1 /* 2 * 3 * BRIEF MODULE DESCRIPTION 4 * A DMA channel allocator for Au1x00. API is modeled loosely off of 5 * linux/kernel/dma.c. 6 * 7 * Copyright 2000, 2008 MontaVista Software Inc. 8 * Author: MontaVista Software, Inc. <source@mvista.com> 9 * Copyright (C) 2005 Ralf Baechle (ralf@linux-mips.org) 10 * 11 * This program is free software; you can redistribute it and/or modify it 12 * under the terms of the GNU General Public License as published by the 13 * Free Software Foundation; either version 2 of the License, or (at your 14 * option) any later version. 15 * 16 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 18 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN 19 * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF 22 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON 23 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * 27 * You should have received a copy of the GNU General Public License along 28 * with this program; if not, write to the Free Software Foundation, Inc., 29 * 675 Mass Ave, Cambridge, MA 02139, USA. 30 * 31 */ 32 33 #include <linux/init.h> 34 #include <linux/module.h> 35 #include <linux/kernel.h> 36 #include <linux/errno.h> 37 #include <linux/spinlock.h> 38 #include <linux/interrupt.h> 39 40 #include <asm/mach-au1x00/au1000.h> 41 #include <asm/mach-au1x00/au1000_dma.h> 42 43 #if defined(CONFIG_SOC_AU1000) || defined(CONFIG_SOC_AU1500) || \ 44 defined(CONFIG_SOC_AU1100) 45 /* 46 * A note on resource allocation: 47 * 48 * All drivers needing DMA channels, should allocate and release them 49 * through the public routines `request_dma()' and `free_dma()'. 50 * 51 * In order to avoid problems, all processes should allocate resources in 52 * the same sequence and release them in the reverse order. 53 * 54 * So, when allocating DMAs and IRQs, first allocate the DMA, then the IRQ. 55 * When releasing them, first release the IRQ, then release the DMA. The 56 * main reason for this order is that, if you are requesting the DMA buffer 57 * done interrupt, you won't know the irq number until the DMA channel is 58 * returned from request_dma. 59 */ 60 61 DEFINE_SPINLOCK(au1000_dma_spin_lock); 62 63 struct dma_chan au1000_dma_table[NUM_AU1000_DMA_CHANNELS] = { 64 {.dev_id = -1,}, 65 {.dev_id = -1,}, 66 {.dev_id = -1,}, 67 {.dev_id = -1,}, 68 {.dev_id = -1,}, 69 {.dev_id = -1,}, 70 {.dev_id = -1,}, 71 {.dev_id = -1,} 72 }; 73 EXPORT_SYMBOL(au1000_dma_table); 74 75 /* Device FIFO addresses and default DMA modes */ 76 static const struct dma_dev { 77 unsigned int fifo_addr; 78 unsigned int dma_mode; 79 } dma_dev_table[DMA_NUM_DEV] = { 80 {UART0_ADDR + UART_TX, 0}, 81 {UART0_ADDR + UART_RX, 0}, 82 {0, 0}, 83 {0, 0}, 84 {AC97C_DATA, DMA_DW16 }, /* coherent */ 85 {AC97C_DATA, DMA_DR | DMA_DW16 }, /* coherent */ 86 {UART3_ADDR + UART_TX, DMA_DW8 | DMA_NC}, 87 {UART3_ADDR + UART_RX, DMA_DR | DMA_DW8 | DMA_NC}, 88 {USBD_EP0RD, DMA_DR | DMA_DW8 | DMA_NC}, 89 {USBD_EP0WR, DMA_DW8 | DMA_NC}, 90 {USBD_EP2WR, DMA_DW8 | DMA_NC}, 91 {USBD_EP3WR, DMA_DW8 | DMA_NC}, 92 {USBD_EP4RD, DMA_DR | DMA_DW8 | DMA_NC}, 93 {USBD_EP5RD, DMA_DR | DMA_DW8 | DMA_NC}, 94 {I2S_DATA, DMA_DW32 | DMA_NC}, 95 {I2S_DATA, DMA_DR | DMA_DW32 | DMA_NC} 96 }; 97 98 int au1000_dma_read_proc(char *buf, char **start, off_t fpos, 99 int length, int *eof, void *data) 100 { 101 int i, len = 0; 102 struct dma_chan *chan; 103 104 for (i = 0; i < NUM_AU1000_DMA_CHANNELS; i++) { 105 chan = get_dma_chan(i); 106 if (chan != NULL) 107 len += sprintf(buf + len, "%2d: %s\n", 108 i, chan->dev_str); 109 } 110 111 if (fpos >= len) { 112 *start = buf; 113 *eof = 1; 114 return 0; 115 } 116 *start = buf + fpos; 117 len -= fpos; 118 if (len > length) 119 return length; 120 *eof = 1; 121 return len; 122 } 123 124 /* Device FIFO addresses and default DMA modes - 2nd bank */ 125 static const struct dma_dev dma_dev_table_bank2[DMA_NUM_DEV_BANK2] = { 126 { SD0_XMIT_FIFO, DMA_DS | DMA_DW8 }, /* coherent */ 127 { SD0_RECV_FIFO, DMA_DS | DMA_DR | DMA_DW8 }, /* coherent */ 128 { SD1_XMIT_FIFO, DMA_DS | DMA_DW8 }, /* coherent */ 129 { SD1_RECV_FIFO, DMA_DS | DMA_DR | DMA_DW8 } /* coherent */ 130 }; 131 132 void dump_au1000_dma_channel(unsigned int dmanr) 133 { 134 struct dma_chan *chan; 135 136 if (dmanr >= NUM_AU1000_DMA_CHANNELS) 137 return; 138 chan = &au1000_dma_table[dmanr]; 139 140 printk(KERN_INFO "Au1000 DMA%d Register Dump:\n", dmanr); 141 printk(KERN_INFO " mode = 0x%08x\n", 142 au_readl(chan->io + DMA_MODE_SET)); 143 printk(KERN_INFO " addr = 0x%08x\n", 144 au_readl(chan->io + DMA_PERIPHERAL_ADDR)); 145 printk(KERN_INFO " start0 = 0x%08x\n", 146 au_readl(chan->io + DMA_BUFFER0_START)); 147 printk(KERN_INFO " start1 = 0x%08x\n", 148 au_readl(chan->io + DMA_BUFFER1_START)); 149 printk(KERN_INFO " count0 = 0x%08x\n", 150 au_readl(chan->io + DMA_BUFFER0_COUNT)); 151 printk(KERN_INFO " count1 = 0x%08x\n", 152 au_readl(chan->io + DMA_BUFFER1_COUNT)); 153 } 154 155 /* 156 * Finds a free channel, and binds the requested device to it. 157 * Returns the allocated channel number, or negative on error. 158 * Requests the DMA done IRQ if irqhandler != NULL. 159 */ 160 int request_au1000_dma(int dev_id, const char *dev_str, 161 irq_handler_t irqhandler, 162 unsigned long irqflags, 163 void *irq_dev_id) 164 { 165 struct dma_chan *chan; 166 const struct dma_dev *dev; 167 int i, ret; 168 169 #if defined(CONFIG_SOC_AU1100) 170 if (dev_id < 0 || dev_id >= (DMA_NUM_DEV + DMA_NUM_DEV_BANK2)) 171 return -EINVAL; 172 #else 173 if (dev_id < 0 || dev_id >= DMA_NUM_DEV) 174 return -EINVAL; 175 #endif 176 177 for (i = 0; i < NUM_AU1000_DMA_CHANNELS; i++) 178 if (au1000_dma_table[i].dev_id < 0) 179 break; 180 181 if (i == NUM_AU1000_DMA_CHANNELS) 182 return -ENODEV; 183 184 chan = &au1000_dma_table[i]; 185 186 if (dev_id >= DMA_NUM_DEV) { 187 dev_id -= DMA_NUM_DEV; 188 dev = &dma_dev_table_bank2[dev_id]; 189 } else 190 dev = &dma_dev_table[dev_id]; 191 192 if (irqhandler) { 193 chan->irq_dev = irq_dev_id; 194 ret = request_irq(chan->irq, irqhandler, irqflags, dev_str, 195 chan->irq_dev); 196 if (ret) { 197 chan->irq_dev = NULL; 198 return ret; 199 } 200 } else { 201 chan->irq_dev = NULL; 202 } 203 204 /* fill it in */ 205 chan->io = DMA_CHANNEL_BASE + i * DMA_CHANNEL_LEN; 206 chan->dev_id = dev_id; 207 chan->dev_str = dev_str; 208 chan->fifo_addr = dev->fifo_addr; 209 chan->mode = dev->dma_mode; 210 211 /* initialize the channel before returning */ 212 init_dma(i); 213 214 return i; 215 } 216 EXPORT_SYMBOL(request_au1000_dma); 217 218 void free_au1000_dma(unsigned int dmanr) 219 { 220 struct dma_chan *chan = get_dma_chan(dmanr); 221 222 if (!chan) { 223 printk(KERN_ERR "Error trying to free DMA%d\n", dmanr); 224 return; 225 } 226 227 disable_dma(dmanr); 228 if (chan->irq_dev) 229 free_irq(chan->irq, chan->irq_dev); 230 231 chan->irq_dev = NULL; 232 chan->dev_id = -1; 233 } 234 EXPORT_SYMBOL(free_au1000_dma); 235 236 static int __init au1000_dma_init(void) 237 { 238 int base, i; 239 240 switch (alchemy_get_cputype()) { 241 case ALCHEMY_CPU_AU1000: 242 base = AU1000_DMA_INT_BASE; 243 break; 244 case ALCHEMY_CPU_AU1500: 245 base = AU1500_DMA_INT_BASE; 246 break; 247 case ALCHEMY_CPU_AU1100: 248 base = AU1100_DMA_INT_BASE; 249 break; 250 default: 251 goto out; 252 } 253 254 for (i = 0; i < NUM_AU1000_DMA_CHANNELS; i++) 255 au1000_dma_table[i].irq = base + i; 256 257 printk(KERN_INFO "Alchemy DMA initialized\n"); 258 259 out: 260 return 0; 261 } 262 arch_initcall(au1000_dma_init); 263 264 #endif /* AU1000 AU1500 AU1100 */ 265