xref: /linux/arch/mips/cavium-octeon/csrc-octeon.c (revision 4d5e3b06e1fc1428be14cd4ebe3b37c1bb34f95d)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 2007 by Ralf Baechle
7  * Copyright (C) 2009, 2012 Cavium, Inc.
8  */
9 #include <linux/clocksource.h>
10 #include <linux/sched/clock.h>
11 #include <linux/export.h>
12 #include <linux/init.h>
13 #include <linux/smp.h>
14 
15 #include <asm/cpu-info.h>
16 #include <asm/cpu-type.h>
17 #include <asm/time.h>
18 
19 #include <asm/octeon/octeon.h>
20 #include <asm/octeon/cvmx-ipd-defs.h>
21 #include <asm/octeon/cvmx-mio-defs.h>
22 #include <asm/octeon/cvmx-rst-defs.h>
23 #include <asm/octeon/cvmx-fpa-defs.h>
24 
25 static u64 f;
26 static u64 rdiv;
27 static u64 sdiv;
28 static u64 octeon_udelay_factor;
29 static u64 octeon_ndelay_factor;
30 
31 void __init octeon_setup_delays(void)
32 {
33 	octeon_udelay_factor = octeon_get_clock_rate() / 1000000;
34 	/*
35 	 * For __ndelay we divide by 2^16, so the factor is multiplied
36 	 * by the same amount.
37 	 */
38 	octeon_ndelay_factor = (octeon_udelay_factor * 0x10000ull) / 1000ull;
39 
40 	preset_lpj = octeon_get_clock_rate() / HZ;
41 
42 	if (current_cpu_type() == CPU_CAVIUM_OCTEON2) {
43 		union cvmx_mio_rst_boot rst_boot;
44 
45 		rst_boot.u64 = cvmx_read_csr(CVMX_MIO_RST_BOOT);
46 		rdiv = rst_boot.s.c_mul;	/* CPU clock */
47 		sdiv = rst_boot.s.pnr_mul;	/* I/O clock */
48 		f = (0x8000000000000000ull / sdiv) * 2;
49 	} else if (current_cpu_type() == CPU_CAVIUM_OCTEON3) {
50 		union cvmx_rst_boot rst_boot;
51 
52 		rst_boot.u64 = cvmx_read_csr(CVMX_RST_BOOT);
53 		rdiv = rst_boot.s.c_mul;	/* CPU clock */
54 		sdiv = rst_boot.s.pnr_mul;	/* I/O clock */
55 		f = (0x8000000000000000ull / sdiv) * 2;
56 	}
57 
58 }
59 
60 /*
61  * Set the current core's cvmcount counter to the value of the
62  * IPD_CLK_COUNT.  We do this on all cores as they are brought
63  * on-line.  This allows for a read from a local cpu register to
64  * access a synchronized counter.
65  *
66  * On CPU_CAVIUM_OCTEON2 the IPD_CLK_COUNT is scaled by rdiv/sdiv.
67  */
68 void octeon_init_cvmcount(void)
69 {
70 	u64 clk_reg;
71 	unsigned long flags;
72 	unsigned loops = 2;
73 
74 	clk_reg = octeon_has_feature(OCTEON_FEATURE_FPA3) ?
75 		CVMX_FPA_CLK_COUNT : CVMX_IPD_CLK_COUNT;
76 
77 	/* Clobber loops so GCC will not unroll the following while loop. */
78 	asm("" : "+r" (loops));
79 
80 	local_irq_save(flags);
81 	/*
82 	 * Loop several times so we are executing from the cache,
83 	 * which should give more deterministic timing.
84 	 */
85 	while (loops--) {
86 		u64 clk_count = cvmx_read_csr(clk_reg);
87 		if (rdiv != 0) {
88 			clk_count *= rdiv;
89 			if (f != 0) {
90 				asm("dmultu\t%[cnt],%[f]\n\t"
91 				    "mfhi\t%[cnt]"
92 				    : [cnt] "+r" (clk_count)
93 				    : [f] "r" (f)
94 				    : "hi", "lo");
95 			}
96 		}
97 		write_c0_cvmcount(clk_count);
98 	}
99 	local_irq_restore(flags);
100 }
101 
102 static u64 octeon_cvmcount_read(struct clocksource *cs)
103 {
104 	return read_c0_cvmcount();
105 }
106 
107 static struct clocksource clocksource_mips = {
108 	.name		= "OCTEON_CVMCOUNT",
109 	.read		= octeon_cvmcount_read,
110 	.mask		= CLOCKSOURCE_MASK(64),
111 	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
112 };
113 
114 unsigned long long notrace sched_clock(void)
115 {
116 	/* 64-bit arithmatic can overflow, so use 128-bit.  */
117 	u64 t1, t2, t3;
118 	unsigned long long rv;
119 	u64 mult = clocksource_mips.mult;
120 	u64 shift = clocksource_mips.shift;
121 	u64 cnt = read_c0_cvmcount();
122 
123 	asm (
124 		"dmultu\t%[cnt],%[mult]\n\t"
125 		"nor\t%[t1],$0,%[shift]\n\t"
126 		"mfhi\t%[t2]\n\t"
127 		"mflo\t%[t3]\n\t"
128 		"dsll\t%[t2],%[t2],1\n\t"
129 		"dsrlv\t%[rv],%[t3],%[shift]\n\t"
130 		"dsllv\t%[t1],%[t2],%[t1]\n\t"
131 		"or\t%[rv],%[t1],%[rv]\n\t"
132 		: [rv] "=&r" (rv), [t1] "=&r" (t1), [t2] "=&r" (t2), [t3] "=&r" (t3)
133 		: [cnt] "r" (cnt), [mult] "r" (mult), [shift] "r" (shift)
134 		: "hi", "lo");
135 	return rv;
136 }
137 
138 void __init plat_time_init(void)
139 {
140 	clocksource_mips.rating = 300;
141 	clocksource_register_hz(&clocksource_mips, octeon_get_clock_rate());
142 }
143 
144 void __udelay(unsigned long us)
145 {
146 	u64 cur, end, inc;
147 
148 	cur = read_c0_cvmcount();
149 
150 	inc = us * octeon_udelay_factor;
151 	end = cur + inc;
152 
153 	while (end > cur)
154 		cur = read_c0_cvmcount();
155 }
156 EXPORT_SYMBOL(__udelay);
157 
158 void __ndelay(unsigned long ns)
159 {
160 	u64 cur, end, inc;
161 
162 	cur = read_c0_cvmcount();
163 
164 	inc = ((ns * octeon_ndelay_factor) >> 16);
165 	end = cur + inc;
166 
167 	while (end > cur)
168 		cur = read_c0_cvmcount();
169 }
170 EXPORT_SYMBOL(__ndelay);
171 
172 void __delay(unsigned long loops)
173 {
174 	u64 cur, end;
175 
176 	cur = read_c0_cvmcount();
177 	end = cur + loops;
178 
179 	while (end > cur)
180 		cur = read_c0_cvmcount();
181 }
182 EXPORT_SYMBOL(__delay);
183 
184 
185 /**
186  * octeon_io_clk_delay - wait for a given number of io clock cycles to pass.
187  *
188  * We scale the wait by the clock ratio, and then wait for the
189  * corresponding number of core clocks.
190  *
191  * @count: The number of clocks to wait.
192  */
193 void octeon_io_clk_delay(unsigned long count)
194 {
195 	u64 cur, end;
196 
197 	cur = read_c0_cvmcount();
198 	if (rdiv != 0) {
199 		end = count * rdiv;
200 		if (f != 0) {
201 			asm("dmultu\t%[cnt],%[f]\n\t"
202 				"mfhi\t%[cnt]"
203 				: [cnt] "+r" (end)
204 				: [f] "r" (f)
205 				: "hi", "lo");
206 		}
207 		end = cur + end;
208 	} else {
209 		end = cur + count;
210 	}
211 	while (end > cur)
212 		cur = read_c0_cvmcount();
213 }
214 EXPORT_SYMBOL(octeon_io_clk_delay);
215