xref: /linux/arch/mips/cavium-octeon/octeon-platform.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 2004-2011 Cavium Networks
7  * Copyright (C) 2008 Wind River Systems
8  */
9 
10 #include <linux/delay.h>
11 #include <linux/init.h>
12 #include <linux/irq.h>
13 #include <linux/i2c.h>
14 #include <linux/usb.h>
15 #include <linux/dma-mapping.h>
16 #include <linux/etherdevice.h>
17 #include <linux/module.h>
18 #include <linux/mutex.h>
19 #include <linux/slab.h>
20 #include <linux/platform_device.h>
21 #include <linux/of_platform.h>
22 #include <linux/of_fdt.h>
23 #include <linux/libfdt.h>
24 #include <linux/usb/ehci_pdriver.h>
25 #include <linux/usb/ohci_pdriver.h>
26 
27 #include <asm/octeon/octeon.h>
28 #include <asm/octeon/cvmx-rnm-defs.h>
29 #include <asm/octeon/cvmx-helper.h>
30 #include <asm/octeon/cvmx-helper-board.h>
31 #include <asm/octeon/cvmx-uctlx-defs.h>
32 
33 /* Octeon Random Number Generator.  */
34 static int __init octeon_rng_device_init(void)
35 {
36 	struct platform_device *pd;
37 	int ret = 0;
38 
39 	struct resource rng_resources[] = {
40 		{
41 			.flags	= IORESOURCE_MEM,
42 			.start	= XKPHYS_TO_PHYS(CVMX_RNM_CTL_STATUS),
43 			.end	= XKPHYS_TO_PHYS(CVMX_RNM_CTL_STATUS) + 0xf
44 		}, {
45 			.flags	= IORESOURCE_MEM,
46 			.start	= cvmx_build_io_address(8, 0),
47 			.end	= cvmx_build_io_address(8, 0) + 0x7
48 		}
49 	};
50 
51 	pd = platform_device_alloc("octeon_rng", -1);
52 	if (!pd) {
53 		ret = -ENOMEM;
54 		goto out;
55 	}
56 
57 	ret = platform_device_add_resources(pd, rng_resources,
58 					    ARRAY_SIZE(rng_resources));
59 	if (ret)
60 		goto fail;
61 
62 	ret = platform_device_add(pd);
63 	if (ret)
64 		goto fail;
65 
66 	return ret;
67 fail:
68 	platform_device_put(pd);
69 
70 out:
71 	return ret;
72 }
73 device_initcall(octeon_rng_device_init);
74 
75 #ifdef CONFIG_USB
76 
77 static DEFINE_MUTEX(octeon2_usb_clocks_mutex);
78 
79 static int octeon2_usb_clock_start_cnt;
80 
81 static void octeon2_usb_clocks_start(struct device *dev)
82 {
83 	u64 div;
84 	union cvmx_uctlx_if_ena if_ena;
85 	union cvmx_uctlx_clk_rst_ctl clk_rst_ctl;
86 	union cvmx_uctlx_uphy_ctl_status uphy_ctl_status;
87 	union cvmx_uctlx_uphy_portx_ctl_status port_ctl_status;
88 	int i;
89 	unsigned long io_clk_64_to_ns;
90 	u32 clock_rate = 12000000;
91 	bool is_crystal_clock = false;
92 
93 
94 	mutex_lock(&octeon2_usb_clocks_mutex);
95 
96 	octeon2_usb_clock_start_cnt++;
97 	if (octeon2_usb_clock_start_cnt != 1)
98 		goto exit;
99 
100 	io_clk_64_to_ns = 64000000000ull / octeon_get_io_clock_rate();
101 
102 	if (dev->of_node) {
103 		struct device_node *uctl_node;
104 		const char *clock_type;
105 
106 		uctl_node = of_get_parent(dev->of_node);
107 		if (!uctl_node) {
108 			dev_err(dev, "No UCTL device node\n");
109 			goto exit;
110 		}
111 		i = of_property_read_u32(uctl_node,
112 					 "refclk-frequency", &clock_rate);
113 		if (i) {
114 			dev_err(dev, "No UCTL \"refclk-frequency\"\n");
115 			goto exit;
116 		}
117 		i = of_property_read_string(uctl_node,
118 					    "refclk-type", &clock_type);
119 
120 		if (!i && strcmp("crystal", clock_type) == 0)
121 			is_crystal_clock = true;
122 	}
123 
124 	/*
125 	 * Step 1: Wait for voltages stable.  That surely happened
126 	 * before starting the kernel.
127 	 *
128 	 * Step 2: Enable  SCLK of UCTL by writing UCTL0_IF_ENA[EN] = 1
129 	 */
130 	if_ena.u64 = 0;
131 	if_ena.s.en = 1;
132 	cvmx_write_csr(CVMX_UCTLX_IF_ENA(0), if_ena.u64);
133 
134 	/* Step 3: Configure the reference clock, PHY, and HCLK */
135 	clk_rst_ctl.u64 = cvmx_read_csr(CVMX_UCTLX_CLK_RST_CTL(0));
136 
137 	/*
138 	 * If the UCTL looks like it has already been started, skip
139 	 * the initialization, otherwise bus errors are obtained.
140 	 */
141 	if (clk_rst_ctl.s.hrst)
142 		goto end_clock;
143 	/* 3a */
144 	clk_rst_ctl.s.p_por = 1;
145 	clk_rst_ctl.s.hrst = 0;
146 	clk_rst_ctl.s.p_prst = 0;
147 	clk_rst_ctl.s.h_clkdiv_rst = 0;
148 	clk_rst_ctl.s.o_clkdiv_rst = 0;
149 	clk_rst_ctl.s.h_clkdiv_en = 0;
150 	clk_rst_ctl.s.o_clkdiv_en = 0;
151 	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
152 
153 	/* 3b */
154 	clk_rst_ctl.s.p_refclk_sel = is_crystal_clock ? 0 : 1;
155 	switch (clock_rate) {
156 	default:
157 		pr_err("Invalid UCTL clock rate of %u, using 12000000 instead\n",
158 			clock_rate);
159 		/* Fall through */
160 	case 12000000:
161 		clk_rst_ctl.s.p_refclk_div = 0;
162 		break;
163 	case 24000000:
164 		clk_rst_ctl.s.p_refclk_div = 1;
165 		break;
166 	case 48000000:
167 		clk_rst_ctl.s.p_refclk_div = 2;
168 		break;
169 	}
170 	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
171 
172 	/* 3c */
173 	div = octeon_get_io_clock_rate() / 130000000ull;
174 
175 	switch (div) {
176 	case 0:
177 		div = 1;
178 		break;
179 	case 1:
180 	case 2:
181 	case 3:
182 	case 4:
183 		break;
184 	case 5:
185 		div = 4;
186 		break;
187 	case 6:
188 	case 7:
189 		div = 6;
190 		break;
191 	case 8:
192 	case 9:
193 	case 10:
194 	case 11:
195 		div = 8;
196 		break;
197 	default:
198 		div = 12;
199 		break;
200 	}
201 	clk_rst_ctl.s.h_div = div;
202 	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
203 	/* Read it back, */
204 	clk_rst_ctl.u64 = cvmx_read_csr(CVMX_UCTLX_CLK_RST_CTL(0));
205 	clk_rst_ctl.s.h_clkdiv_en = 1;
206 	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
207 	/* 3d */
208 	clk_rst_ctl.s.h_clkdiv_rst = 1;
209 	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
210 
211 	/* 3e: delay 64 io clocks */
212 	ndelay(io_clk_64_to_ns);
213 
214 	/*
215 	 * Step 4: Program the power-on reset field in the UCTL
216 	 * clock-reset-control register.
217 	 */
218 	clk_rst_ctl.s.p_por = 0;
219 	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
220 
221 	/* Step 5:    Wait 1 ms for the PHY clock to start. */
222 	mdelay(1);
223 
224 	/*
225 	 * Step 6: Program the reset input from automatic test
226 	 * equipment field in the UPHY CSR
227 	 */
228 	uphy_ctl_status.u64 = cvmx_read_csr(CVMX_UCTLX_UPHY_CTL_STATUS(0));
229 	uphy_ctl_status.s.ate_reset = 1;
230 	cvmx_write_csr(CVMX_UCTLX_UPHY_CTL_STATUS(0), uphy_ctl_status.u64);
231 
232 	/* Step 7: Wait for at least 10ns. */
233 	ndelay(10);
234 
235 	/* Step 8: Clear the ATE_RESET field in the UPHY CSR. */
236 	uphy_ctl_status.s.ate_reset = 0;
237 	cvmx_write_csr(CVMX_UCTLX_UPHY_CTL_STATUS(0), uphy_ctl_status.u64);
238 
239 	/*
240 	 * Step 9: Wait for at least 20ns for UPHY to output PHY clock
241 	 * signals and OHCI_CLK48
242 	 */
243 	ndelay(20);
244 
245 	/* Step 10: Configure the OHCI_CLK48 and OHCI_CLK12 clocks. */
246 	/* 10a */
247 	clk_rst_ctl.s.o_clkdiv_rst = 1;
248 	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
249 
250 	/* 10b */
251 	clk_rst_ctl.s.o_clkdiv_en = 1;
252 	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
253 
254 	/* 10c */
255 	ndelay(io_clk_64_to_ns);
256 
257 	/*
258 	 * Step 11: Program the PHY reset field:
259 	 * UCTL0_CLK_RST_CTL[P_PRST] = 1
260 	 */
261 	clk_rst_ctl.s.p_prst = 1;
262 	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
263 
264 	/* Step 12: Wait 1 uS. */
265 	udelay(1);
266 
267 	/* Step 13: Program the HRESET_N field: UCTL0_CLK_RST_CTL[HRST] = 1 */
268 	clk_rst_ctl.s.hrst = 1;
269 	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
270 
271 end_clock:
272 	/* Now we can set some other registers.  */
273 
274 	for (i = 0; i <= 1; i++) {
275 		port_ctl_status.u64 =
276 			cvmx_read_csr(CVMX_UCTLX_UPHY_PORTX_CTL_STATUS(i, 0));
277 		/* Set txvreftune to 15 to obtain compliant 'eye' diagram. */
278 		port_ctl_status.s.txvreftune = 15;
279 		port_ctl_status.s.txrisetune = 1;
280 		port_ctl_status.s.txpreemphasistune = 1;
281 		cvmx_write_csr(CVMX_UCTLX_UPHY_PORTX_CTL_STATUS(i, 0),
282 			       port_ctl_status.u64);
283 	}
284 
285 	/* Set uSOF cycle period to 60,000 bits. */
286 	cvmx_write_csr(CVMX_UCTLX_EHCI_FLA(0), 0x20ull);
287 exit:
288 	mutex_unlock(&octeon2_usb_clocks_mutex);
289 }
290 
291 static void octeon2_usb_clocks_stop(void)
292 {
293 	mutex_lock(&octeon2_usb_clocks_mutex);
294 	octeon2_usb_clock_start_cnt--;
295 	mutex_unlock(&octeon2_usb_clocks_mutex);
296 }
297 
298 static int octeon_ehci_power_on(struct platform_device *pdev)
299 {
300 	octeon2_usb_clocks_start(&pdev->dev);
301 	return 0;
302 }
303 
304 static void octeon_ehci_power_off(struct platform_device *pdev)
305 {
306 	octeon2_usb_clocks_stop();
307 }
308 
309 static struct usb_ehci_pdata octeon_ehci_pdata = {
310 	/* Octeon EHCI matches CPU endianness. */
311 #ifdef __BIG_ENDIAN
312 	.big_endian_mmio	= 1,
313 #endif
314 	.dma_mask_64	= 1,
315 	.power_on	= octeon_ehci_power_on,
316 	.power_off	= octeon_ehci_power_off,
317 };
318 
319 static void __init octeon_ehci_hw_start(struct device *dev)
320 {
321 	union cvmx_uctlx_ehci_ctl ehci_ctl;
322 
323 	octeon2_usb_clocks_start(dev);
324 
325 	ehci_ctl.u64 = cvmx_read_csr(CVMX_UCTLX_EHCI_CTL(0));
326 	/* Use 64-bit addressing. */
327 	ehci_ctl.s.ehci_64b_addr_en = 1;
328 	ehci_ctl.s.l2c_addr_msb = 0;
329 #ifdef __BIG_ENDIAN
330 	ehci_ctl.s.l2c_buff_emod = 1; /* Byte swapped. */
331 	ehci_ctl.s.l2c_desc_emod = 1; /* Byte swapped. */
332 #else
333 	ehci_ctl.s.l2c_buff_emod = 0; /* not swapped. */
334 	ehci_ctl.s.l2c_desc_emod = 0; /* not swapped. */
335 	ehci_ctl.s.inv_reg_a2 = 1;
336 #endif
337 	cvmx_write_csr(CVMX_UCTLX_EHCI_CTL(0), ehci_ctl.u64);
338 
339 	octeon2_usb_clocks_stop();
340 }
341 
342 static int __init octeon_ehci_device_init(void)
343 {
344 	struct platform_device *pd;
345 	struct device_node *ehci_node;
346 	int ret = 0;
347 
348 	ehci_node = of_find_node_by_name(NULL, "ehci");
349 	if (!ehci_node)
350 		return 0;
351 
352 	pd = of_find_device_by_node(ehci_node);
353 	if (!pd)
354 		return 0;
355 
356 	pd->dev.platform_data = &octeon_ehci_pdata;
357 	octeon_ehci_hw_start(&pd->dev);
358 
359 	return ret;
360 }
361 device_initcall(octeon_ehci_device_init);
362 
363 static int octeon_ohci_power_on(struct platform_device *pdev)
364 {
365 	octeon2_usb_clocks_start(&pdev->dev);
366 	return 0;
367 }
368 
369 static void octeon_ohci_power_off(struct platform_device *pdev)
370 {
371 	octeon2_usb_clocks_stop();
372 }
373 
374 static struct usb_ohci_pdata octeon_ohci_pdata = {
375 	/* Octeon OHCI matches CPU endianness. */
376 #ifdef __BIG_ENDIAN
377 	.big_endian_mmio	= 1,
378 #endif
379 	.power_on	= octeon_ohci_power_on,
380 	.power_off	= octeon_ohci_power_off,
381 };
382 
383 static void __init octeon_ohci_hw_start(struct device *dev)
384 {
385 	union cvmx_uctlx_ohci_ctl ohci_ctl;
386 
387 	octeon2_usb_clocks_start(dev);
388 
389 	ohci_ctl.u64 = cvmx_read_csr(CVMX_UCTLX_OHCI_CTL(0));
390 	ohci_ctl.s.l2c_addr_msb = 0;
391 #ifdef __BIG_ENDIAN
392 	ohci_ctl.s.l2c_buff_emod = 1; /* Byte swapped. */
393 	ohci_ctl.s.l2c_desc_emod = 1; /* Byte swapped. */
394 #else
395 	ohci_ctl.s.l2c_buff_emod = 0; /* not swapped. */
396 	ohci_ctl.s.l2c_desc_emod = 0; /* not swapped. */
397 	ohci_ctl.s.inv_reg_a2 = 1;
398 #endif
399 	cvmx_write_csr(CVMX_UCTLX_OHCI_CTL(0), ohci_ctl.u64);
400 
401 	octeon2_usb_clocks_stop();
402 }
403 
404 static int __init octeon_ohci_device_init(void)
405 {
406 	struct platform_device *pd;
407 	struct device_node *ohci_node;
408 	int ret = 0;
409 
410 	ohci_node = of_find_node_by_name(NULL, "ohci");
411 	if (!ohci_node)
412 		return 0;
413 
414 	pd = of_find_device_by_node(ohci_node);
415 	if (!pd)
416 		return 0;
417 
418 	pd->dev.platform_data = &octeon_ohci_pdata;
419 	octeon_ohci_hw_start(&pd->dev);
420 
421 	return ret;
422 }
423 device_initcall(octeon_ohci_device_init);
424 
425 #endif /* CONFIG_USB */
426 
427 
428 static struct of_device_id __initdata octeon_ids[] = {
429 	{ .compatible = "simple-bus", },
430 	{ .compatible = "cavium,octeon-6335-uctl", },
431 	{ .compatible = "cavium,octeon-5750-usbn", },
432 	{ .compatible = "cavium,octeon-3860-bootbus", },
433 	{ .compatible = "cavium,mdio-mux", },
434 	{ .compatible = "gpio-leds", },
435 	{},
436 };
437 
438 static bool __init octeon_has_88e1145(void)
439 {
440 	return !OCTEON_IS_MODEL(OCTEON_CN52XX) &&
441 	       !OCTEON_IS_MODEL(OCTEON_CN6XXX) &&
442 	       !OCTEON_IS_MODEL(OCTEON_CN56XX);
443 }
444 
445 static void __init octeon_fdt_set_phy(int eth, int phy_addr)
446 {
447 	const __be32 *phy_handle;
448 	const __be32 *alt_phy_handle;
449 	const __be32 *reg;
450 	u32 phandle;
451 	int phy;
452 	int alt_phy;
453 	const char *p;
454 	int current_len;
455 	char new_name[20];
456 
457 	phy_handle = fdt_getprop(initial_boot_params, eth, "phy-handle", NULL);
458 	if (!phy_handle)
459 		return;
460 
461 	phandle = be32_to_cpup(phy_handle);
462 	phy = fdt_node_offset_by_phandle(initial_boot_params, phandle);
463 
464 	alt_phy_handle = fdt_getprop(initial_boot_params, eth, "cavium,alt-phy-handle", NULL);
465 	if (alt_phy_handle) {
466 		u32 alt_phandle = be32_to_cpup(alt_phy_handle);
467 		alt_phy = fdt_node_offset_by_phandle(initial_boot_params, alt_phandle);
468 	} else {
469 		alt_phy = -1;
470 	}
471 
472 	if (phy_addr < 0 || phy < 0) {
473 		/* Delete the PHY things */
474 		fdt_nop_property(initial_boot_params, eth, "phy-handle");
475 		/* This one may fail */
476 		fdt_nop_property(initial_boot_params, eth, "cavium,alt-phy-handle");
477 		if (phy >= 0)
478 			fdt_nop_node(initial_boot_params, phy);
479 		if (alt_phy >= 0)
480 			fdt_nop_node(initial_boot_params, alt_phy);
481 		return;
482 	}
483 
484 	if (phy_addr >= 256 && alt_phy > 0) {
485 		const struct fdt_property *phy_prop;
486 		struct fdt_property *alt_prop;
487 		u32 phy_handle_name;
488 
489 		/* Use the alt phy node instead.*/
490 		phy_prop = fdt_get_property(initial_boot_params, eth, "phy-handle", NULL);
491 		phy_handle_name = phy_prop->nameoff;
492 		fdt_nop_node(initial_boot_params, phy);
493 		fdt_nop_property(initial_boot_params, eth, "phy-handle");
494 		alt_prop = fdt_get_property_w(initial_boot_params, eth, "cavium,alt-phy-handle", NULL);
495 		alt_prop->nameoff = phy_handle_name;
496 		phy = alt_phy;
497 	}
498 
499 	phy_addr &= 0xff;
500 
501 	if (octeon_has_88e1145()) {
502 		fdt_nop_property(initial_boot_params, phy, "marvell,reg-init");
503 		memset(new_name, 0, sizeof(new_name));
504 		strcpy(new_name, "marvell,88e1145");
505 		p = fdt_getprop(initial_boot_params, phy, "compatible",
506 				&current_len);
507 		if (p && current_len >= strlen(new_name))
508 			fdt_setprop_inplace(initial_boot_params, phy,
509 					"compatible", new_name, current_len);
510 	}
511 
512 	reg = fdt_getprop(initial_boot_params, phy, "reg", NULL);
513 	if (phy_addr == be32_to_cpup(reg))
514 		return;
515 
516 	fdt_setprop_inplace_cell(initial_boot_params, phy, "reg", phy_addr);
517 
518 	snprintf(new_name, sizeof(new_name), "ethernet-phy@%x", phy_addr);
519 
520 	p = fdt_get_name(initial_boot_params, phy, &current_len);
521 	if (p && current_len == strlen(new_name))
522 		fdt_set_name(initial_boot_params, phy, new_name);
523 	else
524 		pr_err("Error: could not rename ethernet phy: <%s>", p);
525 }
526 
527 static void __init octeon_fdt_set_mac_addr(int n, u64 *pmac)
528 {
529 	const u8 *old_mac;
530 	int old_len;
531 	u8 new_mac[6];
532 	u64 mac = *pmac;
533 	int r;
534 
535 	old_mac = fdt_getprop(initial_boot_params, n, "local-mac-address",
536 			      &old_len);
537 	if (!old_mac || old_len != 6 || is_valid_ether_addr(old_mac))
538 		return;
539 
540 	new_mac[0] = (mac >> 40) & 0xff;
541 	new_mac[1] = (mac >> 32) & 0xff;
542 	new_mac[2] = (mac >> 24) & 0xff;
543 	new_mac[3] = (mac >> 16) & 0xff;
544 	new_mac[4] = (mac >> 8) & 0xff;
545 	new_mac[5] = mac & 0xff;
546 
547 	r = fdt_setprop_inplace(initial_boot_params, n, "local-mac-address",
548 				new_mac, sizeof(new_mac));
549 
550 	if (r) {
551 		pr_err("Setting \"local-mac-address\" failed %d", r);
552 		return;
553 	}
554 	*pmac = mac + 1;
555 }
556 
557 static void __init octeon_fdt_rm_ethernet(int node)
558 {
559 	const __be32 *phy_handle;
560 
561 	phy_handle = fdt_getprop(initial_boot_params, node, "phy-handle", NULL);
562 	if (phy_handle) {
563 		u32 ph = be32_to_cpup(phy_handle);
564 		int p = fdt_node_offset_by_phandle(initial_boot_params, ph);
565 		if (p >= 0)
566 			fdt_nop_node(initial_boot_params, p);
567 	}
568 	fdt_nop_node(initial_boot_params, node);
569 }
570 
571 static void __init octeon_fdt_pip_port(int iface, int i, int p, int max)
572 {
573 	char name_buffer[20];
574 	int eth;
575 	int phy_addr;
576 	int ipd_port;
577 
578 	snprintf(name_buffer, sizeof(name_buffer), "ethernet@%x", p);
579 	eth = fdt_subnode_offset(initial_boot_params, iface, name_buffer);
580 	if (eth < 0)
581 		return;
582 	if (p > max) {
583 		pr_debug("Deleting port %x:%x\n", i, p);
584 		octeon_fdt_rm_ethernet(eth);
585 		return;
586 	}
587 	if (OCTEON_IS_MODEL(OCTEON_CN68XX))
588 		ipd_port = (0x100 * i) + (0x10 * p) + 0x800;
589 	else
590 		ipd_port = 16 * i + p;
591 
592 	phy_addr = cvmx_helper_board_get_mii_address(ipd_port);
593 	octeon_fdt_set_phy(eth, phy_addr);
594 }
595 
596 static void __init octeon_fdt_pip_iface(int pip, int idx)
597 {
598 	char name_buffer[20];
599 	int iface;
600 	int p;
601 	int count = 0;
602 
603 	snprintf(name_buffer, sizeof(name_buffer), "interface@%d", idx);
604 	iface = fdt_subnode_offset(initial_boot_params, pip, name_buffer);
605 	if (iface < 0)
606 		return;
607 
608 	if (cvmx_helper_interface_enumerate(idx) == 0)
609 		count = cvmx_helper_ports_on_interface(idx);
610 
611 	for (p = 0; p < 16; p++)
612 		octeon_fdt_pip_port(iface, idx, p, count - 1);
613 }
614 
615 void __init octeon_fill_mac_addresses(void)
616 {
617 	const char *alias_prop;
618 	char name_buffer[20];
619 	u64 mac_addr_base;
620 	int aliases;
621 	int pip;
622 	int i;
623 
624 	aliases = fdt_path_offset(initial_boot_params, "/aliases");
625 	if (aliases < 0)
626 		return;
627 
628 	mac_addr_base =
629 		((octeon_bootinfo->mac_addr_base[0] & 0xffull)) << 40 |
630 		((octeon_bootinfo->mac_addr_base[1] & 0xffull)) << 32 |
631 		((octeon_bootinfo->mac_addr_base[2] & 0xffull)) << 24 |
632 		((octeon_bootinfo->mac_addr_base[3] & 0xffull)) << 16 |
633 		((octeon_bootinfo->mac_addr_base[4] & 0xffull)) << 8 |
634 		 (octeon_bootinfo->mac_addr_base[5] & 0xffull);
635 
636 	for (i = 0; i < 2; i++) {
637 		int mgmt;
638 
639 		snprintf(name_buffer, sizeof(name_buffer), "mix%d", i);
640 		alias_prop = fdt_getprop(initial_boot_params, aliases,
641 					 name_buffer, NULL);
642 		if (!alias_prop)
643 			continue;
644 		mgmt = fdt_path_offset(initial_boot_params, alias_prop);
645 		if (mgmt < 0)
646 			continue;
647 		octeon_fdt_set_mac_addr(mgmt, &mac_addr_base);
648 	}
649 
650 	alias_prop = fdt_getprop(initial_boot_params, aliases, "pip", NULL);
651 	if (!alias_prop)
652 		return;
653 
654 	pip = fdt_path_offset(initial_boot_params, alias_prop);
655 	if (pip < 0)
656 		return;
657 
658 	for (i = 0; i <= 4; i++) {
659 		int iface;
660 		int p;
661 
662 		snprintf(name_buffer, sizeof(name_buffer), "interface@%d", i);
663 		iface = fdt_subnode_offset(initial_boot_params, pip,
664 					   name_buffer);
665 		if (iface < 0)
666 			continue;
667 		for (p = 0; p < 16; p++) {
668 			int eth;
669 
670 			snprintf(name_buffer, sizeof(name_buffer),
671 				 "ethernet@%x", p);
672 			eth = fdt_subnode_offset(initial_boot_params, iface,
673 						 name_buffer);
674 			if (eth < 0)
675 				continue;
676 			octeon_fdt_set_mac_addr(eth, &mac_addr_base);
677 		}
678 	}
679 }
680 
681 int __init octeon_prune_device_tree(void)
682 {
683 	int i, max_port, uart_mask;
684 	const char *pip_path;
685 	const char *alias_prop;
686 	char name_buffer[20];
687 	int aliases;
688 
689 	if (fdt_check_header(initial_boot_params))
690 		panic("Corrupt Device Tree.");
691 
692 	aliases = fdt_path_offset(initial_boot_params, "/aliases");
693 	if (aliases < 0) {
694 		pr_err("Error: No /aliases node in device tree.");
695 		return -EINVAL;
696 	}
697 
698 	if (OCTEON_IS_MODEL(OCTEON_CN52XX) || OCTEON_IS_MODEL(OCTEON_CN63XX))
699 		max_port = 2;
700 	else if (OCTEON_IS_MODEL(OCTEON_CN56XX) || OCTEON_IS_MODEL(OCTEON_CN68XX))
701 		max_port = 1;
702 	else
703 		max_port = 0;
704 
705 	if (octeon_bootinfo->board_type == CVMX_BOARD_TYPE_NIC10E)
706 		max_port = 0;
707 
708 	for (i = 0; i < 2; i++) {
709 		int mgmt;
710 		snprintf(name_buffer, sizeof(name_buffer),
711 			 "mix%d", i);
712 		alias_prop = fdt_getprop(initial_boot_params, aliases,
713 					name_buffer, NULL);
714 		if (alias_prop) {
715 			mgmt = fdt_path_offset(initial_boot_params, alias_prop);
716 			if (mgmt < 0)
717 				continue;
718 			if (i >= max_port) {
719 				pr_debug("Deleting mix%d\n", i);
720 				octeon_fdt_rm_ethernet(mgmt);
721 				fdt_nop_property(initial_boot_params, aliases,
722 						 name_buffer);
723 			} else {
724 				int phy_addr = cvmx_helper_board_get_mii_address(CVMX_HELPER_BOARD_MGMT_IPD_PORT + i);
725 				octeon_fdt_set_phy(mgmt, phy_addr);
726 			}
727 		}
728 	}
729 
730 	pip_path = fdt_getprop(initial_boot_params, aliases, "pip", NULL);
731 	if (pip_path) {
732 		int pip = fdt_path_offset(initial_boot_params, pip_path);
733 		if (pip	 >= 0)
734 			for (i = 0; i <= 4; i++)
735 				octeon_fdt_pip_iface(pip, i);
736 	}
737 
738 	/* I2C */
739 	if (OCTEON_IS_MODEL(OCTEON_CN52XX) ||
740 	    OCTEON_IS_MODEL(OCTEON_CN63XX) ||
741 	    OCTEON_IS_MODEL(OCTEON_CN68XX) ||
742 	    OCTEON_IS_MODEL(OCTEON_CN56XX))
743 		max_port = 2;
744 	else
745 		max_port = 1;
746 
747 	for (i = 0; i < 2; i++) {
748 		int i2c;
749 		snprintf(name_buffer, sizeof(name_buffer),
750 			 "twsi%d", i);
751 		alias_prop = fdt_getprop(initial_boot_params, aliases,
752 					name_buffer, NULL);
753 
754 		if (alias_prop) {
755 			i2c = fdt_path_offset(initial_boot_params, alias_prop);
756 			if (i2c < 0)
757 				continue;
758 			if (i >= max_port) {
759 				pr_debug("Deleting twsi%d\n", i);
760 				fdt_nop_node(initial_boot_params, i2c);
761 				fdt_nop_property(initial_boot_params, aliases,
762 						 name_buffer);
763 			}
764 		}
765 	}
766 
767 	/* SMI/MDIO */
768 	if (OCTEON_IS_MODEL(OCTEON_CN68XX))
769 		max_port = 4;
770 	else if (OCTEON_IS_MODEL(OCTEON_CN52XX) ||
771 		 OCTEON_IS_MODEL(OCTEON_CN63XX) ||
772 		 OCTEON_IS_MODEL(OCTEON_CN56XX))
773 		max_port = 2;
774 	else
775 		max_port = 1;
776 
777 	for (i = 0; i < 2; i++) {
778 		int i2c;
779 		snprintf(name_buffer, sizeof(name_buffer),
780 			 "smi%d", i);
781 		alias_prop = fdt_getprop(initial_boot_params, aliases,
782 					name_buffer, NULL);
783 
784 		if (alias_prop) {
785 			i2c = fdt_path_offset(initial_boot_params, alias_prop);
786 			if (i2c < 0)
787 				continue;
788 			if (i >= max_port) {
789 				pr_debug("Deleting smi%d\n", i);
790 				fdt_nop_node(initial_boot_params, i2c);
791 				fdt_nop_property(initial_boot_params, aliases,
792 						 name_buffer);
793 			}
794 		}
795 	}
796 
797 	/* Serial */
798 	uart_mask = 3;
799 
800 	/* Right now CN52XX is the only chip with a third uart */
801 	if (OCTEON_IS_MODEL(OCTEON_CN52XX))
802 		uart_mask |= 4; /* uart2 */
803 
804 	for (i = 0; i < 3; i++) {
805 		int uart;
806 		snprintf(name_buffer, sizeof(name_buffer),
807 			 "uart%d", i);
808 		alias_prop = fdt_getprop(initial_boot_params, aliases,
809 					name_buffer, NULL);
810 
811 		if (alias_prop) {
812 			uart = fdt_path_offset(initial_boot_params, alias_prop);
813 			if (uart_mask & (1 << i)) {
814 				__be32 f;
815 
816 				f = cpu_to_be32(octeon_get_io_clock_rate());
817 				fdt_setprop_inplace(initial_boot_params,
818 						    uart, "clock-frequency",
819 						    &f, sizeof(f));
820 				continue;
821 			}
822 			pr_debug("Deleting uart%d\n", i);
823 			fdt_nop_node(initial_boot_params, uart);
824 			fdt_nop_property(initial_boot_params, aliases,
825 					 name_buffer);
826 		}
827 	}
828 
829 	/* Compact Flash */
830 	alias_prop = fdt_getprop(initial_boot_params, aliases,
831 				 "cf0", NULL);
832 	if (alias_prop) {
833 		union cvmx_mio_boot_reg_cfgx mio_boot_reg_cfg;
834 		unsigned long base_ptr, region_base, region_size;
835 		unsigned long region1_base = 0;
836 		unsigned long region1_size = 0;
837 		int cs, bootbus;
838 		bool is_16bit = false;
839 		bool is_true_ide = false;
840 		__be32 new_reg[6];
841 		__be32 *ranges;
842 		int len;
843 
844 		int cf = fdt_path_offset(initial_boot_params, alias_prop);
845 		base_ptr = 0;
846 		if (octeon_bootinfo->major_version == 1
847 			&& octeon_bootinfo->minor_version >= 1) {
848 			if (octeon_bootinfo->compact_flash_common_base_addr)
849 				base_ptr = octeon_bootinfo->compact_flash_common_base_addr;
850 		} else {
851 			base_ptr = 0x1d000800;
852 		}
853 
854 		if (!base_ptr)
855 			goto no_cf;
856 
857 		/* Find CS0 region. */
858 		for (cs = 0; cs < 8; cs++) {
859 			mio_boot_reg_cfg.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_CFGX(cs));
860 			region_base = mio_boot_reg_cfg.s.base << 16;
861 			region_size = (mio_boot_reg_cfg.s.size + 1) << 16;
862 			if (mio_boot_reg_cfg.s.en && base_ptr >= region_base
863 				&& base_ptr < region_base + region_size) {
864 				is_16bit = mio_boot_reg_cfg.s.width;
865 				break;
866 			}
867 		}
868 		if (cs >= 7) {
869 			/* cs and cs + 1 are CS0 and CS1, both must be less than 8. */
870 			goto no_cf;
871 		}
872 
873 		if (!(base_ptr & 0xfffful)) {
874 			/*
875 			 * Boot loader signals availability of DMA (true_ide
876 			 * mode) by setting low order bits of base_ptr to
877 			 * zero.
878 			 */
879 
880 			/* Asume that CS1 immediately follows. */
881 			mio_boot_reg_cfg.u64 =
882 				cvmx_read_csr(CVMX_MIO_BOOT_REG_CFGX(cs + 1));
883 			region1_base = mio_boot_reg_cfg.s.base << 16;
884 			region1_size = (mio_boot_reg_cfg.s.size + 1) << 16;
885 			if (!mio_boot_reg_cfg.s.en)
886 				goto no_cf;
887 			is_true_ide = true;
888 
889 		} else {
890 			fdt_nop_property(initial_boot_params, cf, "cavium,true-ide");
891 			fdt_nop_property(initial_boot_params, cf, "cavium,dma-engine-handle");
892 			if (!is_16bit) {
893 				__be32 width = cpu_to_be32(8);
894 				fdt_setprop_inplace(initial_boot_params, cf,
895 						"cavium,bus-width", &width, sizeof(width));
896 			}
897 		}
898 		new_reg[0] = cpu_to_be32(cs);
899 		new_reg[1] = cpu_to_be32(0);
900 		new_reg[2] = cpu_to_be32(0x10000);
901 		new_reg[3] = cpu_to_be32(cs + 1);
902 		new_reg[4] = cpu_to_be32(0);
903 		new_reg[5] = cpu_to_be32(0x10000);
904 		fdt_setprop_inplace(initial_boot_params, cf,
905 				    "reg",  new_reg, sizeof(new_reg));
906 
907 		bootbus = fdt_parent_offset(initial_boot_params, cf);
908 		if (bootbus < 0)
909 			goto no_cf;
910 		ranges = fdt_getprop_w(initial_boot_params, bootbus, "ranges", &len);
911 		if (!ranges || len < (5 * 8 * sizeof(__be32)))
912 			goto no_cf;
913 
914 		ranges[(cs * 5) + 2] = cpu_to_be32(region_base >> 32);
915 		ranges[(cs * 5) + 3] = cpu_to_be32(region_base & 0xffffffff);
916 		ranges[(cs * 5) + 4] = cpu_to_be32(region_size);
917 		if (is_true_ide) {
918 			cs++;
919 			ranges[(cs * 5) + 2] = cpu_to_be32(region1_base >> 32);
920 			ranges[(cs * 5) + 3] = cpu_to_be32(region1_base & 0xffffffff);
921 			ranges[(cs * 5) + 4] = cpu_to_be32(region1_size);
922 		}
923 		goto end_cf;
924 no_cf:
925 		fdt_nop_node(initial_boot_params, cf);
926 
927 end_cf:
928 		;
929 	}
930 
931 	/* 8 char LED */
932 	alias_prop = fdt_getprop(initial_boot_params, aliases,
933 				 "led0", NULL);
934 	if (alias_prop) {
935 		union cvmx_mio_boot_reg_cfgx mio_boot_reg_cfg;
936 		unsigned long base_ptr, region_base, region_size;
937 		int cs, bootbus;
938 		__be32 new_reg[6];
939 		__be32 *ranges;
940 		int len;
941 		int led = fdt_path_offset(initial_boot_params, alias_prop);
942 
943 		base_ptr = octeon_bootinfo->led_display_base_addr;
944 		if (base_ptr == 0)
945 			goto no_led;
946 		/* Find CS0 region. */
947 		for (cs = 0; cs < 8; cs++) {
948 			mio_boot_reg_cfg.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_CFGX(cs));
949 			region_base = mio_boot_reg_cfg.s.base << 16;
950 			region_size = (mio_boot_reg_cfg.s.size + 1) << 16;
951 			if (mio_boot_reg_cfg.s.en && base_ptr >= region_base
952 				&& base_ptr < region_base + region_size)
953 				break;
954 		}
955 
956 		if (cs > 7)
957 			goto no_led;
958 
959 		new_reg[0] = cpu_to_be32(cs);
960 		new_reg[1] = cpu_to_be32(0x20);
961 		new_reg[2] = cpu_to_be32(0x20);
962 		new_reg[3] = cpu_to_be32(cs);
963 		new_reg[4] = cpu_to_be32(0);
964 		new_reg[5] = cpu_to_be32(0x20);
965 		fdt_setprop_inplace(initial_boot_params, led,
966 				    "reg",  new_reg, sizeof(new_reg));
967 
968 		bootbus = fdt_parent_offset(initial_boot_params, led);
969 		if (bootbus < 0)
970 			goto no_led;
971 		ranges = fdt_getprop_w(initial_boot_params, bootbus, "ranges", &len);
972 		if (!ranges || len < (5 * 8 * sizeof(__be32)))
973 			goto no_led;
974 
975 		ranges[(cs * 5) + 2] = cpu_to_be32(region_base >> 32);
976 		ranges[(cs * 5) + 3] = cpu_to_be32(region_base & 0xffffffff);
977 		ranges[(cs * 5) + 4] = cpu_to_be32(region_size);
978 		goto end_led;
979 
980 no_led:
981 		fdt_nop_node(initial_boot_params, led);
982 end_led:
983 		;
984 	}
985 
986 	/* OHCI/UHCI USB */
987 	alias_prop = fdt_getprop(initial_boot_params, aliases,
988 				 "uctl", NULL);
989 	if (alias_prop) {
990 		int uctl = fdt_path_offset(initial_boot_params, alias_prop);
991 
992 		if (uctl >= 0 && (!OCTEON_IS_MODEL(OCTEON_CN6XXX) ||
993 				  octeon_bootinfo->board_type == CVMX_BOARD_TYPE_NIC2E)) {
994 			pr_debug("Deleting uctl\n");
995 			fdt_nop_node(initial_boot_params, uctl);
996 			fdt_nop_property(initial_boot_params, aliases, "uctl");
997 		} else if (octeon_bootinfo->board_type == CVMX_BOARD_TYPE_NIC10E ||
998 			   octeon_bootinfo->board_type == CVMX_BOARD_TYPE_NIC4E) {
999 			/* Missing "refclk-type" defaults to crystal. */
1000 			fdt_nop_property(initial_boot_params, uctl, "refclk-type");
1001 		}
1002 	}
1003 
1004 	/* DWC2 USB */
1005 	alias_prop = fdt_getprop(initial_boot_params, aliases,
1006 				 "usbn", NULL);
1007 	if (alias_prop) {
1008 		int usbn = fdt_path_offset(initial_boot_params, alias_prop);
1009 
1010 		if (usbn >= 0 && (current_cpu_type() == CPU_CAVIUM_OCTEON2 ||
1011 				  !octeon_has_feature(OCTEON_FEATURE_USB))) {
1012 			pr_debug("Deleting usbn\n");
1013 			fdt_nop_node(initial_boot_params, usbn);
1014 			fdt_nop_property(initial_boot_params, aliases, "usbn");
1015 		} else  {
1016 			__be32 new_f[1];
1017 			enum cvmx_helper_board_usb_clock_types c;
1018 			c = __cvmx_helper_board_usb_get_clock_type();
1019 			switch (c) {
1020 			case USB_CLOCK_TYPE_REF_48:
1021 				new_f[0] = cpu_to_be32(48000000);
1022 				fdt_setprop_inplace(initial_boot_params, usbn,
1023 						    "refclk-frequency",  new_f, sizeof(new_f));
1024 				/* Fall through ...*/
1025 			case USB_CLOCK_TYPE_REF_12:
1026 				/* Missing "refclk-type" defaults to external. */
1027 				fdt_nop_property(initial_boot_params, usbn, "refclk-type");
1028 				break;
1029 			default:
1030 				break;
1031 			}
1032 		}
1033 	}
1034 
1035 	if (octeon_bootinfo->board_type != CVMX_BOARD_TYPE_CUST_DSR1000N) {
1036 		int dsr1000n_leds = fdt_path_offset(initial_boot_params,
1037 						    "/dsr1000n-leds");
1038 		if (dsr1000n_leds >= 0)
1039 			fdt_nop_node(initial_boot_params, dsr1000n_leds);
1040 	}
1041 
1042 	return 0;
1043 }
1044 
1045 static int __init octeon_publish_devices(void)
1046 {
1047 	return of_platform_bus_probe(NULL, octeon_ids, NULL);
1048 }
1049 device_initcall(octeon_publish_devices);
1050 
1051 MODULE_AUTHOR("David Daney <ddaney@caviumnetworks.com>");
1052 MODULE_LICENSE("GPL");
1053 MODULE_DESCRIPTION("Platform driver for Octeon SOC");
1054