 882 if (*p == '@') 883 crashk_base = memparse(p+1, &p); 884 strcat(arcs_cmdline, " "); 885 strcat(arcs_cmdline, arg); 886 /* 887 * To do: switch parsing to new style, something like: 888 * parse_crashkernel(arg, sysinfo->system_dram_size, 889 * &crashk_size, &crashk_base); 890 */ 891 #endif 892 } else if (strlen(arcs_cmdline) + strlen(arg) + 1 < 893 sizeof(arcs_cmdline) - 1) { 894 strcat(arcs_cmdline, " "); 895 strcat(arcs_cmdline, arg); 896 } 897 } 898 899 if (strstr(arcs_cmdline, "console=") == NULL) { 900 if (octeon_uart == 1) 901 strcat(arcs_cmdline, " console=ttyS1,115200"); 902 else 903 strcat(arcs_cmdline, " console=ttyS0,115200"); 904 } 905 906 mips_hpt_frequency = octeon_get_clock_rate(); 907 908 octeon_init_cvmcount(); 909 910 _machine_restart = octeon_restart; 911 _machine_halt = octeon_halt; 912 913 #ifdef CONFIG_KEXEC 914 _machine_kexec_shutdown = octeon_shutdown; 915 _machine_crash_shutdown = octeon_crash_shutdown; 916 _machine_kexec_prepare = octeon_kexec_prepare; 917 #ifdef CONFIG_SMP 918 _crash_smp_send_stop = octeon_crash_smp_send_stop; 919 #endif 920 #endif 921 922 octeon_user_io_init(); 923 octeon_setup_smp(); 924 } 925 926 /* Exclude a single page from the regions obtained in plat_mem_setup. */ 927 #ifndef CONFIG_CRASH_DUMP 928 static __init void memory_exclude_page(u64 addr, u64 *mem, u64 *size) 929 { 930 if (addr > *mem && addr < *mem + *size) { 931 u64 inc = addr - *mem; 932 memblock_add(*mem, inc); 933 *mem += inc; 934 *size -= inc; 935 } 936 937 if (addr == *mem && *size > PAGE_SIZE) { 938 *mem += PAGE_SIZE; 939 *size -= PAGE_SIZE; 940 } 941 } 942 #endif /* CONFIG_CRASH_DUMP */ 943 944 void __init fw_init_cmdline(void) 945 { 946 int i; 947 948 octeon_boot_desc_ptr = (struct octeon_boot_descriptor *)fw_arg3; 949 for (i = 0; i < octeon_boot_desc_ptr->argc; i++) { 950 const char *arg = 951 cvmx_phys_to_ptr(octeon_boot_desc_ptr->argv[i]); 952 if (strlen(arcs_cmdline) + strlen(arg) + 1 < 953 sizeof(arcs_cmdline) - 1) { 954 strcat(arcs_cmdline, " "); 955 strcat(arcs_cmdline, arg); 956 } 957 } 958 } 959 960 void __init *plat_get_fdt(void) 961 { 962 octeon_bootinfo = 963 cvmx_phys_to_ptr(octeon_boot_desc_ptr->cvmx_desc_vaddr); 964 return phys_to_virt(octeon_bootinfo->fdt_addr); 965 } 966 967 void __init plat_mem_setup(void) 968 { 969 uint64_t mem_alloc_size; 970 uint64_t total; 971 uint64_t crashk_end; 972 #ifndef CONFIG_CRASH_DUMP 973 int64_t memory; 974 #endif 975 976 total = 0; 977 crashk_end = 0; 978 979 /* 980 * The Mips memory init uses the first memory location for 981 * some memory vectors. When SPARSEMEM is in use, it doesn't 982 * verify that the size is big enough for the final 983 * vectors. Making the smallest chuck 4MB seems to be enough 984 * to consistently work. 985 */ 986 mem_alloc_size = 4 << 20; 987 if (mem_alloc_size > max_memory) 988 mem_alloc_size = max_memory; 989 990 /* Crashkernel ignores bootmem list. It relies on mem=X@Y option */ 991 #ifdef CONFIG_CRASH_DUMP 992 memblock_add(reserve_low_mem, max_memory); 993 total += max_memory; 994 #else 995 #ifdef CONFIG_KEXEC 996 if (crashk_size > 0) { 997 memblock_add(crashk_base, crashk_size); 998 crashk_end = crashk_base + crashk_size; 999 } 1000 #endif 1001 /* 1002 * When allocating memory, we want incrementing addresses, 1003 * which is handled by memblock 1004 */ 1005 cvmx_bootmem_lock(); 1006 while (total < max_memory) { 1007 memory = cvmx_bootmem_phy_alloc(mem_alloc_size, 1008 __pa_symbol(&_end), -1, 1009 0x100000, 1010 CVMX_BOOTMEM_FLAG_NO_LOCKING); 1011 if (memory >= 0) { 1012 u64 size = mem_alloc_size; 1013 #ifdef CONFIG_KEXEC 1014 uint64_t end; 1015 #endif 1016 1017 /* 1018 * exclude a page at the beginning and end of 1019 * the 256MB PCIe 'hole' so the kernel will not 1020 * try to allocate multi-page buffers that 1021 * span the discontinuity. 1022 */ 1023 memory_exclude_page(CVMX_PCIE_BAR1_PHYS_BASE, 1024 &memory, &size); 1025 memory_exclude_page(CVMX_PCIE_BAR1_PHYS_BASE + 1026 CVMX_PCIE_BAR1_PHYS_SIZE, 1027 &memory, &size); 1028 #ifdef CONFIG_KEXEC 1029 end = memory + mem_alloc_size; 1030 1031 /* 1032 * This function automatically merges address regions 1033 * next to each other if they are received in 1034 * incrementing order 1035 */ 1036 if (memory < crashk_base && end > crashk_end) { 1037 /* region is fully in */ 1038 memblock_add(memory, crashk_base - memory); 1039 total += crashk_base - memory; 1040 memblock_add(crashk_end, end - crashk_end); 1041 total += end - crashk_end; 1042 continue; 1043 } 1044 1045 if (memory >= crashk_base && end <= crashk_end) 1046 /* 1047 * Entire memory region is within the new 1048 * kernel's memory, ignore it. 1049 */ 1050 continue; 1051 1052 if (memory > crashk_base && memory < crashk_end && 1053 end > crashk_end) { 1054 /* 1055 * Overlap with the beginning of the region, 1056 * reserve the beginning. 1057 */ 1058 mem_alloc_size -= crashk_end - memory; 1059 memory = crashk_end; 1060 } else if (memory < crashk_base && end > crashk_base && 1061 end < crashk_end) 1062 /* 1063 * Overlap with the beginning of the region, 1064 * chop of end. 1065 */ 1066 mem_alloc_size -= end - crashk_base; 1067 #endif 1068 memblock_add(memory, mem_alloc_size); 1069 total += mem_alloc_size; 1070 /* Recovering mem_alloc_size */ 1071 mem_alloc_size = 4 << 20; 1072 } else { 1073 break; 1074 } 1075 } 1076 cvmx_bootmem_unlock(); 1077 #endif /* CONFIG_CRASH_DUMP */ 1078 1079 /* 1080 * Now that we've allocated the kernel memory it is safe to 1081 * free the reserved region. We free it here so that builtin 1082 * drivers can use the memory. 1083 */ 1084 if (octeon_reserve32_memory) 1085 cvmx_bootmem_free_named("CAVIUM_RESERVE32"); 1086 1087 if (total == 0) 1088 panic("Unable to allocate memory from " 1089 "cvmx_bootmem_phy_alloc"); 1090 } 1091 1092 /* 1093 * Emit one character to the boot UART. Exported for use by the 1094 * watchdog timer. 1095 */ 1096 void prom_putchar(char c) 1097 { 1098 uint64_t lsrval; 1099 1100 /* Spin until there is room */ 1101 do { 1102 lsrval = cvmx_read_csr(CVMX_MIO_UARTX_LSR(octeon_uart)); 1103 } while ((lsrval & 0x20) == 0); 1104 1105 /* Write the byte */ 1106 cvmx_write_csr(CVMX_MIO_UARTX_THR(octeon_uart), c & 0xffull); 1107 } 1108 EXPORT_SYMBOL(prom_putchar); 1109 1110 void __init prom_free_prom_memory(void) 1111 { 1112 if (OCTEON_IS_MODEL(OCTEON_CN6XXX)) { 1113 /* Check for presence of Core-14449 fix. */ 1114 u32 insn; 1115 u32 *foo; 1116 1117 foo = &insn; 1118 1119 asm volatile("# before" : : : "memory"); 1120 prefetch(foo); 1121 asm volatile( 1122 ".set push\n\t" 1123 ".set noreorder\n\t" 1124 "bal 1f\n\t" 1125 "nop\n" 1126 "1:\tlw %0,-12($31)\n\t" 1127 ".set pop\n\t" 1128 : "=r" (insn) : : "$31", "memory"); 1129 1130 if ((insn >> 26) != 0x33) 1131 panic("No PREF instruction at Core-14449 probe point."); 1132 1133 if (((insn >> 16) & 0x1f) != 28) 1134 panic("OCTEON II DCache prefetch workaround not in place (%04x).\n" 1135 "Please build kernel with proper options (CONFIG_CAVIUM_CN63XXP1).", 1136 insn); 1137 } 1138 } 1139 1140 void __init octeon_fill_mac_addresses(void); 1141 1142 void __init device_tree_init(void) 1143 { 1144 const void *fdt; 1145 bool do_prune; 1146 bool fill_mac; 1147 1148 #ifdef CONFIG_MIPS_ELF_APPENDED_DTB 1149 if (!fdt_check_header(&__appended_dtb)) { 1150 fdt = &__appended_dtb; 1151 do_prune = false; 1152 fill_mac = true; 1153 pr_info("Using appended Device Tree.\n"); 1154 } else 1155 #endif 1156 if (octeon_bootinfo->minor_version >= 3 && octeon_bootinfo->fdt_addr) { 1157 fdt = phys_to_virt(octeon_bootinfo->fdt_addr); 1158 if (fdt_check_header(fdt)) 1159 panic("Corrupt Device Tree passed to kernel."); 1160 do_prune = false; 1161 fill_mac = false; 1162 pr_info("Using passed Device Tree.\n"); 1163 } else if (OCTEON_IS_MODEL(OCTEON_CN68XX)) { 1164 fdt = &__dtb_octeon_68xx_begin; 1165 do_prune = true; 1166 fill_mac = true; 1167 } else { 1168 fdt = &__dtb_octeon_3xxx_begin; 1169 do_prune = true; 1170 fill_mac = true; 1171 } 1172 1173 initial_boot_params = (void *)fdt; 1174 1175 if (do_prune) { 1176 octeon_prune_device_tree(); 1177 pr_info("Using internal Device Tree.\n"); 1178 } 1179 if (fill_mac) 1180 octeon_fill_mac_addresses(); 1181 unflatten_and_copy_device_tree(); 1182 init_octeon_system_type(); 1183 } 1184 1185 static int __initdata disable_octeon_edac_p; 1186 1187 static int __init disable_octeon_edac(char *str) 1188 { 1189 disable_octeon_edac_p = 1; 1190 return 0; 1191 } 1192 early_param("disable_octeon_edac", disable_octeon_edac); 1193 1194 static char *edac_device_names[] = { 1195 "octeon_l2c_edac", 1196 "octeon_pc_edac", 1197 }; 1198 1199 static int __init edac_devinit(void) 1200 { 1201 struct platform_device *dev; 1202 int i, err = 0; 1203 int num_lmc; 1204 char *name; 1205 1206 if (disable_octeon_edac_p) 1207 return 0; 1208 1209 for (i = 0; i < ARRAY_SIZE(edac_device_names); i++) { 1210 name = edac_device_names[i]; 1211 dev = platform_device_register_simple(name, -1, NULL, 0); 1212 if (IS_ERR(dev)) { 1213 pr_err("Registration of %s failed!\n", name); 1214 err = PTR_ERR(dev); 1215 } 1216 } 1217 1218 num_lmc = OCTEON_IS_MODEL(OCTEON_CN68XX) ? 4 : 1219 (OCTEON_IS_MODEL(OCTEON_CN56XX) ? 2 : 1); 1220 for (i = 0; i < num_lmc; i++) { 1221 dev = platform_device_register_simple("octeon_lmc_edac", 1222 i, NULL, 0); 1223 if (IS_ERR(dev)) { 1224 pr_err("Registration of octeon_lmc_edac %d failed!\n", i); 1225 err = PTR_ERR(dev); 1226 } 1227 } 1228 1229 return err; 1230 } 1231 device_initcall(edac_devinit); 1232 1233 static void __initdata *octeon_dummy_iospace; 1234 1235 static int __init octeon_no_pci_init(void) 1236 { 1237 /* 1238 * Initially assume there is no PCI. The PCI/PCIe platform code will 1239 * later re-initialize these to correct values if they are present. 1240 */ 1241 octeon_dummy_iospace = vzalloc(IO_SPACE_LIMIT); 1242 set_io_port_base((unsigned long)octeon_dummy_iospace); 1243 ioport_resource.start = MAX_RESOURCE; 1244 ioport_resource.end = 0; 1245 return 0; 1246 } 1247 core_initcall(octeon_no_pci_init); 1248 1249 static int __init octeon_no_pci_release(void) 1250 { 1251 /* 1252 * Release the allocated memory if a real IO space is there. 1253 */ 1254 if ((unsigned long)octeon_dummy_iospace != mips_io_port_base) 1255 vfree(octeon_dummy_iospace); 1256 return 0; 1257 } 1258 late_initcall(octeon_no_pci_release); 1259