xref: /linux/arch/mips/cavium-octeon/octeon-memcpy.S (revision ca55b2fef3a9373fcfc30f82fd26bc7fccbda732)
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License.  See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Unified implementation of memcpy, memmove and the __copy_user backend.
7 *
8 * Copyright (C) 1998, 99, 2000, 01, 2002 Ralf Baechle (ralf@gnu.org)
9 * Copyright (C) 1999, 2000, 01, 2002 Silicon Graphics, Inc.
10 * Copyright (C) 2002 Broadcom, Inc.
11 *   memcpy/copy_user author: Mark Vandevoorde
12 *
13 * Mnemonic names for arguments to memcpy/__copy_user
14 */
15
16#include <asm/asm.h>
17#include <asm/asm-offsets.h>
18#include <asm/regdef.h>
19
20#define dst a0
21#define src a1
22#define len a2
23
24/*
25 * Spec
26 *
27 * memcpy copies len bytes from src to dst and sets v0 to dst.
28 * It assumes that
29 *   - src and dst don't overlap
30 *   - src is readable
31 *   - dst is writable
32 * memcpy uses the standard calling convention
33 *
34 * __copy_user copies up to len bytes from src to dst and sets a2 (len) to
35 * the number of uncopied bytes due to an exception caused by a read or write.
36 * __copy_user assumes that src and dst don't overlap, and that the call is
37 * implementing one of the following:
38 *   copy_to_user
39 *     - src is readable  (no exceptions when reading src)
40 *   copy_from_user
41 *     - dst is writable  (no exceptions when writing dst)
42 * __copy_user uses a non-standard calling convention; see
43 * arch/mips/include/asm/uaccess.h
44 *
45 * When an exception happens on a load, the handler must
46 # ensure that all of the destination buffer is overwritten to prevent
47 * leaking information to user mode programs.
48 */
49
50/*
51 * Implementation
52 */
53
54/*
55 * The exception handler for loads requires that:
56 *  1- AT contain the address of the byte just past the end of the source
57 *     of the copy,
58 *  2- src_entry <= src < AT, and
59 *  3- (dst - src) == (dst_entry - src_entry),
60 * The _entry suffix denotes values when __copy_user was called.
61 *
62 * (1) is set up up by uaccess.h and maintained by not writing AT in copy_user
63 * (2) is met by incrementing src by the number of bytes copied
64 * (3) is met by not doing loads between a pair of increments of dst and src
65 *
66 * The exception handlers for stores adjust len (if necessary) and return.
67 * These handlers do not need to overwrite any data.
68 *
69 * For __rmemcpy and memmove an exception is always a kernel bug, therefore
70 * they're not protected.
71 */
72
73#define EXC(inst_reg,addr,handler)		\
749:	inst_reg, addr;				\
75	.section __ex_table,"a";		\
76	PTR	9b, handler;			\
77	.previous
78
79/*
80 * Only on the 64-bit kernel we can made use of 64-bit registers.
81 */
82
83#define LOAD   ld
84#define LOADL  ldl
85#define LOADR  ldr
86#define STOREL sdl
87#define STORER sdr
88#define STORE  sd
89#define ADD    daddu
90#define SUB    dsubu
91#define SRL    dsrl
92#define SRA    dsra
93#define SLL    dsll
94#define SLLV   dsllv
95#define SRLV   dsrlv
96#define NBYTES 8
97#define LOG_NBYTES 3
98
99/*
100 * As we are sharing code base with the mips32 tree (which use the o32 ABI
101 * register definitions). We need to redefine the register definitions from
102 * the n64 ABI register naming to the o32 ABI register naming.
103 */
104#undef t0
105#undef t1
106#undef t2
107#undef t3
108#define t0	$8
109#define t1	$9
110#define t2	$10
111#define t3	$11
112#define t4	$12
113#define t5	$13
114#define t6	$14
115#define t7	$15
116
117#ifdef CONFIG_CPU_LITTLE_ENDIAN
118#define LDFIRST LOADR
119#define LDREST	LOADL
120#define STFIRST STORER
121#define STREST	STOREL
122#define SHIFT_DISCARD SLLV
123#else
124#define LDFIRST LOADL
125#define LDREST	LOADR
126#define STFIRST STOREL
127#define STREST	STORER
128#define SHIFT_DISCARD SRLV
129#endif
130
131#define FIRST(unit) ((unit)*NBYTES)
132#define REST(unit)  (FIRST(unit)+NBYTES-1)
133#define UNIT(unit)  FIRST(unit)
134
135#define ADDRMASK (NBYTES-1)
136
137	.text
138	.set	noreorder
139	.set	noat
140
141/*
142 * t7 is used as a flag to note inatomic mode.
143 */
144LEAF(__copy_user_inatomic)
145	b	__copy_user_common
146	 li	t7, 1
147	END(__copy_user_inatomic)
148
149/*
150 * A combined memcpy/__copy_user
151 * __copy_user sets len to 0 for success; else to an upper bound of
152 * the number of uncopied bytes.
153 * memcpy sets v0 to dst.
154 */
155	.align	5
156LEAF(memcpy)					/* a0=dst a1=src a2=len */
157	move	v0, dst				/* return value */
158__memcpy:
159FEXPORT(__copy_user)
160	li	t7, 0				/* not inatomic */
161__copy_user_common:
162	/*
163	 * Note: dst & src may be unaligned, len may be 0
164	 * Temps
165	 */
166	#
167	# Octeon doesn't care if the destination is unaligned. The hardware
168	# can fix it faster than we can special case the assembly.
169	#
170	pref	0, 0(src)
171	sltu	t0, len, NBYTES		# Check if < 1 word
172	bnez	t0, copy_bytes_checklen
173	 and	t0, src, ADDRMASK	# Check if src unaligned
174	bnez	t0, src_unaligned
175	 sltu	t0, len, 4*NBYTES	# Check if < 4 words
176	bnez	t0, less_than_4units
177	 sltu	t0, len, 8*NBYTES	# Check if < 8 words
178	bnez	t0, less_than_8units
179	 sltu	t0, len, 16*NBYTES	# Check if < 16 words
180	bnez	t0, cleanup_both_aligned
181	 sltu	t0, len, 128+1		# Check if len < 129
182	bnez	t0, 1f			# Skip prefetch if len is too short
183	 sltu	t0, len, 256+1		# Check if len < 257
184	bnez	t0, 1f			# Skip prefetch if len is too short
185	 pref	0, 128(src)		# We must not prefetch invalid addresses
186	#
187	# This is where we loop if there is more than 128 bytes left
1882:	pref	0, 256(src)		# We must not prefetch invalid addresses
189	#
190	# This is where we loop if we can't prefetch anymore
1911:
192EXC(	LOAD	t0, UNIT(0)(src),	l_exc)
193EXC(	LOAD	t1, UNIT(1)(src),	l_exc_copy)
194EXC(	LOAD	t2, UNIT(2)(src),	l_exc_copy)
195EXC(	LOAD	t3, UNIT(3)(src),	l_exc_copy)
196	SUB	len, len, 16*NBYTES
197EXC(	STORE	t0, UNIT(0)(dst),	s_exc_p16u)
198EXC(	STORE	t1, UNIT(1)(dst),	s_exc_p15u)
199EXC(	STORE	t2, UNIT(2)(dst),	s_exc_p14u)
200EXC(	STORE	t3, UNIT(3)(dst),	s_exc_p13u)
201EXC(	LOAD	t0, UNIT(4)(src),	l_exc_copy)
202EXC(	LOAD	t1, UNIT(5)(src),	l_exc_copy)
203EXC(	LOAD	t2, UNIT(6)(src),	l_exc_copy)
204EXC(	LOAD	t3, UNIT(7)(src),	l_exc_copy)
205EXC(	STORE	t0, UNIT(4)(dst),	s_exc_p12u)
206EXC(	STORE	t1, UNIT(5)(dst),	s_exc_p11u)
207EXC(	STORE	t2, UNIT(6)(dst),	s_exc_p10u)
208	ADD	src, src, 16*NBYTES
209EXC(	STORE	t3, UNIT(7)(dst),	s_exc_p9u)
210	ADD	dst, dst, 16*NBYTES
211EXC(	LOAD	t0, UNIT(-8)(src),	l_exc_copy)
212EXC(	LOAD	t1, UNIT(-7)(src),	l_exc_copy)
213EXC(	LOAD	t2, UNIT(-6)(src),	l_exc_copy)
214EXC(	LOAD	t3, UNIT(-5)(src),	l_exc_copy)
215EXC(	STORE	t0, UNIT(-8)(dst),	s_exc_p8u)
216EXC(	STORE	t1, UNIT(-7)(dst),	s_exc_p7u)
217EXC(	STORE	t2, UNIT(-6)(dst),	s_exc_p6u)
218EXC(	STORE	t3, UNIT(-5)(dst),	s_exc_p5u)
219EXC(	LOAD	t0, UNIT(-4)(src),	l_exc_copy)
220EXC(	LOAD	t1, UNIT(-3)(src),	l_exc_copy)
221EXC(	LOAD	t2, UNIT(-2)(src),	l_exc_copy)
222EXC(	LOAD	t3, UNIT(-1)(src),	l_exc_copy)
223EXC(	STORE	t0, UNIT(-4)(dst),	s_exc_p4u)
224EXC(	STORE	t1, UNIT(-3)(dst),	s_exc_p3u)
225EXC(	STORE	t2, UNIT(-2)(dst),	s_exc_p2u)
226EXC(	STORE	t3, UNIT(-1)(dst),	s_exc_p1u)
227	sltu	t0, len, 256+1		# See if we can prefetch more
228	beqz	t0, 2b
229	 sltu	t0, len, 128		# See if we can loop more time
230	beqz	t0, 1b
231	 nop
232	#
233	# Jump here if there are less than 16*NBYTES left.
234	#
235cleanup_both_aligned:
236	beqz	len, done
237	 sltu	t0, len, 8*NBYTES
238	bnez	t0, less_than_8units
239	 nop
240EXC(	LOAD	t0, UNIT(0)(src),	l_exc)
241EXC(	LOAD	t1, UNIT(1)(src),	l_exc_copy)
242EXC(	LOAD	t2, UNIT(2)(src),	l_exc_copy)
243EXC(	LOAD	t3, UNIT(3)(src),	l_exc_copy)
244	SUB	len, len, 8*NBYTES
245EXC(	STORE	t0, UNIT(0)(dst),	s_exc_p8u)
246EXC(	STORE	t1, UNIT(1)(dst),	s_exc_p7u)
247EXC(	STORE	t2, UNIT(2)(dst),	s_exc_p6u)
248EXC(	STORE	t3, UNIT(3)(dst),	s_exc_p5u)
249EXC(	LOAD	t0, UNIT(4)(src),	l_exc_copy)
250EXC(	LOAD	t1, UNIT(5)(src),	l_exc_copy)
251EXC(	LOAD	t2, UNIT(6)(src),	l_exc_copy)
252EXC(	LOAD	t3, UNIT(7)(src),	l_exc_copy)
253EXC(	STORE	t0, UNIT(4)(dst),	s_exc_p4u)
254EXC(	STORE	t1, UNIT(5)(dst),	s_exc_p3u)
255EXC(	STORE	t2, UNIT(6)(dst),	s_exc_p2u)
256EXC(	STORE	t3, UNIT(7)(dst),	s_exc_p1u)
257	ADD	src, src, 8*NBYTES
258	beqz	len, done
259	 ADD	dst, dst, 8*NBYTES
260	#
261	# Jump here if there are less than 8*NBYTES left.
262	#
263less_than_8units:
264	sltu	t0, len, 4*NBYTES
265	bnez	t0, less_than_4units
266	 nop
267EXC(	LOAD	t0, UNIT(0)(src),	l_exc)
268EXC(	LOAD	t1, UNIT(1)(src),	l_exc_copy)
269EXC(	LOAD	t2, UNIT(2)(src),	l_exc_copy)
270EXC(	LOAD	t3, UNIT(3)(src),	l_exc_copy)
271	SUB	len, len, 4*NBYTES
272EXC(	STORE	t0, UNIT(0)(dst),	s_exc_p4u)
273EXC(	STORE	t1, UNIT(1)(dst),	s_exc_p3u)
274EXC(	STORE	t2, UNIT(2)(dst),	s_exc_p2u)
275EXC(	STORE	t3, UNIT(3)(dst),	s_exc_p1u)
276	ADD	src, src, 4*NBYTES
277	beqz	len, done
278	 ADD	dst, dst, 4*NBYTES
279	#
280	# Jump here if there are less than 4*NBYTES left. This means
281	# we may need to copy up to 3 NBYTES words.
282	#
283less_than_4units:
284	sltu	t0, len, 1*NBYTES
285	bnez	t0, copy_bytes_checklen
286	 nop
287	#
288	# 1) Copy NBYTES, then check length again
289	#
290EXC(	LOAD	t0, 0(src),		l_exc)
291	SUB	len, len, NBYTES
292	sltu	t1, len, 8
293EXC(	STORE	t0, 0(dst),		s_exc_p1u)
294	ADD	src, src, NBYTES
295	bnez	t1, copy_bytes_checklen
296	 ADD	dst, dst, NBYTES
297	#
298	# 2) Copy NBYTES, then check length again
299	#
300EXC(	LOAD	t0, 0(src),		l_exc)
301	SUB	len, len, NBYTES
302	sltu	t1, len, 8
303EXC(	STORE	t0, 0(dst),		s_exc_p1u)
304	ADD	src, src, NBYTES
305	bnez	t1, copy_bytes_checklen
306	 ADD	dst, dst, NBYTES
307	#
308	# 3) Copy NBYTES, then check length again
309	#
310EXC(	LOAD	t0, 0(src),		l_exc)
311	SUB	len, len, NBYTES
312	ADD	src, src, NBYTES
313	ADD	dst, dst, NBYTES
314	b copy_bytes_checklen
315EXC(	 STORE	t0, -8(dst),		s_exc_p1u)
316
317src_unaligned:
318#define rem t8
319	SRL	t0, len, LOG_NBYTES+2	 # +2 for 4 units/iter
320	beqz	t0, cleanup_src_unaligned
321	 and	rem, len, (4*NBYTES-1)	 # rem = len % 4*NBYTES
3221:
323/*
324 * Avoid consecutive LD*'s to the same register since some mips
325 * implementations can't issue them in the same cycle.
326 * It's OK to load FIRST(N+1) before REST(N) because the two addresses
327 * are to the same unit (unless src is aligned, but it's not).
328 */
329EXC(	LDFIRST t0, FIRST(0)(src),	l_exc)
330EXC(	LDFIRST t1, FIRST(1)(src),	l_exc_copy)
331	SUB	len, len, 4*NBYTES
332EXC(	LDREST	t0, REST(0)(src),	l_exc_copy)
333EXC(	LDREST	t1, REST(1)(src),	l_exc_copy)
334EXC(	LDFIRST t2, FIRST(2)(src),	l_exc_copy)
335EXC(	LDFIRST t3, FIRST(3)(src),	l_exc_copy)
336EXC(	LDREST	t2, REST(2)(src),	l_exc_copy)
337EXC(	LDREST	t3, REST(3)(src),	l_exc_copy)
338	ADD	src, src, 4*NBYTES
339EXC(	STORE	t0, UNIT(0)(dst),	s_exc_p4u)
340EXC(	STORE	t1, UNIT(1)(dst),	s_exc_p3u)
341EXC(	STORE	t2, UNIT(2)(dst),	s_exc_p2u)
342EXC(	STORE	t3, UNIT(3)(dst),	s_exc_p1u)
343	bne	len, rem, 1b
344	 ADD	dst, dst, 4*NBYTES
345
346cleanup_src_unaligned:
347	beqz	len, done
348	 and	rem, len, NBYTES-1  # rem = len % NBYTES
349	beq	rem, len, copy_bytes
350	 nop
3511:
352EXC(	LDFIRST t0, FIRST(0)(src),	l_exc)
353EXC(	LDREST	t0, REST(0)(src),	l_exc_copy)
354	SUB	len, len, NBYTES
355EXC(	STORE	t0, 0(dst),		s_exc_p1u)
356	ADD	src, src, NBYTES
357	bne	len, rem, 1b
358	 ADD	dst, dst, NBYTES
359
360copy_bytes_checklen:
361	beqz	len, done
362	 nop
363copy_bytes:
364	/* 0 < len < NBYTES  */
365#define COPY_BYTE(N)			\
366EXC(	lb	t0, N(src), l_exc);	\
367	SUB	len, len, 1;		\
368	beqz	len, done;		\
369EXC(	 sb	t0, N(dst), s_exc_p1)
370
371	COPY_BYTE(0)
372	COPY_BYTE(1)
373	COPY_BYTE(2)
374	COPY_BYTE(3)
375	COPY_BYTE(4)
376	COPY_BYTE(5)
377EXC(	lb	t0, NBYTES-2(src), l_exc)
378	SUB	len, len, 1
379	jr	ra
380EXC(	 sb	t0, NBYTES-2(dst), s_exc_p1)
381done:
382	jr	ra
383	 nop
384	END(memcpy)
385
386l_exc_copy:
387	/*
388	 * Copy bytes from src until faulting load address (or until a
389	 * lb faults)
390	 *
391	 * When reached by a faulting LDFIRST/LDREST, THREAD_BUADDR($28)
392	 * may be more than a byte beyond the last address.
393	 * Hence, the lb below may get an exception.
394	 *
395	 * Assumes src < THREAD_BUADDR($28)
396	 */
397	LOAD	t0, TI_TASK($28)
398	LOAD	t0, THREAD_BUADDR(t0)
3991:
400EXC(	lb	t1, 0(src),	l_exc)
401	ADD	src, src, 1
402	sb	t1, 0(dst)	# can't fault -- we're copy_from_user
403	bne	src, t0, 1b
404	 ADD	dst, dst, 1
405l_exc:
406	LOAD	t0, TI_TASK($28)
407	LOAD	t0, THREAD_BUADDR(t0)	# t0 is just past last good address
408	SUB	len, AT, t0		# len number of uncopied bytes
409	bnez	t7, 2f		/* Skip the zeroing out part if inatomic */
410	/*
411	 * Here's where we rely on src and dst being incremented in tandem,
412	 *   See (3) above.
413	 * dst += (fault addr - src) to put dst at first byte to clear
414	 */
415	ADD	dst, t0			# compute start address in a1
416	SUB	dst, src
417	/*
418	 * Clear len bytes starting at dst.  Can't call __bzero because it
419	 * might modify len.  An inefficient loop for these rare times...
420	 */
421	beqz	len, done
422	 SUB	src, len, 1
4231:	sb	zero, 0(dst)
424	ADD	dst, dst, 1
425	bnez	src, 1b
426	 SUB	src, src, 1
4272:	jr	ra
428	 nop
429
430
431#define SEXC(n)				\
432s_exc_p ## n ## u:			\
433	jr	ra;			\
434	 ADD	len, len, n*NBYTES
435
436SEXC(16)
437SEXC(15)
438SEXC(14)
439SEXC(13)
440SEXC(12)
441SEXC(11)
442SEXC(10)
443SEXC(9)
444SEXC(8)
445SEXC(7)
446SEXC(6)
447SEXC(5)
448SEXC(4)
449SEXC(3)
450SEXC(2)
451SEXC(1)
452
453s_exc_p1:
454	jr	ra
455	 ADD	len, len, 1
456s_exc:
457	jr	ra
458	 nop
459
460	.align	5
461LEAF(memmove)
462	ADD	t0, a0, a2
463	ADD	t1, a1, a2
464	sltu	t0, a1, t0			# dst + len <= src -> memcpy
465	sltu	t1, a0, t1			# dst >= src + len -> memcpy
466	and	t0, t1
467	beqz	t0, __memcpy
468	 move	v0, a0				/* return value */
469	beqz	a2, r_out
470	END(memmove)
471
472	/* fall through to __rmemcpy */
473LEAF(__rmemcpy)					/* a0=dst a1=src a2=len */
474	 sltu	t0, a1, a0
475	beqz	t0, r_end_bytes_up		# src >= dst
476	 nop
477	ADD	a0, a2				# dst = dst + len
478	ADD	a1, a2				# src = src + len
479
480r_end_bytes:
481	lb	t0, -1(a1)
482	SUB	a2, a2, 0x1
483	sb	t0, -1(a0)
484	SUB	a1, a1, 0x1
485	bnez	a2, r_end_bytes
486	 SUB	a0, a0, 0x1
487
488r_out:
489	jr	ra
490	 move	a2, zero
491
492r_end_bytes_up:
493	lb	t0, (a1)
494	SUB	a2, a2, 0x1
495	sb	t0, (a0)
496	ADD	a1, a1, 0x1
497	bnez	a2, r_end_bytes_up
498	 ADD	a0, a0, 0x1
499
500	jr	ra
501	 move	a2, zero
502	END(__rmemcpy)
503