xref: /linux/arch/mips/alchemy/common/irq.c (revision f2ee442115c9b6219083c019939a9cc0c9abb2f8)
1 /*
2  * Copyright 2001, 2007-2008 MontaVista Software Inc.
3  * Author: MontaVista Software, Inc. <source@mvista.com>
4  *
5  * Copyright (C) 2007 Ralf Baechle (ralf@linux-mips.org)
6  *
7  *  This program is free software; you can redistribute	 it and/or modify it
8  *  under  the terms of	 the GNU General  Public License as published by the
9  *  Free Software Foundation;  either version 2 of the	License, or (at your
10  *  option) any later version.
11  *
12  *  THIS  SOFTWARE  IS PROVIDED	  ``AS	IS'' AND   ANY	EXPRESS OR IMPLIED
13  *  WARRANTIES,	  INCLUDING, BUT NOT  LIMITED  TO, THE IMPLIED WARRANTIES OF
14  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN
15  *  NO	EVENT  SHALL   THE AUTHOR  BE	 LIABLE FOR ANY	  DIRECT, INDIRECT,
16  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
17  *  NOT LIMITED	  TO, PROCUREMENT OF  SUBSTITUTE GOODS	OR SERVICES; LOSS OF
18  *  USE, DATA,	OR PROFITS; OR	BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
19  *  ANY THEORY OF LIABILITY, WHETHER IN	 CONTRACT, STRICT LIABILITY, OR TORT
20  *  (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
21  *  THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
22  *
23  *  You should have received a copy of the  GNU General Public License along
24  *  with this program; if not, write  to the Free Software Foundation, Inc.,
25  *  675 Mass Ave, Cambridge, MA 02139, USA.
26  */
27 
28 #include <linux/bitops.h>
29 #include <linux/init.h>
30 #include <linux/interrupt.h>
31 #include <linux/irq.h>
32 #include <linux/slab.h>
33 #include <linux/syscore_ops.h>
34 
35 #include <asm/irq_cpu.h>
36 #include <asm/mipsregs.h>
37 #include <asm/mach-au1x00/au1000.h>
38 #ifdef CONFIG_MIPS_PB1000
39 #include <asm/mach-pb1x00/pb1000.h>
40 #endif
41 
42 /* Interrupt Controller register offsets */
43 #define IC_CFG0RD	0x40
44 #define IC_CFG0SET	0x40
45 #define IC_CFG0CLR	0x44
46 #define IC_CFG1RD	0x48
47 #define IC_CFG1SET	0x48
48 #define IC_CFG1CLR	0x4C
49 #define IC_CFG2RD	0x50
50 #define IC_CFG2SET	0x50
51 #define IC_CFG2CLR	0x54
52 #define IC_REQ0INT	0x54
53 #define IC_SRCRD	0x58
54 #define IC_SRCSET	0x58
55 #define IC_SRCCLR	0x5C
56 #define IC_REQ1INT	0x5C
57 #define IC_ASSIGNRD	0x60
58 #define IC_ASSIGNSET	0x60
59 #define IC_ASSIGNCLR	0x64
60 #define IC_WAKERD	0x68
61 #define IC_WAKESET	0x68
62 #define IC_WAKECLR	0x6C
63 #define IC_MASKRD	0x70
64 #define IC_MASKSET	0x70
65 #define IC_MASKCLR	0x74
66 #define IC_RISINGRD	0x78
67 #define IC_RISINGCLR	0x78
68 #define IC_FALLINGRD	0x7C
69 #define IC_FALLINGCLR	0x7C
70 #define IC_TESTBIT	0x80
71 
72 static int au1x_ic_settype(struct irq_data *d, unsigned int flow_type);
73 
74 /* NOTE on interrupt priorities: The original writers of this code said:
75  *
76  * Because of the tight timing of SETUP token to reply transactions,
77  * the USB devices-side packet complete interrupt (USB_DEV_REQ_INT)
78  * needs the highest priority.
79  */
80 
81 /* per-processor fixed function irqs */
82 struct au1xxx_irqmap {
83 	int im_irq;
84 	int im_type;
85 	int im_request;		/* set 1 to get higher priority */
86 };
87 
88 struct au1xxx_irqmap au1000_irqmap[] __initdata = {
89 	{ AU1000_UART0_INT,	  IRQ_TYPE_LEVEL_HIGH,  0 },
90 	{ AU1000_UART1_INT,	  IRQ_TYPE_LEVEL_HIGH,  0 },
91 	{ AU1000_UART2_INT,	  IRQ_TYPE_LEVEL_HIGH,  0 },
92 	{ AU1000_UART3_INT,	  IRQ_TYPE_LEVEL_HIGH,  0 },
93 	{ AU1000_SSI0_INT,	  IRQ_TYPE_LEVEL_HIGH,  0 },
94 	{ AU1000_SSI1_INT,	  IRQ_TYPE_LEVEL_HIGH,  0 },
95 	{ AU1000_DMA_INT_BASE,	  IRQ_TYPE_LEVEL_HIGH,  0 },
96 	{ AU1000_DMA_INT_BASE+1,  IRQ_TYPE_LEVEL_HIGH,  0 },
97 	{ AU1000_DMA_INT_BASE+2,  IRQ_TYPE_LEVEL_HIGH,  0 },
98 	{ AU1000_DMA_INT_BASE+3,  IRQ_TYPE_LEVEL_HIGH,  0 },
99 	{ AU1000_DMA_INT_BASE+4,  IRQ_TYPE_LEVEL_HIGH,  0 },
100 	{ AU1000_DMA_INT_BASE+5,  IRQ_TYPE_LEVEL_HIGH,  0 },
101 	{ AU1000_DMA_INT_BASE+6,  IRQ_TYPE_LEVEL_HIGH,  0 },
102 	{ AU1000_DMA_INT_BASE+7,  IRQ_TYPE_LEVEL_HIGH,  0 },
103 	{ AU1000_TOY_INT,	  IRQ_TYPE_EDGE_RISING, 0 },
104 	{ AU1000_TOY_MATCH0_INT,  IRQ_TYPE_EDGE_RISING, 0 },
105 	{ AU1000_TOY_MATCH1_INT,  IRQ_TYPE_EDGE_RISING, 0 },
106 	{ AU1000_TOY_MATCH2_INT,  IRQ_TYPE_EDGE_RISING, 0 },
107 	{ AU1000_RTC_INT,	  IRQ_TYPE_EDGE_RISING, 0 },
108 	{ AU1000_RTC_MATCH0_INT,  IRQ_TYPE_EDGE_RISING, 0 },
109 	{ AU1000_RTC_MATCH1_INT,  IRQ_TYPE_EDGE_RISING, 0 },
110 	{ AU1000_RTC_MATCH2_INT,  IRQ_TYPE_EDGE_RISING, 1 },
111 	{ AU1000_IRDA_TX_INT,	  IRQ_TYPE_LEVEL_HIGH,  0 },
112 	{ AU1000_IRDA_RX_INT,	  IRQ_TYPE_LEVEL_HIGH,  0 },
113 	{ AU1000_USB_DEV_REQ_INT, IRQ_TYPE_LEVEL_HIGH,  1 },
114 	{ AU1000_USB_DEV_SUS_INT, IRQ_TYPE_EDGE_RISING, 0 },
115 	{ AU1000_USB_HOST_INT,	  IRQ_TYPE_LEVEL_LOW,   0 },
116 	{ AU1000_ACSYNC_INT,	  IRQ_TYPE_EDGE_RISING, 0 },
117 	{ AU1000_MAC0_DMA_INT,	  IRQ_TYPE_LEVEL_HIGH,  0 },
118 	{ AU1000_MAC1_DMA_INT,	  IRQ_TYPE_LEVEL_HIGH,  0 },
119 	{ AU1000_AC97C_INT,	  IRQ_TYPE_EDGE_RISING, 0 },
120 	{ -1, },
121 };
122 
123 struct au1xxx_irqmap au1500_irqmap[] __initdata = {
124 	{ AU1500_UART0_INT,	  IRQ_TYPE_LEVEL_HIGH,  0 },
125 	{ AU1500_PCI_INTA,	  IRQ_TYPE_LEVEL_LOW,   0 },
126 	{ AU1500_PCI_INTB,	  IRQ_TYPE_LEVEL_LOW,   0 },
127 	{ AU1500_UART3_INT,	  IRQ_TYPE_LEVEL_HIGH,  0 },
128 	{ AU1500_PCI_INTC,	  IRQ_TYPE_LEVEL_LOW,   0 },
129 	{ AU1500_PCI_INTD,	  IRQ_TYPE_LEVEL_LOW,   0 },
130 	{ AU1500_DMA_INT_BASE,	  IRQ_TYPE_LEVEL_HIGH,  0 },
131 	{ AU1500_DMA_INT_BASE+1,  IRQ_TYPE_LEVEL_HIGH,  0 },
132 	{ AU1500_DMA_INT_BASE+2,  IRQ_TYPE_LEVEL_HIGH,  0 },
133 	{ AU1500_DMA_INT_BASE+3,  IRQ_TYPE_LEVEL_HIGH,  0 },
134 	{ AU1500_DMA_INT_BASE+4,  IRQ_TYPE_LEVEL_HIGH,  0 },
135 	{ AU1500_DMA_INT_BASE+5,  IRQ_TYPE_LEVEL_HIGH,  0 },
136 	{ AU1500_DMA_INT_BASE+6,  IRQ_TYPE_LEVEL_HIGH,  0 },
137 	{ AU1500_DMA_INT_BASE+7,  IRQ_TYPE_LEVEL_HIGH,  0 },
138 	{ AU1500_TOY_INT,	  IRQ_TYPE_EDGE_RISING, 0 },
139 	{ AU1500_TOY_MATCH0_INT,  IRQ_TYPE_EDGE_RISING, 0 },
140 	{ AU1500_TOY_MATCH1_INT,  IRQ_TYPE_EDGE_RISING, 0 },
141 	{ AU1500_TOY_MATCH2_INT,  IRQ_TYPE_EDGE_RISING, 0 },
142 	{ AU1500_RTC_INT,	  IRQ_TYPE_EDGE_RISING, 0 },
143 	{ AU1500_RTC_MATCH0_INT,  IRQ_TYPE_EDGE_RISING, 0 },
144 	{ AU1500_RTC_MATCH1_INT,  IRQ_TYPE_EDGE_RISING, 0 },
145 	{ AU1500_RTC_MATCH2_INT,  IRQ_TYPE_EDGE_RISING, 1 },
146 	{ AU1500_USB_DEV_REQ_INT, IRQ_TYPE_LEVEL_HIGH,  1 },
147 	{ AU1500_USB_DEV_SUS_INT, IRQ_TYPE_EDGE_RISING, 0 },
148 	{ AU1500_USB_HOST_INT,	  IRQ_TYPE_LEVEL_LOW,   0 },
149 	{ AU1500_ACSYNC_INT,	  IRQ_TYPE_EDGE_RISING, 0 },
150 	{ AU1500_MAC0_DMA_INT,	  IRQ_TYPE_LEVEL_HIGH,  0 },
151 	{ AU1500_MAC1_DMA_INT,	  IRQ_TYPE_LEVEL_HIGH,  0 },
152 	{ AU1500_AC97C_INT,	  IRQ_TYPE_EDGE_RISING, 0 },
153 	{ -1, },
154 };
155 
156 struct au1xxx_irqmap au1100_irqmap[] __initdata = {
157 	{ AU1100_UART0_INT,	  IRQ_TYPE_LEVEL_HIGH,  0 },
158 	{ AU1100_UART1_INT,	  IRQ_TYPE_LEVEL_HIGH,  0 },
159 	{ AU1100_SD_INT,	  IRQ_TYPE_LEVEL_HIGH,  0 },
160 	{ AU1100_UART3_INT,	  IRQ_TYPE_LEVEL_HIGH,  0 },
161 	{ AU1100_SSI0_INT,	  IRQ_TYPE_LEVEL_HIGH,  0 },
162 	{ AU1100_SSI1_INT,	  IRQ_TYPE_LEVEL_HIGH,  0 },
163 	{ AU1100_DMA_INT_BASE,	  IRQ_TYPE_LEVEL_HIGH,  0 },
164 	{ AU1100_DMA_INT_BASE+1,  IRQ_TYPE_LEVEL_HIGH,  0 },
165 	{ AU1100_DMA_INT_BASE+2,  IRQ_TYPE_LEVEL_HIGH,  0 },
166 	{ AU1100_DMA_INT_BASE+3,  IRQ_TYPE_LEVEL_HIGH,  0 },
167 	{ AU1100_DMA_INT_BASE+4,  IRQ_TYPE_LEVEL_HIGH,  0 },
168 	{ AU1100_DMA_INT_BASE+5,  IRQ_TYPE_LEVEL_HIGH,  0 },
169 	{ AU1100_DMA_INT_BASE+6,  IRQ_TYPE_LEVEL_HIGH,  0 },
170 	{ AU1100_DMA_INT_BASE+7,  IRQ_TYPE_LEVEL_HIGH,  0 },
171 	{ AU1100_TOY_INT,	  IRQ_TYPE_EDGE_RISING, 0 },
172 	{ AU1100_TOY_MATCH0_INT,  IRQ_TYPE_EDGE_RISING, 0 },
173 	{ AU1100_TOY_MATCH1_INT,  IRQ_TYPE_EDGE_RISING, 0 },
174 	{ AU1100_TOY_MATCH2_INT,  IRQ_TYPE_EDGE_RISING, 0 },
175 	{ AU1100_RTC_INT,	  IRQ_TYPE_EDGE_RISING, 0 },
176 	{ AU1100_RTC_MATCH0_INT,  IRQ_TYPE_EDGE_RISING, 0 },
177 	{ AU1100_RTC_MATCH1_INT,  IRQ_TYPE_EDGE_RISING, 0 },
178 	{ AU1100_RTC_MATCH2_INT,  IRQ_TYPE_EDGE_RISING, 1 },
179 	{ AU1100_IRDA_TX_INT,	  IRQ_TYPE_LEVEL_HIGH,  0 },
180 	{ AU1100_IRDA_RX_INT,	  IRQ_TYPE_LEVEL_HIGH,  0 },
181 	{ AU1100_USB_DEV_REQ_INT, IRQ_TYPE_LEVEL_HIGH,  1 },
182 	{ AU1100_USB_DEV_SUS_INT, IRQ_TYPE_EDGE_RISING, 0 },
183 	{ AU1100_USB_HOST_INT,	  IRQ_TYPE_LEVEL_LOW,   0 },
184 	{ AU1100_ACSYNC_INT,	  IRQ_TYPE_EDGE_RISING, 0 },
185 	{ AU1100_MAC0_DMA_INT,	  IRQ_TYPE_LEVEL_HIGH,  0 },
186 	{ AU1100_LCD_INT,	  IRQ_TYPE_LEVEL_HIGH,  0 },
187 	{ AU1100_AC97C_INT,	  IRQ_TYPE_EDGE_RISING, 0 },
188 	{ -1, },
189 };
190 
191 struct au1xxx_irqmap au1550_irqmap[] __initdata = {
192 	{ AU1550_UART0_INT,	  IRQ_TYPE_LEVEL_HIGH,  0 },
193 	{ AU1550_PCI_INTA,	  IRQ_TYPE_LEVEL_LOW,   0 },
194 	{ AU1550_PCI_INTB,	  IRQ_TYPE_LEVEL_LOW,   0 },
195 	{ AU1550_DDMA_INT,	  IRQ_TYPE_LEVEL_HIGH,  0 },
196 	{ AU1550_CRYPTO_INT,	  IRQ_TYPE_LEVEL_HIGH,  0 },
197 	{ AU1550_PCI_INTC,	  IRQ_TYPE_LEVEL_LOW,   0 },
198 	{ AU1550_PCI_INTD,	  IRQ_TYPE_LEVEL_LOW,   0 },
199 	{ AU1550_PCI_RST_INT,	  IRQ_TYPE_LEVEL_LOW,   0 },
200 	{ AU1550_UART1_INT,	  IRQ_TYPE_LEVEL_HIGH,  0 },
201 	{ AU1550_UART3_INT,	  IRQ_TYPE_LEVEL_HIGH,  0 },
202 	{ AU1550_PSC0_INT,	  IRQ_TYPE_LEVEL_HIGH,  0 },
203 	{ AU1550_PSC1_INT,	  IRQ_TYPE_LEVEL_HIGH,  0 },
204 	{ AU1550_PSC2_INT,	  IRQ_TYPE_LEVEL_HIGH,  0 },
205 	{ AU1550_PSC3_INT,	  IRQ_TYPE_LEVEL_HIGH,  0 },
206 	{ AU1550_TOY_INT,	  IRQ_TYPE_EDGE_RISING, 0 },
207 	{ AU1550_TOY_MATCH0_INT,  IRQ_TYPE_EDGE_RISING, 0 },
208 	{ AU1550_TOY_MATCH1_INT,  IRQ_TYPE_EDGE_RISING, 0 },
209 	{ AU1550_TOY_MATCH2_INT,  IRQ_TYPE_EDGE_RISING, 0 },
210 	{ AU1550_RTC_INT,	  IRQ_TYPE_EDGE_RISING, 0 },
211 	{ AU1550_RTC_MATCH0_INT,  IRQ_TYPE_EDGE_RISING, 0 },
212 	{ AU1550_RTC_MATCH1_INT,  IRQ_TYPE_EDGE_RISING, 0 },
213 	{ AU1550_RTC_MATCH2_INT,  IRQ_TYPE_EDGE_RISING, 1 },
214 	{ AU1550_NAND_INT,	  IRQ_TYPE_EDGE_RISING, 0 },
215 	{ AU1550_USB_DEV_REQ_INT, IRQ_TYPE_LEVEL_HIGH,  1 },
216 	{ AU1550_USB_DEV_SUS_INT, IRQ_TYPE_EDGE_RISING, 0 },
217 	{ AU1550_USB_HOST_INT,	  IRQ_TYPE_LEVEL_LOW,   0 },
218 	{ AU1550_MAC0_DMA_INT,	  IRQ_TYPE_LEVEL_HIGH,  0 },
219 	{ AU1550_MAC1_DMA_INT,	  IRQ_TYPE_LEVEL_HIGH,  0 },
220 	{ -1, },
221 };
222 
223 struct au1xxx_irqmap au1200_irqmap[] __initdata = {
224 	{ AU1200_UART0_INT,	  IRQ_TYPE_LEVEL_HIGH,  0 },
225 	{ AU1200_SWT_INT,	  IRQ_TYPE_EDGE_RISING, 0 },
226 	{ AU1200_SD_INT,	  IRQ_TYPE_LEVEL_HIGH,  0 },
227 	{ AU1200_DDMA_INT,	  IRQ_TYPE_LEVEL_HIGH,  0 },
228 	{ AU1200_MAE_BE_INT,	  IRQ_TYPE_LEVEL_HIGH,  0 },
229 	{ AU1200_UART1_INT,	  IRQ_TYPE_LEVEL_HIGH,  0 },
230 	{ AU1200_MAE_FE_INT,	  IRQ_TYPE_LEVEL_HIGH,  0 },
231 	{ AU1200_PSC0_INT,	  IRQ_TYPE_LEVEL_HIGH,  0 },
232 	{ AU1200_PSC1_INT,	  IRQ_TYPE_LEVEL_HIGH,  0 },
233 	{ AU1200_AES_INT,	  IRQ_TYPE_LEVEL_HIGH,  0 },
234 	{ AU1200_CAMERA_INT,	  IRQ_TYPE_LEVEL_HIGH,  0 },
235 	{ AU1200_TOY_INT,	  IRQ_TYPE_EDGE_RISING, 0 },
236 	{ AU1200_TOY_MATCH0_INT,  IRQ_TYPE_EDGE_RISING, 0 },
237 	{ AU1200_TOY_MATCH1_INT,  IRQ_TYPE_EDGE_RISING, 0 },
238 	{ AU1200_TOY_MATCH2_INT,  IRQ_TYPE_EDGE_RISING, 0 },
239 	{ AU1200_RTC_INT,	  IRQ_TYPE_EDGE_RISING, 0 },
240 	{ AU1200_RTC_MATCH0_INT,  IRQ_TYPE_EDGE_RISING, 0 },
241 	{ AU1200_RTC_MATCH1_INT,  IRQ_TYPE_EDGE_RISING, 0 },
242 	{ AU1200_RTC_MATCH2_INT,  IRQ_TYPE_EDGE_RISING, 1 },
243 	{ AU1200_NAND_INT,	  IRQ_TYPE_EDGE_RISING, 0 },
244 	{ AU1200_USB_INT,	  IRQ_TYPE_LEVEL_HIGH,  0 },
245 	{ AU1200_LCD_INT,	  IRQ_TYPE_LEVEL_HIGH,  0 },
246 	{ AU1200_MAE_BOTH_INT,	  IRQ_TYPE_LEVEL_HIGH,  0 },
247 	{ -1, },
248 };
249 
250 
251 static void au1x_ic0_unmask(struct irq_data *d)
252 {
253 	unsigned int bit = d->irq - AU1000_INTC0_INT_BASE;
254 	void __iomem *base = (void __iomem *)KSEG1ADDR(AU1000_IC0_PHYS_ADDR);
255 
256 	__raw_writel(1 << bit, base + IC_MASKSET);
257 	__raw_writel(1 << bit, base + IC_WAKESET);
258 	wmb();
259 }
260 
261 static void au1x_ic1_unmask(struct irq_data *d)
262 {
263 	unsigned int bit = d->irq - AU1000_INTC1_INT_BASE;
264 	void __iomem *base = (void __iomem *)KSEG1ADDR(AU1000_IC1_PHYS_ADDR);
265 
266 	__raw_writel(1 << bit, base + IC_MASKSET);
267 	__raw_writel(1 << bit, base + IC_WAKESET);
268 
269 /* very hacky. does the pb1000 cpld auto-disable this int?
270  * nowhere in the current kernel sources is it disabled.	--mlau
271  */
272 #if defined(CONFIG_MIPS_PB1000)
273 	if (d->irq == AU1000_GPIO15_INT)
274 		__raw_writel(0x4000, (void __iomem *)PB1000_MDR); /* enable int */
275 #endif
276 	wmb();
277 }
278 
279 static void au1x_ic0_mask(struct irq_data *d)
280 {
281 	unsigned int bit = d->irq - AU1000_INTC0_INT_BASE;
282 	void __iomem *base = (void __iomem *)KSEG1ADDR(AU1000_IC0_PHYS_ADDR);
283 
284 	__raw_writel(1 << bit, base + IC_MASKCLR);
285 	__raw_writel(1 << bit, base + IC_WAKECLR);
286 	wmb();
287 }
288 
289 static void au1x_ic1_mask(struct irq_data *d)
290 {
291 	unsigned int bit = d->irq - AU1000_INTC1_INT_BASE;
292 	void __iomem *base = (void __iomem *)KSEG1ADDR(AU1000_IC1_PHYS_ADDR);
293 
294 	__raw_writel(1 << bit, base + IC_MASKCLR);
295 	__raw_writel(1 << bit, base + IC_WAKECLR);
296 	wmb();
297 }
298 
299 static void au1x_ic0_ack(struct irq_data *d)
300 {
301 	unsigned int bit = d->irq - AU1000_INTC0_INT_BASE;
302 	void __iomem *base = (void __iomem *)KSEG1ADDR(AU1000_IC0_PHYS_ADDR);
303 
304 	/*
305 	 * This may assume that we don't get interrupts from
306 	 * both edges at once, or if we do, that we don't care.
307 	 */
308 	__raw_writel(1 << bit, base + IC_FALLINGCLR);
309 	__raw_writel(1 << bit, base + IC_RISINGCLR);
310 	wmb();
311 }
312 
313 static void au1x_ic1_ack(struct irq_data *d)
314 {
315 	unsigned int bit = d->irq - AU1000_INTC1_INT_BASE;
316 	void __iomem *base = (void __iomem *)KSEG1ADDR(AU1000_IC1_PHYS_ADDR);
317 
318 	/*
319 	 * This may assume that we don't get interrupts from
320 	 * both edges at once, or if we do, that we don't care.
321 	 */
322 	__raw_writel(1 << bit, base + IC_FALLINGCLR);
323 	__raw_writel(1 << bit, base + IC_RISINGCLR);
324 	wmb();
325 }
326 
327 static void au1x_ic0_maskack(struct irq_data *d)
328 {
329 	unsigned int bit = d->irq - AU1000_INTC0_INT_BASE;
330 	void __iomem *base = (void __iomem *)KSEG1ADDR(AU1000_IC0_PHYS_ADDR);
331 
332 	__raw_writel(1 << bit, base + IC_WAKECLR);
333 	__raw_writel(1 << bit, base + IC_MASKCLR);
334 	__raw_writel(1 << bit, base + IC_RISINGCLR);
335 	__raw_writel(1 << bit, base + IC_FALLINGCLR);
336 	wmb();
337 }
338 
339 static void au1x_ic1_maskack(struct irq_data *d)
340 {
341 	unsigned int bit = d->irq - AU1000_INTC1_INT_BASE;
342 	void __iomem *base = (void __iomem *)KSEG1ADDR(AU1000_IC1_PHYS_ADDR);
343 
344 	__raw_writel(1 << bit, base + IC_WAKECLR);
345 	__raw_writel(1 << bit, base + IC_MASKCLR);
346 	__raw_writel(1 << bit, base + IC_RISINGCLR);
347 	__raw_writel(1 << bit, base + IC_FALLINGCLR);
348 	wmb();
349 }
350 
351 static int au1x_ic1_setwake(struct irq_data *d, unsigned int on)
352 {
353 	int bit = d->irq - AU1000_INTC1_INT_BASE;
354 	unsigned long wakemsk, flags;
355 
356 	/* only GPIO 0-7 can act as wakeup source.  Fortunately these
357 	 * are wired up identically on all supported variants.
358 	 */
359 	if ((bit < 0) || (bit > 7))
360 		return -EINVAL;
361 
362 	local_irq_save(flags);
363 	wakemsk = __raw_readl((void __iomem *)SYS_WAKEMSK);
364 	if (on)
365 		wakemsk |= 1 << bit;
366 	else
367 		wakemsk &= ~(1 << bit);
368 	__raw_writel(wakemsk, (void __iomem *)SYS_WAKEMSK);
369 	wmb();
370 	local_irq_restore(flags);
371 
372 	return 0;
373 }
374 
375 /*
376  * irq_chips for both ICs; this way the mask handlers can be
377  * as short as possible.
378  */
379 static struct irq_chip au1x_ic0_chip = {
380 	.name		= "Alchemy-IC0",
381 	.irq_ack	= au1x_ic0_ack,
382 	.irq_mask	= au1x_ic0_mask,
383 	.irq_mask_ack	= au1x_ic0_maskack,
384 	.irq_unmask	= au1x_ic0_unmask,
385 	.irq_set_type	= au1x_ic_settype,
386 };
387 
388 static struct irq_chip au1x_ic1_chip = {
389 	.name		= "Alchemy-IC1",
390 	.irq_ack	= au1x_ic1_ack,
391 	.irq_mask	= au1x_ic1_mask,
392 	.irq_mask_ack	= au1x_ic1_maskack,
393 	.irq_unmask	= au1x_ic1_unmask,
394 	.irq_set_type	= au1x_ic_settype,
395 	.irq_set_wake	= au1x_ic1_setwake,
396 };
397 
398 static int au1x_ic_settype(struct irq_data *d, unsigned int flow_type)
399 {
400 	struct irq_chip *chip;
401 	unsigned int bit, irq = d->irq;
402 	irq_flow_handler_t handler = NULL;
403 	unsigned char *name = NULL;
404 	void __iomem *base;
405 	int ret;
406 
407 	if (irq >= AU1000_INTC1_INT_BASE) {
408 		bit = irq - AU1000_INTC1_INT_BASE;
409 		chip = &au1x_ic1_chip;
410 		base = (void __iomem *)KSEG1ADDR(AU1000_IC1_PHYS_ADDR);
411 	} else {
412 		bit = irq - AU1000_INTC0_INT_BASE;
413 		chip = &au1x_ic0_chip;
414 		base = (void __iomem *)KSEG1ADDR(AU1000_IC0_PHYS_ADDR);
415 	}
416 
417 	if (bit > 31)
418 		return -EINVAL;
419 
420 	ret = 0;
421 
422 	switch (flow_type) {	/* cfgregs 2:1:0 */
423 	case IRQ_TYPE_EDGE_RISING:	/* 0:0:1 */
424 		__raw_writel(1 << bit, base + IC_CFG2CLR);
425 		__raw_writel(1 << bit, base + IC_CFG1CLR);
426 		__raw_writel(1 << bit, base + IC_CFG0SET);
427 		handler = handle_edge_irq;
428 		name = "riseedge";
429 		break;
430 	case IRQ_TYPE_EDGE_FALLING:	/* 0:1:0 */
431 		__raw_writel(1 << bit, base + IC_CFG2CLR);
432 		__raw_writel(1 << bit, base + IC_CFG1SET);
433 		__raw_writel(1 << bit, base + IC_CFG0CLR);
434 		handler = handle_edge_irq;
435 		name = "falledge";
436 		break;
437 	case IRQ_TYPE_EDGE_BOTH:	/* 0:1:1 */
438 		__raw_writel(1 << bit, base + IC_CFG2CLR);
439 		__raw_writel(1 << bit, base + IC_CFG1SET);
440 		__raw_writel(1 << bit, base + IC_CFG0SET);
441 		handler = handle_edge_irq;
442 		name = "bothedge";
443 		break;
444 	case IRQ_TYPE_LEVEL_HIGH:	/* 1:0:1 */
445 		__raw_writel(1 << bit, base + IC_CFG2SET);
446 		__raw_writel(1 << bit, base + IC_CFG1CLR);
447 		__raw_writel(1 << bit, base + IC_CFG0SET);
448 		handler = handle_level_irq;
449 		name = "hilevel";
450 		break;
451 	case IRQ_TYPE_LEVEL_LOW:	/* 1:1:0 */
452 		__raw_writel(1 << bit, base + IC_CFG2SET);
453 		__raw_writel(1 << bit, base + IC_CFG1SET);
454 		__raw_writel(1 << bit, base + IC_CFG0CLR);
455 		handler = handle_level_irq;
456 		name = "lowlevel";
457 		break;
458 	case IRQ_TYPE_NONE:		/* 0:0:0 */
459 		__raw_writel(1 << bit, base + IC_CFG2CLR);
460 		__raw_writel(1 << bit, base + IC_CFG1CLR);
461 		__raw_writel(1 << bit, base + IC_CFG0CLR);
462 		break;
463 	default:
464 		ret = -EINVAL;
465 	}
466 	__irq_set_chip_handler_name_locked(d->irq, chip, handler, name);
467 
468 	wmb();
469 
470 	return ret;
471 }
472 
473 asmlinkage void plat_irq_dispatch(void)
474 {
475 	unsigned int pending = read_c0_status() & read_c0_cause();
476 	unsigned long s, off;
477 
478 	if (pending & CAUSEF_IP7) {
479 		off = MIPS_CPU_IRQ_BASE + 7;
480 		goto handle;
481 	} else if (pending & CAUSEF_IP2) {
482 		s = KSEG1ADDR(AU1000_IC0_PHYS_ADDR) + IC_REQ0INT;
483 		off = AU1000_INTC0_INT_BASE;
484 	} else if (pending & CAUSEF_IP3) {
485 		s = KSEG1ADDR(AU1000_IC0_PHYS_ADDR) + IC_REQ1INT;
486 		off = AU1000_INTC0_INT_BASE;
487 	} else if (pending & CAUSEF_IP4) {
488 		s = KSEG1ADDR(AU1000_IC1_PHYS_ADDR) + IC_REQ0INT;
489 		off = AU1000_INTC1_INT_BASE;
490 	} else if (pending & CAUSEF_IP5) {
491 		s = KSEG1ADDR(AU1000_IC1_PHYS_ADDR) + IC_REQ1INT;
492 		off = AU1000_INTC1_INT_BASE;
493 	} else
494 		goto spurious;
495 
496 	s = __raw_readl((void __iomem *)s);
497 	if (unlikely(!s)) {
498 spurious:
499 		spurious_interrupt();
500 		return;
501 	}
502 	off += __ffs(s);
503 handle:
504 	do_IRQ(off);
505 }
506 
507 
508 static inline void ic_init(void __iomem *base)
509 {
510 	/* initialize interrupt controller to a safe state */
511 	__raw_writel(0xffffffff, base + IC_CFG0CLR);
512 	__raw_writel(0xffffffff, base + IC_CFG1CLR);
513 	__raw_writel(0xffffffff, base + IC_CFG2CLR);
514 	__raw_writel(0xffffffff, base + IC_MASKCLR);
515 	__raw_writel(0xffffffff, base + IC_ASSIGNCLR);
516 	__raw_writel(0xffffffff, base + IC_WAKECLR);
517 	__raw_writel(0xffffffff, base + IC_SRCSET);
518 	__raw_writel(0xffffffff, base + IC_FALLINGCLR);
519 	__raw_writel(0xffffffff, base + IC_RISINGCLR);
520 	__raw_writel(0x00000000, base + IC_TESTBIT);
521 	wmb();
522 }
523 
524 static void __init au1000_init_irq(struct au1xxx_irqmap *map)
525 {
526 	unsigned int bit, irq_nr;
527 	void __iomem *base;
528 
529 	ic_init((void __iomem *)KSEG1ADDR(AU1000_IC0_PHYS_ADDR));
530 	ic_init((void __iomem *)KSEG1ADDR(AU1000_IC1_PHYS_ADDR));
531 	mips_cpu_irq_init();
532 
533 	/* register all 64 possible IC0+IC1 irq sources as type "none".
534 	 * Use set_irq_type() to set edge/level behaviour at runtime.
535 	 */
536 	for (irq_nr = AU1000_INTC0_INT_BASE;
537 	     (irq_nr < AU1000_INTC0_INT_BASE + 32); irq_nr++)
538 		au1x_ic_settype(irq_get_irq_data(irq_nr), IRQ_TYPE_NONE);
539 
540 	for (irq_nr = AU1000_INTC1_INT_BASE;
541 	     (irq_nr < AU1000_INTC1_INT_BASE + 32); irq_nr++)
542 		au1x_ic_settype(irq_get_irq_data(irq_nr), IRQ_TYPE_NONE);
543 
544 	/*
545 	 * Initialize IC0, which is fixed per processor.
546 	 */
547 	while (map->im_irq != -1) {
548 		irq_nr = map->im_irq;
549 
550 		if (irq_nr >= AU1000_INTC1_INT_BASE) {
551 			bit = irq_nr - AU1000_INTC1_INT_BASE;
552 			base = (void __iomem *)KSEG1ADDR(AU1000_IC1_PHYS_ADDR);
553 		} else {
554 			bit = irq_nr - AU1000_INTC0_INT_BASE;
555 			base = (void __iomem *)KSEG1ADDR(AU1000_IC0_PHYS_ADDR);
556 		}
557 		if (map->im_request)
558 			__raw_writel(1 << bit, base + IC_ASSIGNSET);
559 
560 		au1x_ic_settype(irq_get_irq_data(irq_nr), map->im_type);
561 		++map;
562 	}
563 
564 	set_c0_status(IE_IRQ0 | IE_IRQ1 | IE_IRQ2 | IE_IRQ3);
565 }
566 
567 void __init arch_init_irq(void)
568 {
569 	switch (alchemy_get_cputype()) {
570 	case ALCHEMY_CPU_AU1000:
571 		au1000_init_irq(au1000_irqmap);
572 		break;
573 	case ALCHEMY_CPU_AU1500:
574 		au1000_init_irq(au1500_irqmap);
575 		break;
576 	case ALCHEMY_CPU_AU1100:
577 		au1000_init_irq(au1100_irqmap);
578 		break;
579 	case ALCHEMY_CPU_AU1550:
580 		au1000_init_irq(au1550_irqmap);
581 		break;
582 	case ALCHEMY_CPU_AU1200:
583 		au1000_init_irq(au1200_irqmap);
584 		break;
585 	}
586 }
587 
588 
589 static unsigned long alchemy_ic_pmdata[7 * 2];
590 
591 static inline void alchemy_ic_suspend_one(void __iomem *base, unsigned long *d)
592 {
593 	d[0] = __raw_readl(base + IC_CFG0RD);
594 	d[1] = __raw_readl(base + IC_CFG1RD);
595 	d[2] = __raw_readl(base + IC_CFG2RD);
596 	d[3] = __raw_readl(base + IC_SRCRD);
597 	d[4] = __raw_readl(base + IC_ASSIGNRD);
598 	d[5] = __raw_readl(base + IC_WAKERD);
599 	d[6] = __raw_readl(base + IC_MASKRD);
600 	ic_init(base);		/* shut it up too while at it */
601 }
602 
603 static inline void alchemy_ic_resume_one(void __iomem *base, unsigned long *d)
604 {
605 	ic_init(base);
606 
607 	__raw_writel(d[0], base + IC_CFG0SET);
608 	__raw_writel(d[1], base + IC_CFG1SET);
609 	__raw_writel(d[2], base + IC_CFG2SET);
610 	__raw_writel(d[3], base + IC_SRCSET);
611 	__raw_writel(d[4], base + IC_ASSIGNSET);
612 	__raw_writel(d[5], base + IC_WAKESET);
613 	wmb();
614 
615 	__raw_writel(d[6], base + IC_MASKSET);
616 	wmb();
617 }
618 
619 static int alchemy_ic_suspend(void)
620 {
621 	alchemy_ic_suspend_one((void __iomem *)KSEG1ADDR(AU1000_IC0_PHYS_ADDR),
622 			       alchemy_ic_pmdata);
623 	alchemy_ic_suspend_one((void __iomem *)KSEG1ADDR(AU1000_IC1_PHYS_ADDR),
624 			       &alchemy_ic_pmdata[7]);
625 	return 0;
626 }
627 
628 static void alchemy_ic_resume(void)
629 {
630 	alchemy_ic_resume_one((void __iomem *)KSEG1ADDR(AU1000_IC1_PHYS_ADDR),
631 			      &alchemy_ic_pmdata[7]);
632 	alchemy_ic_resume_one((void __iomem *)KSEG1ADDR(AU1000_IC0_PHYS_ADDR),
633 			      alchemy_ic_pmdata);
634 }
635 
636 static struct syscore_ops alchemy_ic_syscore_ops = {
637 	.suspend	= alchemy_ic_suspend,
638 	.resume		= alchemy_ic_resume,
639 };
640 
641 static int __init alchemy_ic_pm_init(void)
642 {
643 	register_syscore_ops(&alchemy_ic_syscore_ops);
644 	return 0;
645 }
646 device_initcall(alchemy_ic_pm_init);
647