1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 2004-2017 Cavium, Inc.
7 * Copyright (C) 2008 Wind River Systems
8 */
9
10 #include <linux/etherdevice.h>
11 #include <linux/of.h>
12 #include <linux/of_platform.h>
13 #include <linux/of_fdt.h>
14 #include <linux/platform_device.h>
15 #include <linux/libfdt.h>
16
17 #include <asm/octeon/octeon.h>
18 #include <asm/octeon/cvmx-helper-board.h>
19
20 #ifdef CONFIG_USB
21 #include <linux/usb/ehci_def.h>
22 #include <linux/usb/ehci_pdriver.h>
23 #include <linux/usb/ohci_pdriver.h>
24 #include <asm/octeon/cvmx-uctlx-defs.h>
25
26 #define CVMX_UAHCX_EHCI_USBCMD (CVMX_ADD_IO_SEG(0x00016F0000000010ull))
27 #define CVMX_UAHCX_OHCI_USBCMD (CVMX_ADD_IO_SEG(0x00016F0000000408ull))
28
29 static DEFINE_MUTEX(octeon2_usb_clocks_mutex);
30
31 static int octeon2_usb_clock_start_cnt;
32
octeon2_usb_reset(void)33 static int __init octeon2_usb_reset(void)
34 {
35 union cvmx_uctlx_clk_rst_ctl clk_rst_ctl;
36 u32 ucmd;
37
38 if (!OCTEON_IS_OCTEON2())
39 return 0;
40
41 clk_rst_ctl.u64 = cvmx_read_csr(CVMX_UCTLX_CLK_RST_CTL(0));
42 if (clk_rst_ctl.s.hrst) {
43 ucmd = cvmx_read64_uint32(CVMX_UAHCX_EHCI_USBCMD);
44 ucmd &= ~CMD_RUN;
45 cvmx_write64_uint32(CVMX_UAHCX_EHCI_USBCMD, ucmd);
46 mdelay(2);
47 ucmd |= CMD_RESET;
48 cvmx_write64_uint32(CVMX_UAHCX_EHCI_USBCMD, ucmd);
49 ucmd = cvmx_read64_uint32(CVMX_UAHCX_OHCI_USBCMD);
50 ucmd |= CMD_RUN;
51 cvmx_write64_uint32(CVMX_UAHCX_OHCI_USBCMD, ucmd);
52 }
53
54 return 0;
55 }
56 arch_initcall(octeon2_usb_reset);
57
octeon2_usb_clocks_start(struct device * dev)58 static void octeon2_usb_clocks_start(struct device *dev)
59 {
60 u64 div;
61 union cvmx_uctlx_if_ena if_ena;
62 union cvmx_uctlx_clk_rst_ctl clk_rst_ctl;
63 union cvmx_uctlx_uphy_portx_ctl_status port_ctl_status;
64 int i;
65 unsigned long io_clk_64_to_ns;
66 u32 clock_rate = 12000000;
67 bool is_crystal_clock = false;
68
69
70 mutex_lock(&octeon2_usb_clocks_mutex);
71
72 octeon2_usb_clock_start_cnt++;
73 if (octeon2_usb_clock_start_cnt != 1)
74 goto exit;
75
76 io_clk_64_to_ns = 64000000000ull / octeon_get_io_clock_rate();
77
78 if (dev->of_node) {
79 struct device_node *uctl_node;
80 const char *clock_type;
81
82 uctl_node = of_get_parent(dev->of_node);
83 if (!uctl_node) {
84 dev_err(dev, "No UCTL device node\n");
85 goto exit;
86 }
87 i = of_property_read_u32(uctl_node,
88 "refclk-frequency", &clock_rate);
89 if (i) {
90 dev_err(dev, "No UCTL \"refclk-frequency\"\n");
91 of_node_put(uctl_node);
92 goto exit;
93 }
94 i = of_property_read_string(uctl_node,
95 "refclk-type", &clock_type);
96 of_node_put(uctl_node);
97 if (!i && strcmp("crystal", clock_type) == 0)
98 is_crystal_clock = true;
99 }
100
101 /*
102 * Step 1: Wait for voltages stable. That surely happened
103 * before starting the kernel.
104 *
105 * Step 2: Enable SCLK of UCTL by writing UCTL0_IF_ENA[EN] = 1
106 */
107 if_ena.u64 = 0;
108 if_ena.s.en = 1;
109 cvmx_write_csr(CVMX_UCTLX_IF_ENA(0), if_ena.u64);
110
111 for (i = 0; i <= 1; i++) {
112 port_ctl_status.u64 =
113 cvmx_read_csr(CVMX_UCTLX_UPHY_PORTX_CTL_STATUS(i, 0));
114 /* Set txvreftune to 15 to obtain compliant 'eye' diagram. */
115 port_ctl_status.s.txvreftune = 15;
116 port_ctl_status.s.txrisetune = 1;
117 port_ctl_status.s.txpreemphasistune = 1;
118 cvmx_write_csr(CVMX_UCTLX_UPHY_PORTX_CTL_STATUS(i, 0),
119 port_ctl_status.u64);
120 }
121
122 /* Step 3: Configure the reference clock, PHY, and HCLK */
123 clk_rst_ctl.u64 = cvmx_read_csr(CVMX_UCTLX_CLK_RST_CTL(0));
124
125 /*
126 * If the UCTL looks like it has already been started, skip
127 * the initialization, otherwise bus errors are obtained.
128 */
129 if (clk_rst_ctl.s.hrst)
130 goto end_clock;
131 /* 3a */
132 clk_rst_ctl.s.p_por = 1;
133 clk_rst_ctl.s.hrst = 0;
134 clk_rst_ctl.s.p_prst = 0;
135 clk_rst_ctl.s.h_clkdiv_rst = 0;
136 clk_rst_ctl.s.o_clkdiv_rst = 0;
137 clk_rst_ctl.s.h_clkdiv_en = 0;
138 clk_rst_ctl.s.o_clkdiv_en = 0;
139 cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
140
141 /* 3b */
142 clk_rst_ctl.s.p_refclk_sel = is_crystal_clock ? 0 : 1;
143 switch (clock_rate) {
144 default:
145 pr_err("Invalid UCTL clock rate of %u, using 12000000 instead\n",
146 clock_rate);
147 fallthrough;
148 case 12000000:
149 clk_rst_ctl.s.p_refclk_div = 0;
150 break;
151 case 24000000:
152 clk_rst_ctl.s.p_refclk_div = 1;
153 break;
154 case 48000000:
155 clk_rst_ctl.s.p_refclk_div = 2;
156 break;
157 }
158 cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
159
160 /* 3c */
161 div = octeon_get_io_clock_rate() / 130000000ull;
162
163 switch (div) {
164 case 0:
165 div = 1;
166 break;
167 case 1:
168 case 2:
169 case 3:
170 case 4:
171 break;
172 case 5:
173 div = 4;
174 break;
175 case 6:
176 case 7:
177 div = 6;
178 break;
179 case 8:
180 case 9:
181 case 10:
182 case 11:
183 div = 8;
184 break;
185 default:
186 div = 12;
187 break;
188 }
189 clk_rst_ctl.s.h_div = div;
190 cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
191 /* Read it back, */
192 clk_rst_ctl.u64 = cvmx_read_csr(CVMX_UCTLX_CLK_RST_CTL(0));
193 clk_rst_ctl.s.h_clkdiv_en = 1;
194 cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
195 /* 3d */
196 clk_rst_ctl.s.h_clkdiv_rst = 1;
197 cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
198
199 /* 3e: delay 64 io clocks */
200 ndelay(io_clk_64_to_ns);
201
202 /*
203 * Step 4: Program the power-on reset field in the UCTL
204 * clock-reset-control register.
205 */
206 clk_rst_ctl.s.p_por = 0;
207 cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
208
209 /* Step 5: Wait 3 ms for the PHY clock to start. */
210 mdelay(3);
211
212 /* Steps 6..9 for ATE only, are skipped. */
213
214 /* Step 10: Configure the OHCI_CLK48 and OHCI_CLK12 clocks. */
215 /* 10a */
216 clk_rst_ctl.s.o_clkdiv_rst = 1;
217 cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
218
219 /* 10b */
220 clk_rst_ctl.s.o_clkdiv_en = 1;
221 cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
222
223 /* 10c */
224 ndelay(io_clk_64_to_ns);
225
226 /*
227 * Step 11: Program the PHY reset field:
228 * UCTL0_CLK_RST_CTL[P_PRST] = 1
229 */
230 clk_rst_ctl.s.p_prst = 1;
231 cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
232
233 /* Step 11b */
234 udelay(1);
235
236 /* Step 11c */
237 clk_rst_ctl.s.p_prst = 0;
238 cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
239
240 /* Step 11d */
241 mdelay(1);
242
243 /* Step 11e */
244 clk_rst_ctl.s.p_prst = 1;
245 cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
246
247 /* Step 12: Wait 1 uS. */
248 udelay(1);
249
250 /* Step 13: Program the HRESET_N field: UCTL0_CLK_RST_CTL[HRST] = 1 */
251 clk_rst_ctl.s.hrst = 1;
252 cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
253
254 end_clock:
255 /* Set uSOF cycle period to 60,000 bits. */
256 cvmx_write_csr(CVMX_UCTLX_EHCI_FLA(0), 0x20ull);
257
258 exit:
259 mutex_unlock(&octeon2_usb_clocks_mutex);
260 }
261
octeon2_usb_clocks_stop(void)262 static void octeon2_usb_clocks_stop(void)
263 {
264 mutex_lock(&octeon2_usb_clocks_mutex);
265 octeon2_usb_clock_start_cnt--;
266 mutex_unlock(&octeon2_usb_clocks_mutex);
267 }
268
octeon_ehci_power_on(struct platform_device * pdev)269 static int octeon_ehci_power_on(struct platform_device *pdev)
270 {
271 octeon2_usb_clocks_start(&pdev->dev);
272 return 0;
273 }
274
octeon_ehci_power_off(struct platform_device * pdev)275 static void octeon_ehci_power_off(struct platform_device *pdev)
276 {
277 octeon2_usb_clocks_stop();
278 }
279
280 static struct usb_ehci_pdata octeon_ehci_pdata = {
281 /* Octeon EHCI matches CPU endianness. */
282 #ifdef __BIG_ENDIAN
283 .big_endian_mmio = 1,
284 #endif
285 /*
286 * We can DMA from anywhere. But the descriptors must be in
287 * the lower 4GB.
288 */
289 .dma_mask_64 = 0,
290 .power_on = octeon_ehci_power_on,
291 .power_off = octeon_ehci_power_off,
292 };
293
octeon_ehci_hw_start(struct device * dev)294 static void __init octeon_ehci_hw_start(struct device *dev)
295 {
296 union cvmx_uctlx_ehci_ctl ehci_ctl;
297
298 octeon2_usb_clocks_start(dev);
299
300 ehci_ctl.u64 = cvmx_read_csr(CVMX_UCTLX_EHCI_CTL(0));
301 /* Use 64-bit addressing. */
302 ehci_ctl.s.ehci_64b_addr_en = 1;
303 ehci_ctl.s.l2c_addr_msb = 0;
304 #ifdef __BIG_ENDIAN
305 ehci_ctl.s.l2c_buff_emod = 1; /* Byte swapped. */
306 ehci_ctl.s.l2c_desc_emod = 1; /* Byte swapped. */
307 #else
308 ehci_ctl.s.l2c_buff_emod = 0; /* not swapped. */
309 ehci_ctl.s.l2c_desc_emod = 0; /* not swapped. */
310 ehci_ctl.s.inv_reg_a2 = 1;
311 #endif
312 cvmx_write_csr(CVMX_UCTLX_EHCI_CTL(0), ehci_ctl.u64);
313
314 octeon2_usb_clocks_stop();
315 }
316
octeon_ehci_device_init(void)317 static int __init octeon_ehci_device_init(void)
318 {
319 struct platform_device *pd;
320 struct device_node *ehci_node;
321 int ret = 0;
322
323 ehci_node = of_find_node_by_name(NULL, "ehci");
324 if (!ehci_node)
325 return 0;
326
327 pd = of_find_device_by_node(ehci_node);
328 of_node_put(ehci_node);
329 if (!pd)
330 return 0;
331
332 pd->dev.platform_data = &octeon_ehci_pdata;
333 octeon_ehci_hw_start(&pd->dev);
334 put_device(&pd->dev);
335
336 return ret;
337 }
338 device_initcall(octeon_ehci_device_init);
339
octeon_ohci_power_on(struct platform_device * pdev)340 static int octeon_ohci_power_on(struct platform_device *pdev)
341 {
342 octeon2_usb_clocks_start(&pdev->dev);
343 return 0;
344 }
345
octeon_ohci_power_off(struct platform_device * pdev)346 static void octeon_ohci_power_off(struct platform_device *pdev)
347 {
348 octeon2_usb_clocks_stop();
349 }
350
351 static struct usb_ohci_pdata octeon_ohci_pdata = {
352 /* Octeon OHCI matches CPU endianness. */
353 #ifdef __BIG_ENDIAN
354 .big_endian_mmio = 1,
355 #endif
356 .power_on = octeon_ohci_power_on,
357 .power_off = octeon_ohci_power_off,
358 };
359
octeon_ohci_hw_start(struct device * dev)360 static void __init octeon_ohci_hw_start(struct device *dev)
361 {
362 union cvmx_uctlx_ohci_ctl ohci_ctl;
363
364 octeon2_usb_clocks_start(dev);
365
366 ohci_ctl.u64 = cvmx_read_csr(CVMX_UCTLX_OHCI_CTL(0));
367 ohci_ctl.s.l2c_addr_msb = 0;
368 #ifdef __BIG_ENDIAN
369 ohci_ctl.s.l2c_buff_emod = 1; /* Byte swapped. */
370 ohci_ctl.s.l2c_desc_emod = 1; /* Byte swapped. */
371 #else
372 ohci_ctl.s.l2c_buff_emod = 0; /* not swapped. */
373 ohci_ctl.s.l2c_desc_emod = 0; /* not swapped. */
374 ohci_ctl.s.inv_reg_a2 = 1;
375 #endif
376 cvmx_write_csr(CVMX_UCTLX_OHCI_CTL(0), ohci_ctl.u64);
377
378 octeon2_usb_clocks_stop();
379 }
380
octeon_ohci_device_init(void)381 static int __init octeon_ohci_device_init(void)
382 {
383 struct platform_device *pd;
384 struct device_node *ohci_node;
385 int ret = 0;
386
387 ohci_node = of_find_node_by_name(NULL, "ohci");
388 if (!ohci_node)
389 return 0;
390
391 pd = of_find_device_by_node(ohci_node);
392 of_node_put(ohci_node);
393 if (!pd)
394 return 0;
395
396 pd->dev.platform_data = &octeon_ohci_pdata;
397 octeon_ohci_hw_start(&pd->dev);
398 put_device(&pd->dev);
399
400 return ret;
401 }
402 device_initcall(octeon_ohci_device_init);
403
404 #endif /* CONFIG_USB */
405
406 /* Octeon Random Number Generator. */
octeon_rng_device_init(void)407 static int __init octeon_rng_device_init(void)
408 {
409 struct platform_device *pd;
410 int ret = 0;
411
412 struct resource rng_resources[] = {
413 {
414 .flags = IORESOURCE_MEM,
415 .start = XKPHYS_TO_PHYS(CVMX_RNM_CTL_STATUS),
416 .end = XKPHYS_TO_PHYS(CVMX_RNM_CTL_STATUS) + 0xf
417 }, {
418 .flags = IORESOURCE_MEM,
419 .start = cvmx_build_io_address(8, 0),
420 .end = cvmx_build_io_address(8, 0) + 0x7
421 }
422 };
423
424 pd = platform_device_alloc("octeon_rng", -1);
425 if (!pd) {
426 ret = -ENOMEM;
427 goto out;
428 }
429
430 ret = platform_device_add_resources(pd, rng_resources,
431 ARRAY_SIZE(rng_resources));
432 if (ret)
433 goto fail;
434
435 ret = platform_device_add(pd);
436 if (ret)
437 goto fail;
438
439 return ret;
440 fail:
441 platform_device_put(pd);
442
443 out:
444 return ret;
445 }
446 device_initcall(octeon_rng_device_init);
447
448 static const struct of_device_id octeon_ids[] __initconst = {
449 { .compatible = "simple-bus", },
450 { .compatible = "cavium,octeon-6335-uctl", },
451 { .compatible = "cavium,octeon-5750-usbn", },
452 { .compatible = "cavium,octeon-3860-bootbus", },
453 { .compatible = "cavium,mdio-mux", },
454 { .compatible = "gpio-leds", },
455 {},
456 };
457
octeon_has_88e1145(void)458 static bool __init octeon_has_88e1145(void)
459 {
460 return !OCTEON_IS_MODEL(OCTEON_CN52XX) &&
461 !OCTEON_IS_MODEL(OCTEON_CN6XXX) &&
462 !OCTEON_IS_MODEL(OCTEON_CN56XX);
463 }
464
octeon_has_fixed_link(int ipd_port)465 static bool __init octeon_has_fixed_link(int ipd_port)
466 {
467 switch (cvmx_sysinfo_get()->board_type) {
468 case CVMX_BOARD_TYPE_CN3005_EVB_HS5:
469 case CVMX_BOARD_TYPE_CN3010_EVB_HS5:
470 case CVMX_BOARD_TYPE_CN3020_EVB_HS5:
471 case CVMX_BOARD_TYPE_CUST_NB5:
472 case CVMX_BOARD_TYPE_EBH3100:
473 /* Port 1 on these boards is always gigabit. */
474 return ipd_port == 1;
475 case CVMX_BOARD_TYPE_BBGW_REF:
476 /* Ports 0 and 1 connect to the switch. */
477 return ipd_port == 0 || ipd_port == 1;
478 }
479 return false;
480 }
481
octeon_fdt_set_phy(int eth,int phy_addr)482 static void __init octeon_fdt_set_phy(int eth, int phy_addr)
483 {
484 const __be32 *phy_handle;
485 const __be32 *alt_phy_handle;
486 const __be32 *reg;
487 u32 phandle;
488 int phy;
489 int alt_phy;
490 const char *p;
491 int current_len;
492 char new_name[20];
493
494 phy_handle = fdt_getprop(initial_boot_params, eth, "phy-handle", NULL);
495 if (!phy_handle)
496 return;
497
498 phandle = be32_to_cpup(phy_handle);
499 phy = fdt_node_offset_by_phandle(initial_boot_params, phandle);
500
501 alt_phy_handle = fdt_getprop(initial_boot_params, eth, "cavium,alt-phy-handle", NULL);
502 if (alt_phy_handle) {
503 u32 alt_phandle = be32_to_cpup(alt_phy_handle);
504
505 alt_phy = fdt_node_offset_by_phandle(initial_boot_params, alt_phandle);
506 } else {
507 alt_phy = -1;
508 }
509
510 if (phy_addr < 0 || phy < 0) {
511 /* Delete the PHY things */
512 fdt_nop_property(initial_boot_params, eth, "phy-handle");
513 /* This one may fail */
514 fdt_nop_property(initial_boot_params, eth, "cavium,alt-phy-handle");
515 if (phy >= 0)
516 fdt_nop_node(initial_boot_params, phy);
517 if (alt_phy >= 0)
518 fdt_nop_node(initial_boot_params, alt_phy);
519 return;
520 }
521
522 if (phy_addr >= 256 && alt_phy > 0) {
523 const struct fdt_property *phy_prop;
524 struct fdt_property *alt_prop;
525 fdt32_t phy_handle_name;
526
527 /* Use the alt phy node instead.*/
528 phy_prop = fdt_get_property(initial_boot_params, eth, "phy-handle", NULL);
529 phy_handle_name = phy_prop->nameoff;
530 fdt_nop_node(initial_boot_params, phy);
531 fdt_nop_property(initial_boot_params, eth, "phy-handle");
532 alt_prop = fdt_get_property_w(initial_boot_params, eth, "cavium,alt-phy-handle", NULL);
533 alt_prop->nameoff = phy_handle_name;
534 phy = alt_phy;
535 }
536
537 phy_addr &= 0xff;
538
539 if (octeon_has_88e1145()) {
540 fdt_nop_property(initial_boot_params, phy, "marvell,reg-init");
541 memset(new_name, 0, sizeof(new_name));
542 strcpy(new_name, "marvell,88e1145");
543 p = fdt_getprop(initial_boot_params, phy, "compatible",
544 ¤t_len);
545 if (p && current_len >= strlen(new_name))
546 fdt_setprop_inplace(initial_boot_params, phy,
547 "compatible", new_name, current_len);
548 }
549
550 reg = fdt_getprop(initial_boot_params, phy, "reg", NULL);
551 if (phy_addr == be32_to_cpup(reg))
552 return;
553
554 fdt_setprop_inplace_cell(initial_boot_params, phy, "reg", phy_addr);
555
556 snprintf(new_name, sizeof(new_name), "ethernet-phy@%x", phy_addr);
557
558 p = fdt_get_name(initial_boot_params, phy, ¤t_len);
559 if (p && current_len == strlen(new_name))
560 fdt_set_name(initial_boot_params, phy, new_name);
561 else
562 pr_err("Error: could not rename ethernet phy: <%s>", p);
563 }
564
octeon_fdt_set_mac_addr(int n,u64 * pmac)565 static void __init octeon_fdt_set_mac_addr(int n, u64 *pmac)
566 {
567 const u8 *old_mac;
568 int old_len;
569 u8 new_mac[6];
570 u64 mac = *pmac;
571 int r;
572
573 old_mac = fdt_getprop(initial_boot_params, n, "local-mac-address",
574 &old_len);
575 if (!old_mac || old_len != 6 || is_valid_ether_addr(old_mac))
576 return;
577
578 new_mac[0] = (mac >> 40) & 0xff;
579 new_mac[1] = (mac >> 32) & 0xff;
580 new_mac[2] = (mac >> 24) & 0xff;
581 new_mac[3] = (mac >> 16) & 0xff;
582 new_mac[4] = (mac >> 8) & 0xff;
583 new_mac[5] = mac & 0xff;
584
585 r = fdt_setprop_inplace(initial_boot_params, n, "local-mac-address",
586 new_mac, sizeof(new_mac));
587
588 if (r) {
589 pr_err("Setting \"local-mac-address\" failed %d", r);
590 return;
591 }
592 *pmac = mac + 1;
593 }
594
octeon_fdt_rm_ethernet(int node)595 static void __init octeon_fdt_rm_ethernet(int node)
596 {
597 const __be32 *phy_handle;
598
599 phy_handle = fdt_getprop(initial_boot_params, node, "phy-handle", NULL);
600 if (phy_handle) {
601 u32 ph = be32_to_cpup(phy_handle);
602 int p = fdt_node_offset_by_phandle(initial_boot_params, ph);
603
604 if (p >= 0)
605 fdt_nop_node(initial_boot_params, p);
606 }
607 fdt_nop_node(initial_boot_params, node);
608 }
609
_octeon_rx_tx_delay(int eth,int rx_delay,int tx_delay)610 static void __init _octeon_rx_tx_delay(int eth, int rx_delay, int tx_delay)
611 {
612 fdt_setprop_inplace_cell(initial_boot_params, eth, "rx-delay",
613 rx_delay);
614 fdt_setprop_inplace_cell(initial_boot_params, eth, "tx-delay",
615 tx_delay);
616 }
617
octeon_rx_tx_delay(int eth,int iface,int port)618 static void __init octeon_rx_tx_delay(int eth, int iface, int port)
619 {
620 switch (cvmx_sysinfo_get()->board_type) {
621 case CVMX_BOARD_TYPE_CN3005_EVB_HS5:
622 if (iface == 0) {
623 if (port == 0) {
624 /*
625 * Boards with gigabit WAN ports need a
626 * different setting that is compatible with
627 * 100 Mbit settings
628 */
629 _octeon_rx_tx_delay(eth, 0xc, 0x0c);
630 return;
631 } else if (port == 1) {
632 /* Different config for switch port. */
633 _octeon_rx_tx_delay(eth, 0x0, 0x0);
634 return;
635 }
636 }
637 break;
638 case CVMX_BOARD_TYPE_UBNT_E100:
639 if (iface == 0 && port <= 2) {
640 _octeon_rx_tx_delay(eth, 0x0, 0x10);
641 return;
642 }
643 break;
644 }
645 fdt_nop_property(initial_boot_params, eth, "rx-delay");
646 fdt_nop_property(initial_boot_params, eth, "tx-delay");
647 }
648
octeon_fdt_pip_port(int iface,int i,int p,int max)649 static void __init octeon_fdt_pip_port(int iface, int i, int p, int max)
650 {
651 char name_buffer[20];
652 int eth;
653 int phy_addr;
654 int ipd_port;
655 int fixed_link;
656
657 snprintf(name_buffer, sizeof(name_buffer), "ethernet@%x", p);
658 eth = fdt_subnode_offset(initial_boot_params, iface, name_buffer);
659 if (eth < 0)
660 return;
661 if (p > max) {
662 pr_debug("Deleting port %x:%x\n", i, p);
663 octeon_fdt_rm_ethernet(eth);
664 return;
665 }
666 if (OCTEON_IS_MODEL(OCTEON_CN68XX))
667 ipd_port = (0x100 * i) + (0x10 * p) + 0x800;
668 else
669 ipd_port = 16 * i + p;
670
671 phy_addr = cvmx_helper_board_get_mii_address(ipd_port);
672 octeon_fdt_set_phy(eth, phy_addr);
673
674 fixed_link = fdt_subnode_offset(initial_boot_params, eth, "fixed-link");
675 if (fixed_link < 0)
676 WARN_ON(octeon_has_fixed_link(ipd_port));
677 else if (!octeon_has_fixed_link(ipd_port))
678 fdt_nop_node(initial_boot_params, fixed_link);
679 octeon_rx_tx_delay(eth, i, p);
680 }
681
octeon_fdt_pip_iface(int pip,int idx)682 static void __init octeon_fdt_pip_iface(int pip, int idx)
683 {
684 char name_buffer[20];
685 int iface;
686 int p;
687 int count = 0;
688
689 snprintf(name_buffer, sizeof(name_buffer), "interface@%d", idx);
690 iface = fdt_subnode_offset(initial_boot_params, pip, name_buffer);
691 if (iface < 0)
692 return;
693
694 if (cvmx_helper_interface_enumerate(idx) == 0)
695 count = cvmx_helper_ports_on_interface(idx);
696
697 for (p = 0; p < 16; p++)
698 octeon_fdt_pip_port(iface, idx, p, count - 1);
699 }
700
octeon_fill_mac_addresses(void)701 void __init octeon_fill_mac_addresses(void)
702 {
703 const char *alias_prop;
704 char name_buffer[20];
705 u64 mac_addr_base;
706 int aliases;
707 int pip;
708 int i;
709
710 aliases = fdt_path_offset(initial_boot_params, "/aliases");
711 if (aliases < 0)
712 return;
713
714 mac_addr_base =
715 ((octeon_bootinfo->mac_addr_base[0] & 0xffull)) << 40 |
716 ((octeon_bootinfo->mac_addr_base[1] & 0xffull)) << 32 |
717 ((octeon_bootinfo->mac_addr_base[2] & 0xffull)) << 24 |
718 ((octeon_bootinfo->mac_addr_base[3] & 0xffull)) << 16 |
719 ((octeon_bootinfo->mac_addr_base[4] & 0xffull)) << 8 |
720 (octeon_bootinfo->mac_addr_base[5] & 0xffull);
721
722 for (i = 0; i < 2; i++) {
723 int mgmt;
724
725 snprintf(name_buffer, sizeof(name_buffer), "mix%d", i);
726 alias_prop = fdt_getprop(initial_boot_params, aliases,
727 name_buffer, NULL);
728 if (!alias_prop)
729 continue;
730 mgmt = fdt_path_offset(initial_boot_params, alias_prop);
731 if (mgmt < 0)
732 continue;
733 octeon_fdt_set_mac_addr(mgmt, &mac_addr_base);
734 }
735
736 alias_prop = fdt_getprop(initial_boot_params, aliases, "pip", NULL);
737 if (!alias_prop)
738 return;
739
740 pip = fdt_path_offset(initial_boot_params, alias_prop);
741 if (pip < 0)
742 return;
743
744 for (i = 0; i <= 4; i++) {
745 int iface;
746 int p;
747
748 snprintf(name_buffer, sizeof(name_buffer), "interface@%d", i);
749 iface = fdt_subnode_offset(initial_boot_params, pip,
750 name_buffer);
751 if (iface < 0)
752 continue;
753 for (p = 0; p < 16; p++) {
754 int eth;
755
756 snprintf(name_buffer, sizeof(name_buffer),
757 "ethernet@%x", p);
758 eth = fdt_subnode_offset(initial_boot_params, iface,
759 name_buffer);
760 if (eth < 0)
761 continue;
762 octeon_fdt_set_mac_addr(eth, &mac_addr_base);
763 }
764 }
765 }
766
octeon_prune_device_tree(void)767 int __init octeon_prune_device_tree(void)
768 {
769 int i, max_port, uart_mask;
770 const char *pip_path;
771 const char *alias_prop;
772 char name_buffer[20];
773 int aliases;
774
775 if (fdt_check_header(initial_boot_params))
776 panic("Corrupt Device Tree.");
777
778 WARN(octeon_bootinfo->board_type == CVMX_BOARD_TYPE_CUST_DSR1000N,
779 "Built-in DTB booting is deprecated on %s. Please switch to use appended DTB.",
780 cvmx_board_type_to_string(octeon_bootinfo->board_type));
781
782 aliases = fdt_path_offset(initial_boot_params, "/aliases");
783 if (aliases < 0) {
784 pr_err("Error: No /aliases node in device tree.");
785 return -EINVAL;
786 }
787
788 if (OCTEON_IS_MODEL(OCTEON_CN52XX) || OCTEON_IS_MODEL(OCTEON_CN63XX))
789 max_port = 2;
790 else if (OCTEON_IS_MODEL(OCTEON_CN56XX) || OCTEON_IS_MODEL(OCTEON_CN68XX))
791 max_port = 1;
792 else
793 max_port = 0;
794
795 if (octeon_bootinfo->board_type == CVMX_BOARD_TYPE_NIC10E)
796 max_port = 0;
797
798 for (i = 0; i < 2; i++) {
799 int mgmt;
800
801 snprintf(name_buffer, sizeof(name_buffer),
802 "mix%d", i);
803 alias_prop = fdt_getprop(initial_boot_params, aliases,
804 name_buffer, NULL);
805 if (alias_prop) {
806 mgmt = fdt_path_offset(initial_boot_params, alias_prop);
807 if (mgmt < 0)
808 continue;
809 if (i >= max_port) {
810 pr_debug("Deleting mix%d\n", i);
811 octeon_fdt_rm_ethernet(mgmt);
812 fdt_nop_property(initial_boot_params, aliases,
813 name_buffer);
814 } else {
815 int phy_addr = cvmx_helper_board_get_mii_address(CVMX_HELPER_BOARD_MGMT_IPD_PORT + i);
816
817 octeon_fdt_set_phy(mgmt, phy_addr);
818 }
819 }
820 }
821
822 pip_path = fdt_getprop(initial_boot_params, aliases, "pip", NULL);
823 if (pip_path) {
824 int pip = fdt_path_offset(initial_boot_params, pip_path);
825
826 if (pip >= 0)
827 for (i = 0; i <= 4; i++)
828 octeon_fdt_pip_iface(pip, i);
829 }
830
831 /* I2C */
832 if (OCTEON_IS_MODEL(OCTEON_CN52XX) ||
833 OCTEON_IS_MODEL(OCTEON_CN63XX) ||
834 OCTEON_IS_MODEL(OCTEON_CN68XX) ||
835 OCTEON_IS_MODEL(OCTEON_CN56XX))
836 max_port = 2;
837 else
838 max_port = 1;
839
840 for (i = 0; i < 2; i++) {
841 int i2c;
842
843 snprintf(name_buffer, sizeof(name_buffer),
844 "twsi%d", i);
845 alias_prop = fdt_getprop(initial_boot_params, aliases,
846 name_buffer, NULL);
847
848 if (alias_prop) {
849 i2c = fdt_path_offset(initial_boot_params, alias_prop);
850 if (i2c < 0)
851 continue;
852 if (i >= max_port) {
853 pr_debug("Deleting twsi%d\n", i);
854 fdt_nop_node(initial_boot_params, i2c);
855 fdt_nop_property(initial_boot_params, aliases,
856 name_buffer);
857 }
858 }
859 }
860
861 /* SMI/MDIO */
862 if (OCTEON_IS_MODEL(OCTEON_CN68XX))
863 max_port = 4;
864 else if (OCTEON_IS_MODEL(OCTEON_CN52XX) ||
865 OCTEON_IS_MODEL(OCTEON_CN63XX) ||
866 OCTEON_IS_MODEL(OCTEON_CN56XX))
867 max_port = 2;
868 else
869 max_port = 1;
870
871 for (i = 0; i < 2; i++) {
872 int i2c;
873
874 snprintf(name_buffer, sizeof(name_buffer),
875 "smi%d", i);
876 alias_prop = fdt_getprop(initial_boot_params, aliases,
877 name_buffer, NULL);
878 if (alias_prop) {
879 i2c = fdt_path_offset(initial_boot_params, alias_prop);
880 if (i2c < 0)
881 continue;
882 if (i >= max_port) {
883 pr_debug("Deleting smi%d\n", i);
884 fdt_nop_node(initial_boot_params, i2c);
885 fdt_nop_property(initial_boot_params, aliases,
886 name_buffer);
887 }
888 }
889 }
890
891 /* Serial */
892 uart_mask = 3;
893
894 /* Right now CN52XX is the only chip with a third uart */
895 if (OCTEON_IS_MODEL(OCTEON_CN52XX))
896 uart_mask |= 4; /* uart2 */
897
898 for (i = 0; i < 3; i++) {
899 int uart;
900
901 snprintf(name_buffer, sizeof(name_buffer),
902 "uart%d", i);
903 alias_prop = fdt_getprop(initial_boot_params, aliases,
904 name_buffer, NULL);
905
906 if (alias_prop) {
907 uart = fdt_path_offset(initial_boot_params, alias_prop);
908 if (uart_mask & (1 << i)) {
909 __be32 f;
910
911 f = cpu_to_be32(octeon_get_io_clock_rate());
912 fdt_setprop_inplace(initial_boot_params,
913 uart, "clock-frequency",
914 &f, sizeof(f));
915 continue;
916 }
917 pr_debug("Deleting uart%d\n", i);
918 fdt_nop_node(initial_boot_params, uart);
919 fdt_nop_property(initial_boot_params, aliases,
920 name_buffer);
921 }
922 }
923
924 /* Compact Flash */
925 alias_prop = fdt_getprop(initial_boot_params, aliases,
926 "cf0", NULL);
927 if (alias_prop) {
928 union cvmx_mio_boot_reg_cfgx mio_boot_reg_cfg;
929 unsigned long base_ptr, region_base, region_size;
930 unsigned long region1_base = 0;
931 unsigned long region1_size = 0;
932 int cs, bootbus;
933 bool is_16bit = false;
934 bool is_true_ide = false;
935 __be32 new_reg[6];
936 __be32 *ranges;
937 int len;
938
939 int cf = fdt_path_offset(initial_boot_params, alias_prop);
940
941 base_ptr = 0;
942 if (octeon_bootinfo->major_version == 1
943 && octeon_bootinfo->minor_version >= 1) {
944 if (octeon_bootinfo->compact_flash_common_base_addr)
945 base_ptr = octeon_bootinfo->compact_flash_common_base_addr;
946 } else {
947 base_ptr = 0x1d000800;
948 }
949
950 if (!base_ptr)
951 goto no_cf;
952
953 /* Find CS0 region. */
954 for (cs = 0; cs < 8; cs++) {
955 mio_boot_reg_cfg.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_CFGX(cs));
956 region_base = mio_boot_reg_cfg.s.base << 16;
957 region_size = (mio_boot_reg_cfg.s.size + 1) << 16;
958 if (mio_boot_reg_cfg.s.en && base_ptr >= region_base
959 && base_ptr < region_base + region_size) {
960 is_16bit = mio_boot_reg_cfg.s.width;
961 break;
962 }
963 }
964 if (cs >= 7) {
965 /* cs and cs + 1 are CS0 and CS1, both must be less than 8. */
966 goto no_cf;
967 }
968
969 if (!(base_ptr & 0xfffful)) {
970 /*
971 * Boot loader signals availability of DMA (true_ide
972 * mode) by setting low order bits of base_ptr to
973 * zero.
974 */
975
976 /* Assume that CS1 immediately follows. */
977 mio_boot_reg_cfg.u64 =
978 cvmx_read_csr(CVMX_MIO_BOOT_REG_CFGX(cs + 1));
979 region1_base = mio_boot_reg_cfg.s.base << 16;
980 region1_size = (mio_boot_reg_cfg.s.size + 1) << 16;
981 if (!mio_boot_reg_cfg.s.en)
982 goto no_cf;
983 is_true_ide = true;
984
985 } else {
986 fdt_nop_property(initial_boot_params, cf, "cavium,true-ide");
987 fdt_nop_property(initial_boot_params, cf, "cavium,dma-engine-handle");
988 if (!is_16bit) {
989 __be32 width = cpu_to_be32(8);
990
991 fdt_setprop_inplace(initial_boot_params, cf,
992 "cavium,bus-width", &width, sizeof(width));
993 }
994 }
995 new_reg[0] = cpu_to_be32(cs);
996 new_reg[1] = cpu_to_be32(0);
997 new_reg[2] = cpu_to_be32(0x10000);
998 new_reg[3] = cpu_to_be32(cs + 1);
999 new_reg[4] = cpu_to_be32(0);
1000 new_reg[5] = cpu_to_be32(0x10000);
1001 fdt_setprop_inplace(initial_boot_params, cf,
1002 "reg", new_reg, sizeof(new_reg));
1003
1004 bootbus = fdt_parent_offset(initial_boot_params, cf);
1005 if (bootbus < 0)
1006 goto no_cf;
1007 ranges = fdt_getprop_w(initial_boot_params, bootbus, "ranges", &len);
1008 if (!ranges || len < (5 * 8 * sizeof(__be32)))
1009 goto no_cf;
1010
1011 ranges[(cs * 5) + 2] = cpu_to_be32(region_base >> 32);
1012 ranges[(cs * 5) + 3] = cpu_to_be32(region_base & 0xffffffff);
1013 ranges[(cs * 5) + 4] = cpu_to_be32(region_size);
1014 if (is_true_ide) {
1015 cs++;
1016 ranges[(cs * 5) + 2] = cpu_to_be32(region1_base >> 32);
1017 ranges[(cs * 5) + 3] = cpu_to_be32(region1_base & 0xffffffff);
1018 ranges[(cs * 5) + 4] = cpu_to_be32(region1_size);
1019 }
1020 goto end_cf;
1021 no_cf:
1022 fdt_nop_node(initial_boot_params, cf);
1023
1024 end_cf:
1025 ;
1026 }
1027
1028 /* 8 char LED */
1029 alias_prop = fdt_getprop(initial_boot_params, aliases,
1030 "led0", NULL);
1031 if (alias_prop) {
1032 union cvmx_mio_boot_reg_cfgx mio_boot_reg_cfg;
1033 unsigned long base_ptr, region_base, region_size;
1034 int cs, bootbus;
1035 __be32 new_reg[6];
1036 __be32 *ranges;
1037 int len;
1038 int led = fdt_path_offset(initial_boot_params, alias_prop);
1039
1040 base_ptr = octeon_bootinfo->led_display_base_addr;
1041 if (base_ptr == 0)
1042 goto no_led;
1043 /* Find CS0 region. */
1044 for (cs = 0; cs < 8; cs++) {
1045 mio_boot_reg_cfg.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_CFGX(cs));
1046 region_base = mio_boot_reg_cfg.s.base << 16;
1047 region_size = (mio_boot_reg_cfg.s.size + 1) << 16;
1048 if (mio_boot_reg_cfg.s.en && base_ptr >= region_base
1049 && base_ptr < region_base + region_size)
1050 break;
1051 }
1052
1053 if (cs > 7)
1054 goto no_led;
1055
1056 new_reg[0] = cpu_to_be32(cs);
1057 new_reg[1] = cpu_to_be32(0x20);
1058 new_reg[2] = cpu_to_be32(0x20);
1059 new_reg[3] = cpu_to_be32(cs);
1060 new_reg[4] = cpu_to_be32(0);
1061 new_reg[5] = cpu_to_be32(0x20);
1062 fdt_setprop_inplace(initial_boot_params, led,
1063 "reg", new_reg, sizeof(new_reg));
1064
1065 bootbus = fdt_parent_offset(initial_boot_params, led);
1066 if (bootbus < 0)
1067 goto no_led;
1068 ranges = fdt_getprop_w(initial_boot_params, bootbus, "ranges", &len);
1069 if (!ranges || len < (5 * 8 * sizeof(__be32)))
1070 goto no_led;
1071
1072 ranges[(cs * 5) + 2] = cpu_to_be32(region_base >> 32);
1073 ranges[(cs * 5) + 3] = cpu_to_be32(region_base & 0xffffffff);
1074 ranges[(cs * 5) + 4] = cpu_to_be32(region_size);
1075 goto end_led;
1076
1077 no_led:
1078 fdt_nop_node(initial_boot_params, led);
1079 end_led:
1080 ;
1081 }
1082
1083 #ifdef CONFIG_USB
1084 /* OHCI/UHCI USB */
1085 alias_prop = fdt_getprop(initial_boot_params, aliases,
1086 "uctl", NULL);
1087 if (alias_prop) {
1088 int uctl = fdt_path_offset(initial_boot_params, alias_prop);
1089
1090 if (uctl >= 0 && (!OCTEON_IS_MODEL(OCTEON_CN6XXX) ||
1091 octeon_bootinfo->board_type == CVMX_BOARD_TYPE_NIC2E)) {
1092 pr_debug("Deleting uctl\n");
1093 fdt_nop_node(initial_boot_params, uctl);
1094 fdt_nop_property(initial_boot_params, aliases, "uctl");
1095 } else if (octeon_bootinfo->board_type == CVMX_BOARD_TYPE_NIC10E ||
1096 octeon_bootinfo->board_type == CVMX_BOARD_TYPE_NIC4E) {
1097 /* Missing "refclk-type" defaults to crystal. */
1098 fdt_nop_property(initial_boot_params, uctl, "refclk-type");
1099 }
1100 }
1101
1102 /* DWC2 USB */
1103 alias_prop = fdt_getprop(initial_boot_params, aliases,
1104 "usbn", NULL);
1105 if (alias_prop) {
1106 int usbn = fdt_path_offset(initial_boot_params, alias_prop);
1107
1108 if (usbn >= 0 && (current_cpu_type() == CPU_CAVIUM_OCTEON2 ||
1109 !octeon_has_feature(OCTEON_FEATURE_USB))) {
1110 pr_debug("Deleting usbn\n");
1111 fdt_nop_node(initial_boot_params, usbn);
1112 fdt_nop_property(initial_boot_params, aliases, "usbn");
1113 } else {
1114 __be32 new_f[1];
1115 enum cvmx_helper_board_usb_clock_types c;
1116
1117 c = __cvmx_helper_board_usb_get_clock_type();
1118 switch (c) {
1119 case USB_CLOCK_TYPE_REF_48:
1120 new_f[0] = cpu_to_be32(48000000);
1121 fdt_setprop_inplace(initial_boot_params, usbn,
1122 "refclk-frequency", new_f, sizeof(new_f));
1123 fallthrough;
1124 case USB_CLOCK_TYPE_REF_12:
1125 /* Missing "refclk-type" defaults to external. */
1126 fdt_nop_property(initial_boot_params, usbn, "refclk-type");
1127 break;
1128 default:
1129 break;
1130 }
1131 }
1132 }
1133 #endif
1134
1135 return 0;
1136 }
1137
octeon_publish_devices(void)1138 static int __init octeon_publish_devices(void)
1139 {
1140 return of_platform_populate(NULL, octeon_ids, NULL, NULL);
1141 }
1142 arch_initcall(octeon_publish_devices);
1143