xref: /linux/arch/mips/cavium-octeon/csrc-octeon.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 2007 by Ralf Baechle
7  * Copyright (C) 2009, 2012 Cavium, Inc.
8  */
9 #include <linux/clocksource.h>
10 #include <linux/export.h>
11 #include <linux/init.h>
12 #include <linux/smp.h>
13 
14 #include <asm/cpu-info.h>
15 #include <asm/cpu-type.h>
16 #include <asm/time.h>
17 
18 #include <asm/octeon/octeon.h>
19 #include <asm/octeon/cvmx-ipd-defs.h>
20 #include <asm/octeon/cvmx-mio-defs.h>
21 #include <asm/octeon/cvmx-rst-defs.h>
22 #include <asm/octeon/cvmx-fpa-defs.h>
23 
24 static u64 f;
25 static u64 rdiv;
26 static u64 sdiv;
27 static u64 octeon_udelay_factor;
28 static u64 octeon_ndelay_factor;
29 
30 void __init octeon_setup_delays(void)
31 {
32 	octeon_udelay_factor = octeon_get_clock_rate() / 1000000;
33 	/*
34 	 * For __ndelay we divide by 2^16, so the factor is multiplied
35 	 * by the same amount.
36 	 */
37 	octeon_ndelay_factor = (octeon_udelay_factor * 0x10000ull) / 1000ull;
38 
39 	preset_lpj = octeon_get_clock_rate() / HZ;
40 
41 	if (current_cpu_type() == CPU_CAVIUM_OCTEON2) {
42 		union cvmx_mio_rst_boot rst_boot;
43 
44 		rst_boot.u64 = cvmx_read_csr(CVMX_MIO_RST_BOOT);
45 		rdiv = rst_boot.s.c_mul;	/* CPU clock */
46 		sdiv = rst_boot.s.pnr_mul;	/* I/O clock */
47 		f = (0x8000000000000000ull / sdiv) * 2;
48 	} else if (current_cpu_type() == CPU_CAVIUM_OCTEON3) {
49 		union cvmx_rst_boot rst_boot;
50 
51 		rst_boot.u64 = cvmx_read_csr(CVMX_RST_BOOT);
52 		rdiv = rst_boot.s.c_mul;	/* CPU clock */
53 		sdiv = rst_boot.s.pnr_mul;	/* I/O clock */
54 		f = (0x8000000000000000ull / sdiv) * 2;
55 	}
56 
57 }
58 
59 /*
60  * Set the current core's cvmcount counter to the value of the
61  * IPD_CLK_COUNT.  We do this on all cores as they are brought
62  * on-line.  This allows for a read from a local cpu register to
63  * access a synchronized counter.
64  *
65  * On CPU_CAVIUM_OCTEON2 the IPD_CLK_COUNT is scaled by rdiv/sdiv.
66  */
67 void octeon_init_cvmcount(void)
68 {
69 	u64 clk_reg;
70 	unsigned long flags;
71 	unsigned loops = 2;
72 
73 	clk_reg = octeon_has_feature(OCTEON_FEATURE_FPA3) ?
74 		CVMX_FPA_CLK_COUNT : CVMX_IPD_CLK_COUNT;
75 
76 	/* Clobber loops so GCC will not unroll the following while loop. */
77 	asm("" : "+r" (loops));
78 
79 	local_irq_save(flags);
80 	/*
81 	 * Loop several times so we are executing from the cache,
82 	 * which should give more deterministic timing.
83 	 */
84 	while (loops--) {
85 		u64 clk_count = cvmx_read_csr(clk_reg);
86 		if (rdiv != 0) {
87 			clk_count *= rdiv;
88 			if (f != 0) {
89 				asm("dmultu\t%[cnt],%[f]\n\t"
90 				    "mfhi\t%[cnt]"
91 				    : [cnt] "+r" (clk_count)
92 				    : [f] "r" (f)
93 				    : "hi", "lo");
94 			}
95 		}
96 		write_c0_cvmcount(clk_count);
97 	}
98 	local_irq_restore(flags);
99 }
100 
101 static cycle_t octeon_cvmcount_read(struct clocksource *cs)
102 {
103 	return read_c0_cvmcount();
104 }
105 
106 static struct clocksource clocksource_mips = {
107 	.name		= "OCTEON_CVMCOUNT",
108 	.read		= octeon_cvmcount_read,
109 	.mask		= CLOCKSOURCE_MASK(64),
110 	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
111 };
112 
113 unsigned long long notrace sched_clock(void)
114 {
115 	/* 64-bit arithmatic can overflow, so use 128-bit.  */
116 	u64 t1, t2, t3;
117 	unsigned long long rv;
118 	u64 mult = clocksource_mips.mult;
119 	u64 shift = clocksource_mips.shift;
120 	u64 cnt = read_c0_cvmcount();
121 
122 	asm (
123 		"dmultu\t%[cnt],%[mult]\n\t"
124 		"nor\t%[t1],$0,%[shift]\n\t"
125 		"mfhi\t%[t2]\n\t"
126 		"mflo\t%[t3]\n\t"
127 		"dsll\t%[t2],%[t2],1\n\t"
128 		"dsrlv\t%[rv],%[t3],%[shift]\n\t"
129 		"dsllv\t%[t1],%[t2],%[t1]\n\t"
130 		"or\t%[rv],%[t1],%[rv]\n\t"
131 		: [rv] "=&r" (rv), [t1] "=&r" (t1), [t2] "=&r" (t2), [t3] "=&r" (t3)
132 		: [cnt] "r" (cnt), [mult] "r" (mult), [shift] "r" (shift)
133 		: "hi", "lo");
134 	return rv;
135 }
136 
137 void __init plat_time_init(void)
138 {
139 	clocksource_mips.rating = 300;
140 	clocksource_register_hz(&clocksource_mips, octeon_get_clock_rate());
141 }
142 
143 void __udelay(unsigned long us)
144 {
145 	u64 cur, end, inc;
146 
147 	cur = read_c0_cvmcount();
148 
149 	inc = us * octeon_udelay_factor;
150 	end = cur + inc;
151 
152 	while (end > cur)
153 		cur = read_c0_cvmcount();
154 }
155 EXPORT_SYMBOL(__udelay);
156 
157 void __ndelay(unsigned long ns)
158 {
159 	u64 cur, end, inc;
160 
161 	cur = read_c0_cvmcount();
162 
163 	inc = ((ns * octeon_ndelay_factor) >> 16);
164 	end = cur + inc;
165 
166 	while (end > cur)
167 		cur = read_c0_cvmcount();
168 }
169 EXPORT_SYMBOL(__ndelay);
170 
171 void __delay(unsigned long loops)
172 {
173 	u64 cur, end;
174 
175 	cur = read_c0_cvmcount();
176 	end = cur + loops;
177 
178 	while (end > cur)
179 		cur = read_c0_cvmcount();
180 }
181 EXPORT_SYMBOL(__delay);
182 
183 
184 /**
185  * octeon_io_clk_delay - wait for a given number of io clock cycles to pass.
186  *
187  * We scale the wait by the clock ratio, and then wait for the
188  * corresponding number of core clocks.
189  *
190  * @count: The number of clocks to wait.
191  */
192 void octeon_io_clk_delay(unsigned long count)
193 {
194 	u64 cur, end;
195 
196 	cur = read_c0_cvmcount();
197 	if (rdiv != 0) {
198 		end = count * rdiv;
199 		if (f != 0) {
200 			asm("dmultu\t%[cnt],%[f]\n\t"
201 				"mfhi\t%[cnt]"
202 				: [cnt] "+r" (end)
203 				: [f] "r" (f)
204 				: "hi", "lo");
205 		}
206 		end = cur + end;
207 	} else {
208 		end = cur + count;
209 	}
210 	while (end > cur)
211 		cur = read_c0_cvmcount();
212 }
213 EXPORT_SYMBOL(octeon_io_clk_delay);
214