xref: /linux/arch/mips/alchemy/common/dbdma.c (revision cff4fa8415a3224a5abdd2b1dd7f431e4ea49366)
1 /*
2  *
3  * BRIEF MODULE DESCRIPTION
4  *      The Descriptor Based DMA channel manager that first appeared
5  *	on the Au1550.  I started with dma.c, but I think all that is
6  *	left is this initial comment :-)
7  *
8  * Copyright 2004 Embedded Edge, LLC
9  *	dan@embeddededge.com
10  *
11  *  This program is free software; you can redistribute  it and/or modify it
12  *  under  the terms of  the GNU General  Public License as published by the
13  *  Free Software Foundation;  either version 2 of the  License, or (at your
14  *  option) any later version.
15  *
16  *  THIS  SOFTWARE  IS PROVIDED   ``AS  IS'' AND   ANY  EXPRESS OR IMPLIED
17  *  WARRANTIES,   INCLUDING, BUT NOT  LIMITED  TO, THE IMPLIED WARRANTIES OF
18  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN
19  *  NO  EVENT  SHALL   THE AUTHOR  BE    LIABLE FOR ANY   DIRECT, INDIRECT,
20  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21  *  NOT LIMITED   TO, PROCUREMENT OF  SUBSTITUTE GOODS  OR SERVICES; LOSS OF
22  *  USE, DATA,  OR PROFITS; OR  BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
23  *  ANY THEORY OF LIABILITY, WHETHER IN  CONTRACT, STRICT LIABILITY, OR TORT
24  *  (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25  *  THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  *
27  *  You should have received a copy of the  GNU General Public License along
28  *  with this program; if not, write  to the Free Software Foundation, Inc.,
29  *  675 Mass Ave, Cambridge, MA 02139, USA.
30  *
31  */
32 
33 #include <linux/init.h>
34 #include <linux/kernel.h>
35 #include <linux/slab.h>
36 #include <linux/spinlock.h>
37 #include <linux/interrupt.h>
38 #include <linux/module.h>
39 #include <linux/syscore_ops.h>
40 #include <asm/mach-au1x00/au1000.h>
41 #include <asm/mach-au1x00/au1xxx_dbdma.h>
42 
43 #if defined(CONFIG_SOC_AU1550) || defined(CONFIG_SOC_AU1200)
44 
45 /*
46  * The Descriptor Based DMA supports up to 16 channels.
47  *
48  * There are 32 devices defined. We keep an internal structure
49  * of devices using these channels, along with additional
50  * information.
51  *
52  * We allocate the descriptors and allow access to them through various
53  * functions.  The drivers allocate the data buffers and assign them
54  * to the descriptors.
55  */
56 static DEFINE_SPINLOCK(au1xxx_dbdma_spin_lock);
57 
58 /* I couldn't find a macro that did this... */
59 #define ALIGN_ADDR(x, a)	((((u32)(x)) + (a-1)) & ~(a-1))
60 
61 static dbdma_global_t *dbdma_gptr =
62 			(dbdma_global_t *)KSEG1ADDR(AU1550_DBDMA_CONF_PHYS_ADDR);
63 static int dbdma_initialized;
64 
65 static dbdev_tab_t dbdev_tab[] = {
66 #ifdef CONFIG_SOC_AU1550
67 	/* UARTS */
68 	{ DSCR_CMD0_UART0_TX, DEV_FLAGS_OUT, 0, 8, 0x11100004, 0, 0 },
69 	{ DSCR_CMD0_UART0_RX, DEV_FLAGS_IN, 0, 8, 0x11100000, 0, 0 },
70 	{ DSCR_CMD0_UART3_TX, DEV_FLAGS_OUT, 0, 8, 0x11400004, 0, 0 },
71 	{ DSCR_CMD0_UART3_RX, DEV_FLAGS_IN, 0, 8, 0x11400000, 0, 0 },
72 
73 	/* EXT DMA */
74 	{ DSCR_CMD0_DMA_REQ0, 0, 0, 0, 0x00000000, 0, 0 },
75 	{ DSCR_CMD0_DMA_REQ1, 0, 0, 0, 0x00000000, 0, 0 },
76 	{ DSCR_CMD0_DMA_REQ2, 0, 0, 0, 0x00000000, 0, 0 },
77 	{ DSCR_CMD0_DMA_REQ3, 0, 0, 0, 0x00000000, 0, 0 },
78 
79 	/* USB DEV */
80 	{ DSCR_CMD0_USBDEV_RX0, DEV_FLAGS_IN, 4, 8, 0x10200000, 0, 0 },
81 	{ DSCR_CMD0_USBDEV_TX0, DEV_FLAGS_OUT, 4, 8, 0x10200004, 0, 0 },
82 	{ DSCR_CMD0_USBDEV_TX1, DEV_FLAGS_OUT, 4, 8, 0x10200008, 0, 0 },
83 	{ DSCR_CMD0_USBDEV_TX2, DEV_FLAGS_OUT, 4, 8, 0x1020000c, 0, 0 },
84 	{ DSCR_CMD0_USBDEV_RX3, DEV_FLAGS_IN, 4, 8, 0x10200010, 0, 0 },
85 	{ DSCR_CMD0_USBDEV_RX4, DEV_FLAGS_IN, 4, 8, 0x10200014, 0, 0 },
86 
87 	/* PSC 0 */
88 	{ DSCR_CMD0_PSC0_TX, DEV_FLAGS_OUT, 0, 0, 0x11a0001c, 0, 0 },
89 	{ DSCR_CMD0_PSC0_RX, DEV_FLAGS_IN, 0, 0, 0x11a0001c, 0, 0 },
90 
91 	/* PSC 1 */
92 	{ DSCR_CMD0_PSC1_TX, DEV_FLAGS_OUT, 0, 0, 0x11b0001c, 0, 0 },
93 	{ DSCR_CMD0_PSC1_RX, DEV_FLAGS_IN, 0, 0, 0x11b0001c, 0, 0 },
94 
95 	/* PSC 2 */
96 	{ DSCR_CMD0_PSC2_TX, DEV_FLAGS_OUT, 0, 0, 0x10a0001c, 0, 0 },
97 	{ DSCR_CMD0_PSC2_RX, DEV_FLAGS_IN, 0, 0, 0x10a0001c, 0, 0 },
98 
99 	/* PSC 3 */
100 	{ DSCR_CMD0_PSC3_TX, DEV_FLAGS_OUT, 0, 0, 0x10b0001c, 0, 0 },
101 	{ DSCR_CMD0_PSC3_RX, DEV_FLAGS_IN, 0, 0, 0x10b0001c, 0, 0 },
102 
103 	{ DSCR_CMD0_PCI_WRITE, 0, 0, 0, 0x00000000, 0, 0 },	/* PCI */
104 	{ DSCR_CMD0_NAND_FLASH, 0, 0, 0, 0x00000000, 0, 0 },	/* NAND */
105 
106 	/* MAC 0 */
107 	{ DSCR_CMD0_MAC0_RX, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 },
108 	{ DSCR_CMD0_MAC0_TX, DEV_FLAGS_OUT, 0, 0, 0x00000000, 0, 0 },
109 
110 	/* MAC 1 */
111 	{ DSCR_CMD0_MAC1_RX, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 },
112 	{ DSCR_CMD0_MAC1_TX, DEV_FLAGS_OUT, 0, 0, 0x00000000, 0, 0 },
113 
114 #endif /* CONFIG_SOC_AU1550 */
115 
116 #ifdef CONFIG_SOC_AU1200
117 	{ DSCR_CMD0_UART0_TX, DEV_FLAGS_OUT, 0, 8, 0x11100004, 0, 0 },
118 	{ DSCR_CMD0_UART0_RX, DEV_FLAGS_IN, 0, 8, 0x11100000, 0, 0 },
119 	{ DSCR_CMD0_UART1_TX, DEV_FLAGS_OUT, 0, 8, 0x11200004, 0, 0 },
120 	{ DSCR_CMD0_UART1_RX, DEV_FLAGS_IN, 0, 8, 0x11200000, 0, 0 },
121 
122 	{ DSCR_CMD0_DMA_REQ0, 0, 0, 0, 0x00000000, 0, 0 },
123 	{ DSCR_CMD0_DMA_REQ1, 0, 0, 0, 0x00000000, 0, 0 },
124 
125 	{ DSCR_CMD0_MAE_BE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
126 	{ DSCR_CMD0_MAE_FE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
127 	{ DSCR_CMD0_MAE_BOTH, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
128 	{ DSCR_CMD0_LCD, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
129 
130 	{ DSCR_CMD0_SDMS_TX0, DEV_FLAGS_OUT, 4, 8, 0x10600000, 0, 0 },
131 	{ DSCR_CMD0_SDMS_RX0, DEV_FLAGS_IN, 4, 8, 0x10600004, 0, 0 },
132 	{ DSCR_CMD0_SDMS_TX1, DEV_FLAGS_OUT, 4, 8, 0x10680000, 0, 0 },
133 	{ DSCR_CMD0_SDMS_RX1, DEV_FLAGS_IN, 4, 8, 0x10680004, 0, 0 },
134 
135 	{ DSCR_CMD0_AES_RX, DEV_FLAGS_IN , 4, 32, 0x10300008, 0, 0 },
136 	{ DSCR_CMD0_AES_TX, DEV_FLAGS_OUT, 4, 32, 0x10300004, 0, 0 },
137 
138 	{ DSCR_CMD0_PSC0_TX, DEV_FLAGS_OUT, 0, 16, 0x11a0001c, 0, 0 },
139 	{ DSCR_CMD0_PSC0_RX, DEV_FLAGS_IN, 0, 16, 0x11a0001c, 0, 0 },
140 	{ DSCR_CMD0_PSC0_SYNC, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
141 
142 	{ DSCR_CMD0_PSC1_TX, DEV_FLAGS_OUT, 0, 16, 0x11b0001c, 0, 0 },
143 	{ DSCR_CMD0_PSC1_RX, DEV_FLAGS_IN, 0, 16, 0x11b0001c, 0, 0 },
144 	{ DSCR_CMD0_PSC1_SYNC, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
145 
146 	{ DSCR_CMD0_CIM_RXA, DEV_FLAGS_IN, 0, 32, 0x14004020, 0, 0 },
147 	{ DSCR_CMD0_CIM_RXB, DEV_FLAGS_IN, 0, 32, 0x14004040, 0, 0 },
148 	{ DSCR_CMD0_CIM_RXC, DEV_FLAGS_IN, 0, 32, 0x14004060, 0, 0 },
149 	{ DSCR_CMD0_CIM_SYNC, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
150 
151 	{ DSCR_CMD0_NAND_FLASH, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 },
152 
153 #endif /* CONFIG_SOC_AU1200 */
154 
155 	{ DSCR_CMD0_THROTTLE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
156 	{ DSCR_CMD0_ALWAYS, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
157 
158 	/* Provide 16 user definable device types */
159 	{ ~0, 0, 0, 0, 0, 0, 0 },
160 	{ ~0, 0, 0, 0, 0, 0, 0 },
161 	{ ~0, 0, 0, 0, 0, 0, 0 },
162 	{ ~0, 0, 0, 0, 0, 0, 0 },
163 	{ ~0, 0, 0, 0, 0, 0, 0 },
164 	{ ~0, 0, 0, 0, 0, 0, 0 },
165 	{ ~0, 0, 0, 0, 0, 0, 0 },
166 	{ ~0, 0, 0, 0, 0, 0, 0 },
167 	{ ~0, 0, 0, 0, 0, 0, 0 },
168 	{ ~0, 0, 0, 0, 0, 0, 0 },
169 	{ ~0, 0, 0, 0, 0, 0, 0 },
170 	{ ~0, 0, 0, 0, 0, 0, 0 },
171 	{ ~0, 0, 0, 0, 0, 0, 0 },
172 	{ ~0, 0, 0, 0, 0, 0, 0 },
173 	{ ~0, 0, 0, 0, 0, 0, 0 },
174 	{ ~0, 0, 0, 0, 0, 0, 0 },
175 };
176 
177 #define DBDEV_TAB_SIZE	ARRAY_SIZE(dbdev_tab)
178 
179 
180 static chan_tab_t *chan_tab_ptr[NUM_DBDMA_CHANS];
181 
182 static dbdev_tab_t *find_dbdev_id(u32 id)
183 {
184 	int i;
185 	dbdev_tab_t *p;
186 	for (i = 0; i < DBDEV_TAB_SIZE; ++i) {
187 		p = &dbdev_tab[i];
188 		if (p->dev_id == id)
189 			return p;
190 	}
191 	return NULL;
192 }
193 
194 void *au1xxx_ddma_get_nextptr_virt(au1x_ddma_desc_t *dp)
195 {
196 	return phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
197 }
198 EXPORT_SYMBOL(au1xxx_ddma_get_nextptr_virt);
199 
200 u32 au1xxx_ddma_add_device(dbdev_tab_t *dev)
201 {
202 	u32 ret = 0;
203 	dbdev_tab_t *p;
204 	static u16 new_id = 0x1000;
205 
206 	p = find_dbdev_id(~0);
207 	if (NULL != p) {
208 		memcpy(p, dev, sizeof(dbdev_tab_t));
209 		p->dev_id = DSCR_DEV2CUSTOM_ID(new_id, dev->dev_id);
210 		ret = p->dev_id;
211 		new_id++;
212 #if 0
213 		printk(KERN_DEBUG "add_device: id:%x flags:%x padd:%x\n",
214 				  p->dev_id, p->dev_flags, p->dev_physaddr);
215 #endif
216 	}
217 
218 	return ret;
219 }
220 EXPORT_SYMBOL(au1xxx_ddma_add_device);
221 
222 void au1xxx_ddma_del_device(u32 devid)
223 {
224 	dbdev_tab_t *p = find_dbdev_id(devid);
225 
226 	if (p != NULL) {
227 		memset(p, 0, sizeof(dbdev_tab_t));
228 		p->dev_id = ~0;
229 	}
230 }
231 EXPORT_SYMBOL(au1xxx_ddma_del_device);
232 
233 /* Allocate a channel and return a non-zero descriptor if successful. */
234 u32 au1xxx_dbdma_chan_alloc(u32 srcid, u32 destid,
235        void (*callback)(int, void *), void *callparam)
236 {
237 	unsigned long   flags;
238 	u32		used, chan;
239 	u32		dcp;
240 	int		i;
241 	dbdev_tab_t	*stp, *dtp;
242 	chan_tab_t	*ctp;
243 	au1x_dma_chan_t *cp;
244 
245 	/*
246 	 * We do the intialization on the first channel allocation.
247 	 * We have to wait because of the interrupt handler initialization
248 	 * which can't be done successfully during board set up.
249 	 */
250 	if (!dbdma_initialized)
251 		return 0;
252 
253 	stp = find_dbdev_id(srcid);
254 	if (stp == NULL)
255 		return 0;
256 	dtp = find_dbdev_id(destid);
257 	if (dtp == NULL)
258 		return 0;
259 
260 	used = 0;
261 
262 	/* Check to see if we can get both channels. */
263 	spin_lock_irqsave(&au1xxx_dbdma_spin_lock, flags);
264 	if (!(stp->dev_flags & DEV_FLAGS_INUSE) ||
265 	     (stp->dev_flags & DEV_FLAGS_ANYUSE)) {
266 		/* Got source */
267 		stp->dev_flags |= DEV_FLAGS_INUSE;
268 		if (!(dtp->dev_flags & DEV_FLAGS_INUSE) ||
269 		     (dtp->dev_flags & DEV_FLAGS_ANYUSE)) {
270 			/* Got destination */
271 			dtp->dev_flags |= DEV_FLAGS_INUSE;
272 		} else {
273 			/* Can't get dest.  Release src. */
274 			stp->dev_flags &= ~DEV_FLAGS_INUSE;
275 			used++;
276 		}
277 	} else
278 		used++;
279 	spin_unlock_irqrestore(&au1xxx_dbdma_spin_lock, flags);
280 
281 	if (used)
282 		return 0;
283 
284 	/* Let's see if we can allocate a channel for it. */
285 	ctp = NULL;
286 	chan = 0;
287 	spin_lock_irqsave(&au1xxx_dbdma_spin_lock, flags);
288 	for (i = 0; i < NUM_DBDMA_CHANS; i++)
289 		if (chan_tab_ptr[i] == NULL) {
290 			/*
291 			 * If kmalloc fails, it is caught below same
292 			 * as a channel not available.
293 			 */
294 			ctp = kmalloc(sizeof(chan_tab_t), GFP_ATOMIC);
295 			chan_tab_ptr[i] = ctp;
296 			break;
297 		}
298 	spin_unlock_irqrestore(&au1xxx_dbdma_spin_lock, flags);
299 
300 	if (ctp != NULL) {
301 		memset(ctp, 0, sizeof(chan_tab_t));
302 		ctp->chan_index = chan = i;
303 		dcp = KSEG1ADDR(AU1550_DBDMA_PHYS_ADDR);
304 		dcp += (0x0100 * chan);
305 		ctp->chan_ptr = (au1x_dma_chan_t *)dcp;
306 		cp = (au1x_dma_chan_t *)dcp;
307 		ctp->chan_src = stp;
308 		ctp->chan_dest = dtp;
309 		ctp->chan_callback = callback;
310 		ctp->chan_callparam = callparam;
311 
312 		/* Initialize channel configuration. */
313 		i = 0;
314 		if (stp->dev_intlevel)
315 			i |= DDMA_CFG_SED;
316 		if (stp->dev_intpolarity)
317 			i |= DDMA_CFG_SP;
318 		if (dtp->dev_intlevel)
319 			i |= DDMA_CFG_DED;
320 		if (dtp->dev_intpolarity)
321 			i |= DDMA_CFG_DP;
322 		if ((stp->dev_flags & DEV_FLAGS_SYNC) ||
323 			(dtp->dev_flags & DEV_FLAGS_SYNC))
324 				i |= DDMA_CFG_SYNC;
325 		cp->ddma_cfg = i;
326 		au_sync();
327 
328 		/*
329 		 * Return a non-zero value that can be used to find the channel
330 		 * information in subsequent operations.
331 		 */
332 		return (u32)(&chan_tab_ptr[chan]);
333 	}
334 
335 	/* Release devices */
336 	stp->dev_flags &= ~DEV_FLAGS_INUSE;
337 	dtp->dev_flags &= ~DEV_FLAGS_INUSE;
338 
339 	return 0;
340 }
341 EXPORT_SYMBOL(au1xxx_dbdma_chan_alloc);
342 
343 /*
344  * Set the device width if source or destination is a FIFO.
345  * Should be 8, 16, or 32 bits.
346  */
347 u32 au1xxx_dbdma_set_devwidth(u32 chanid, int bits)
348 {
349 	u32		rv;
350 	chan_tab_t	*ctp;
351 	dbdev_tab_t	*stp, *dtp;
352 
353 	ctp = *((chan_tab_t **)chanid);
354 	stp = ctp->chan_src;
355 	dtp = ctp->chan_dest;
356 	rv = 0;
357 
358 	if (stp->dev_flags & DEV_FLAGS_IN) {	/* Source in fifo */
359 		rv = stp->dev_devwidth;
360 		stp->dev_devwidth = bits;
361 	}
362 	if (dtp->dev_flags & DEV_FLAGS_OUT) {	/* Destination out fifo */
363 		rv = dtp->dev_devwidth;
364 		dtp->dev_devwidth = bits;
365 	}
366 
367 	return rv;
368 }
369 EXPORT_SYMBOL(au1xxx_dbdma_set_devwidth);
370 
371 /* Allocate a descriptor ring, initializing as much as possible. */
372 u32 au1xxx_dbdma_ring_alloc(u32 chanid, int entries)
373 {
374 	int			i;
375 	u32			desc_base, srcid, destid;
376 	u32			cmd0, cmd1, src1, dest1;
377 	u32			src0, dest0;
378 	chan_tab_t		*ctp;
379 	dbdev_tab_t		*stp, *dtp;
380 	au1x_ddma_desc_t	*dp;
381 
382 	/*
383 	 * I guess we could check this to be within the
384 	 * range of the table......
385 	 */
386 	ctp = *((chan_tab_t **)chanid);
387 	stp = ctp->chan_src;
388 	dtp = ctp->chan_dest;
389 
390 	/*
391 	 * The descriptors must be 32-byte aligned.  There is a
392 	 * possibility the allocation will give us such an address,
393 	 * and if we try that first we are likely to not waste larger
394 	 * slabs of memory.
395 	 */
396 	desc_base = (u32)kmalloc(entries * sizeof(au1x_ddma_desc_t),
397 				 GFP_KERNEL|GFP_DMA);
398 	if (desc_base == 0)
399 		return 0;
400 
401 	if (desc_base & 0x1f) {
402 		/*
403 		 * Lost....do it again, allocate extra, and round
404 		 * the address base.
405 		 */
406 		kfree((const void *)desc_base);
407 		i = entries * sizeof(au1x_ddma_desc_t);
408 		i += (sizeof(au1x_ddma_desc_t) - 1);
409 		desc_base = (u32)kmalloc(i, GFP_KERNEL|GFP_DMA);
410 		if (desc_base == 0)
411 			return 0;
412 
413 		ctp->cdb_membase = desc_base;
414 		desc_base = ALIGN_ADDR(desc_base, sizeof(au1x_ddma_desc_t));
415 	} else
416 		ctp->cdb_membase = desc_base;
417 
418 	dp = (au1x_ddma_desc_t *)desc_base;
419 
420 	/* Keep track of the base descriptor. */
421 	ctp->chan_desc_base = dp;
422 
423 	/* Initialize the rings with as much information as we know. */
424 	srcid = stp->dev_id;
425 	destid = dtp->dev_id;
426 
427 	cmd0 = cmd1 = src1 = dest1 = 0;
428 	src0 = dest0 = 0;
429 
430 	cmd0 |= DSCR_CMD0_SID(srcid);
431 	cmd0 |= DSCR_CMD0_DID(destid);
432 	cmd0 |= DSCR_CMD0_IE | DSCR_CMD0_CV;
433 	cmd0 |= DSCR_CMD0_ST(DSCR_CMD0_ST_NOCHANGE);
434 
435 	/* Is it mem to mem transfer? */
436 	if (((DSCR_CUSTOM2DEV_ID(srcid) == DSCR_CMD0_THROTTLE) ||
437 	     (DSCR_CUSTOM2DEV_ID(srcid) == DSCR_CMD0_ALWAYS)) &&
438 	    ((DSCR_CUSTOM2DEV_ID(destid) == DSCR_CMD0_THROTTLE) ||
439 	     (DSCR_CUSTOM2DEV_ID(destid) == DSCR_CMD0_ALWAYS)))
440 		cmd0 |= DSCR_CMD0_MEM;
441 
442 	switch (stp->dev_devwidth) {
443 	case 8:
444 		cmd0 |= DSCR_CMD0_SW(DSCR_CMD0_BYTE);
445 		break;
446 	case 16:
447 		cmd0 |= DSCR_CMD0_SW(DSCR_CMD0_HALFWORD);
448 		break;
449 	case 32:
450 	default:
451 		cmd0 |= DSCR_CMD0_SW(DSCR_CMD0_WORD);
452 		break;
453 	}
454 
455 	switch (dtp->dev_devwidth) {
456 	case 8:
457 		cmd0 |= DSCR_CMD0_DW(DSCR_CMD0_BYTE);
458 		break;
459 	case 16:
460 		cmd0 |= DSCR_CMD0_DW(DSCR_CMD0_HALFWORD);
461 		break;
462 	case 32:
463 	default:
464 		cmd0 |= DSCR_CMD0_DW(DSCR_CMD0_WORD);
465 		break;
466 	}
467 
468 	/*
469 	 * If the device is marked as an in/out FIFO, ensure it is
470 	 * set non-coherent.
471 	 */
472 	if (stp->dev_flags & DEV_FLAGS_IN)
473 		cmd0 |= DSCR_CMD0_SN;		/* Source in FIFO */
474 	if (dtp->dev_flags & DEV_FLAGS_OUT)
475 		cmd0 |= DSCR_CMD0_DN;		/* Destination out FIFO */
476 
477 	/*
478 	 * Set up source1.  For now, assume no stride and increment.
479 	 * A channel attribute update can change this later.
480 	 */
481 	switch (stp->dev_tsize) {
482 	case 1:
483 		src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE1);
484 		break;
485 	case 2:
486 		src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE2);
487 		break;
488 	case 4:
489 		src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE4);
490 		break;
491 	case 8:
492 	default:
493 		src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE8);
494 		break;
495 	}
496 
497 	/* If source input is FIFO, set static address.	*/
498 	if (stp->dev_flags & DEV_FLAGS_IN) {
499 		if (stp->dev_flags & DEV_FLAGS_BURSTABLE)
500 			src1 |= DSCR_SRC1_SAM(DSCR_xAM_BURST);
501 		else
502 			src1 |= DSCR_SRC1_SAM(DSCR_xAM_STATIC);
503 	}
504 
505 	if (stp->dev_physaddr)
506 		src0 = stp->dev_physaddr;
507 
508 	/*
509 	 * Set up dest1.  For now, assume no stride and increment.
510 	 * A channel attribute update can change this later.
511 	 */
512 	switch (dtp->dev_tsize) {
513 	case 1:
514 		dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE1);
515 		break;
516 	case 2:
517 		dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE2);
518 		break;
519 	case 4:
520 		dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE4);
521 		break;
522 	case 8:
523 	default:
524 		dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE8);
525 		break;
526 	}
527 
528 	/* If destination output is FIFO, set static address. */
529 	if (dtp->dev_flags & DEV_FLAGS_OUT) {
530 		if (dtp->dev_flags & DEV_FLAGS_BURSTABLE)
531 			dest1 |= DSCR_DEST1_DAM(DSCR_xAM_BURST);
532 		else
533 			dest1 |= DSCR_DEST1_DAM(DSCR_xAM_STATIC);
534 	}
535 
536 	if (dtp->dev_physaddr)
537 		dest0 = dtp->dev_physaddr;
538 
539 #if 0
540 		printk(KERN_DEBUG "did:%x sid:%x cmd0:%x cmd1:%x source0:%x "
541 				  "source1:%x dest0:%x dest1:%x\n",
542 				  dtp->dev_id, stp->dev_id, cmd0, cmd1, src0,
543 				  src1, dest0, dest1);
544 #endif
545 	for (i = 0; i < entries; i++) {
546 		dp->dscr_cmd0 = cmd0;
547 		dp->dscr_cmd1 = cmd1;
548 		dp->dscr_source0 = src0;
549 		dp->dscr_source1 = src1;
550 		dp->dscr_dest0 = dest0;
551 		dp->dscr_dest1 = dest1;
552 		dp->dscr_stat = 0;
553 		dp->sw_context = 0;
554 		dp->sw_status = 0;
555 		dp->dscr_nxtptr = DSCR_NXTPTR(virt_to_phys(dp + 1));
556 		dp++;
557 	}
558 
559 	/* Make last descrptor point to the first. */
560 	dp--;
561 	dp->dscr_nxtptr = DSCR_NXTPTR(virt_to_phys(ctp->chan_desc_base));
562 	ctp->get_ptr = ctp->put_ptr = ctp->cur_ptr = ctp->chan_desc_base;
563 
564 	return (u32)ctp->chan_desc_base;
565 }
566 EXPORT_SYMBOL(au1xxx_dbdma_ring_alloc);
567 
568 /*
569  * Put a source buffer into the DMA ring.
570  * This updates the source pointer and byte count.  Normally used
571  * for memory to fifo transfers.
572  */
573 u32 au1xxx_dbdma_put_source(u32 chanid, dma_addr_t buf, int nbytes, u32 flags)
574 {
575 	chan_tab_t		*ctp;
576 	au1x_ddma_desc_t	*dp;
577 
578 	/*
579 	 * I guess we could check this to be within the
580 	 * range of the table......
581 	 */
582 	ctp = *(chan_tab_t **)chanid;
583 
584 	/*
585 	 * We should have multiple callers for a particular channel,
586 	 * an interrupt doesn't affect this pointer nor the descriptor,
587 	 * so no locking should be needed.
588 	 */
589 	dp = ctp->put_ptr;
590 
591 	/*
592 	 * If the descriptor is valid, we are way ahead of the DMA
593 	 * engine, so just return an error condition.
594 	 */
595 	if (dp->dscr_cmd0 & DSCR_CMD0_V)
596 		return 0;
597 
598 	/* Load up buffer address and byte count. */
599 	dp->dscr_source0 = buf & ~0UL;
600 	dp->dscr_cmd1 = nbytes;
601 	/* Check flags */
602 	if (flags & DDMA_FLAGS_IE)
603 		dp->dscr_cmd0 |= DSCR_CMD0_IE;
604 	if (flags & DDMA_FLAGS_NOIE)
605 		dp->dscr_cmd0 &= ~DSCR_CMD0_IE;
606 
607 	/*
608 	 * There is an errata on the Au1200/Au1550 parts that could result
609 	 * in "stale" data being DMA'ed. It has to do with the snoop logic on
610 	 * the cache eviction buffer.  DMA_NONCOHERENT is on by default for
611 	 * these parts. If it is fixed in the future, these dma_cache_inv will
612 	 * just be nothing more than empty macros. See io.h.
613 	 */
614 	dma_cache_wback_inv((unsigned long)buf, nbytes);
615 	dp->dscr_cmd0 |= DSCR_CMD0_V;	/* Let it rip */
616 	au_sync();
617 	dma_cache_wback_inv((unsigned long)dp, sizeof(*dp));
618 	ctp->chan_ptr->ddma_dbell = 0;
619 
620 	/* Get next descriptor pointer.	*/
621 	ctp->put_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
622 
623 	/* Return something non-zero. */
624 	return nbytes;
625 }
626 EXPORT_SYMBOL(au1xxx_dbdma_put_source);
627 
628 /* Put a destination buffer into the DMA ring.
629  * This updates the destination pointer and byte count.  Normally used
630  * to place an empty buffer into the ring for fifo to memory transfers.
631  */
632 u32 au1xxx_dbdma_put_dest(u32 chanid, dma_addr_t buf, int nbytes, u32 flags)
633 {
634 	chan_tab_t		*ctp;
635 	au1x_ddma_desc_t	*dp;
636 
637 	/* I guess we could check this to be within the
638 	 * range of the table......
639 	 */
640 	ctp = *((chan_tab_t **)chanid);
641 
642 	/* We should have multiple callers for a particular channel,
643 	 * an interrupt doesn't affect this pointer nor the descriptor,
644 	 * so no locking should be needed.
645 	 */
646 	dp = ctp->put_ptr;
647 
648 	/* If the descriptor is valid, we are way ahead of the DMA
649 	 * engine, so just return an error condition.
650 	 */
651 	if (dp->dscr_cmd0 & DSCR_CMD0_V)
652 		return 0;
653 
654 	/* Load up buffer address and byte count */
655 
656 	/* Check flags  */
657 	if (flags & DDMA_FLAGS_IE)
658 		dp->dscr_cmd0 |= DSCR_CMD0_IE;
659 	if (flags & DDMA_FLAGS_NOIE)
660 		dp->dscr_cmd0 &= ~DSCR_CMD0_IE;
661 
662 	dp->dscr_dest0 = buf & ~0UL;
663 	dp->dscr_cmd1 = nbytes;
664 #if 0
665 	printk(KERN_DEBUG "cmd0:%x cmd1:%x source0:%x source1:%x dest0:%x dest1:%x\n",
666 			  dp->dscr_cmd0, dp->dscr_cmd1, dp->dscr_source0,
667 			  dp->dscr_source1, dp->dscr_dest0, dp->dscr_dest1);
668 #endif
669 	/*
670 	 * There is an errata on the Au1200/Au1550 parts that could result in
671 	 * "stale" data being DMA'ed. It has to do with the snoop logic on the
672 	 * cache eviction buffer.  DMA_NONCOHERENT is on by default for these
673 	 * parts. If it is fixed in the future, these dma_cache_inv will just
674 	 * be nothing more than empty macros. See io.h.
675 	 */
676 	dma_cache_inv((unsigned long)buf, nbytes);
677 	dp->dscr_cmd0 |= DSCR_CMD0_V;	/* Let it rip */
678 	au_sync();
679 	dma_cache_wback_inv((unsigned long)dp, sizeof(*dp));
680 	ctp->chan_ptr->ddma_dbell = 0;
681 
682 	/* Get next descriptor pointer.	*/
683 	ctp->put_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
684 
685 	/* Return something non-zero. */
686 	return nbytes;
687 }
688 EXPORT_SYMBOL(au1xxx_dbdma_put_dest);
689 
690 /*
691  * Get a destination buffer into the DMA ring.
692  * Normally used to get a full buffer from the ring during fifo
693  * to memory transfers.  This does not set the valid bit, you will
694  * have to put another destination buffer to keep the DMA going.
695  */
696 u32 au1xxx_dbdma_get_dest(u32 chanid, void **buf, int *nbytes)
697 {
698 	chan_tab_t		*ctp;
699 	au1x_ddma_desc_t	*dp;
700 	u32			rv;
701 
702 	/*
703 	 * I guess we could check this to be within the
704 	 * range of the table......
705 	 */
706 	ctp = *((chan_tab_t **)chanid);
707 
708 	/*
709 	 * We should have multiple callers for a particular channel,
710 	 * an interrupt doesn't affect this pointer nor the descriptor,
711 	 * so no locking should be needed.
712 	 */
713 	dp = ctp->get_ptr;
714 
715 	/*
716 	 * If the descriptor is valid, we are way ahead of the DMA
717 	 * engine, so just return an error condition.
718 	 */
719 	if (dp->dscr_cmd0 & DSCR_CMD0_V)
720 		return 0;
721 
722 	/* Return buffer address and byte count. */
723 	*buf = (void *)(phys_to_virt(dp->dscr_dest0));
724 	*nbytes = dp->dscr_cmd1;
725 	rv = dp->dscr_stat;
726 
727 	/* Get next descriptor pointer.	*/
728 	ctp->get_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
729 
730 	/* Return something non-zero. */
731 	return rv;
732 }
733 EXPORT_SYMBOL_GPL(au1xxx_dbdma_get_dest);
734 
735 void au1xxx_dbdma_stop(u32 chanid)
736 {
737 	chan_tab_t	*ctp;
738 	au1x_dma_chan_t *cp;
739 	int halt_timeout = 0;
740 
741 	ctp = *((chan_tab_t **)chanid);
742 
743 	cp = ctp->chan_ptr;
744 	cp->ddma_cfg &= ~DDMA_CFG_EN;	/* Disable channel */
745 	au_sync();
746 	while (!(cp->ddma_stat & DDMA_STAT_H)) {
747 		udelay(1);
748 		halt_timeout++;
749 		if (halt_timeout > 100) {
750 			printk(KERN_WARNING "warning: DMA channel won't halt\n");
751 			break;
752 		}
753 	}
754 	/* clear current desc valid and doorbell */
755 	cp->ddma_stat |= (DDMA_STAT_DB | DDMA_STAT_V);
756 	au_sync();
757 }
758 EXPORT_SYMBOL(au1xxx_dbdma_stop);
759 
760 /*
761  * Start using the current descriptor pointer.  If the DBDMA encounters
762  * a non-valid descriptor, it will stop.  In this case, we can just
763  * continue by adding a buffer to the list and starting again.
764  */
765 void au1xxx_dbdma_start(u32 chanid)
766 {
767 	chan_tab_t	*ctp;
768 	au1x_dma_chan_t *cp;
769 
770 	ctp = *((chan_tab_t **)chanid);
771 	cp = ctp->chan_ptr;
772 	cp->ddma_desptr = virt_to_phys(ctp->cur_ptr);
773 	cp->ddma_cfg |= DDMA_CFG_EN;	/* Enable channel */
774 	au_sync();
775 	cp->ddma_dbell = 0;
776 	au_sync();
777 }
778 EXPORT_SYMBOL(au1xxx_dbdma_start);
779 
780 void au1xxx_dbdma_reset(u32 chanid)
781 {
782 	chan_tab_t		*ctp;
783 	au1x_ddma_desc_t	*dp;
784 
785 	au1xxx_dbdma_stop(chanid);
786 
787 	ctp = *((chan_tab_t **)chanid);
788 	ctp->get_ptr = ctp->put_ptr = ctp->cur_ptr = ctp->chan_desc_base;
789 
790 	/* Run through the descriptors and reset the valid indicator. */
791 	dp = ctp->chan_desc_base;
792 
793 	do {
794 		dp->dscr_cmd0 &= ~DSCR_CMD0_V;
795 		/*
796 		 * Reset our software status -- this is used to determine
797 		 * if a descriptor is in use by upper level software. Since
798 		 * posting can reset 'V' bit.
799 		 */
800 		dp->sw_status = 0;
801 		dp = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
802 	} while (dp != ctp->chan_desc_base);
803 }
804 EXPORT_SYMBOL(au1xxx_dbdma_reset);
805 
806 u32 au1xxx_get_dma_residue(u32 chanid)
807 {
808 	chan_tab_t	*ctp;
809 	au1x_dma_chan_t *cp;
810 	u32		rv;
811 
812 	ctp = *((chan_tab_t **)chanid);
813 	cp = ctp->chan_ptr;
814 
815 	/* This is only valid if the channel is stopped. */
816 	rv = cp->ddma_bytecnt;
817 	au_sync();
818 
819 	return rv;
820 }
821 EXPORT_SYMBOL_GPL(au1xxx_get_dma_residue);
822 
823 void au1xxx_dbdma_chan_free(u32 chanid)
824 {
825 	chan_tab_t	*ctp;
826 	dbdev_tab_t	*stp, *dtp;
827 
828 	ctp = *((chan_tab_t **)chanid);
829 	stp = ctp->chan_src;
830 	dtp = ctp->chan_dest;
831 
832 	au1xxx_dbdma_stop(chanid);
833 
834 	kfree((void *)ctp->cdb_membase);
835 
836 	stp->dev_flags &= ~DEV_FLAGS_INUSE;
837 	dtp->dev_flags &= ~DEV_FLAGS_INUSE;
838 	chan_tab_ptr[ctp->chan_index] = NULL;
839 
840 	kfree(ctp);
841 }
842 EXPORT_SYMBOL(au1xxx_dbdma_chan_free);
843 
844 static irqreturn_t dbdma_interrupt(int irq, void *dev_id)
845 {
846 	u32 intstat;
847 	u32 chan_index;
848 	chan_tab_t		*ctp;
849 	au1x_ddma_desc_t	*dp;
850 	au1x_dma_chan_t *cp;
851 
852 	intstat = dbdma_gptr->ddma_intstat;
853 	au_sync();
854 	chan_index = __ffs(intstat);
855 
856 	ctp = chan_tab_ptr[chan_index];
857 	cp = ctp->chan_ptr;
858 	dp = ctp->cur_ptr;
859 
860 	/* Reset interrupt. */
861 	cp->ddma_irq = 0;
862 	au_sync();
863 
864 	if (ctp->chan_callback)
865 		ctp->chan_callback(irq, ctp->chan_callparam);
866 
867 	ctp->cur_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
868 	return IRQ_RETVAL(1);
869 }
870 
871 void au1xxx_dbdma_dump(u32 chanid)
872 {
873 	chan_tab_t	 *ctp;
874 	au1x_ddma_desc_t *dp;
875 	dbdev_tab_t	 *stp, *dtp;
876 	au1x_dma_chan_t  *cp;
877 	u32 i		 = 0;
878 
879 	ctp = *((chan_tab_t **)chanid);
880 	stp = ctp->chan_src;
881 	dtp = ctp->chan_dest;
882 	cp = ctp->chan_ptr;
883 
884 	printk(KERN_DEBUG "Chan %x, stp %x (dev %d)  dtp %x (dev %d)\n",
885 			  (u32)ctp, (u32)stp, stp - dbdev_tab, (u32)dtp,
886 			  dtp - dbdev_tab);
887 	printk(KERN_DEBUG "desc base %x, get %x, put %x, cur %x\n",
888 			  (u32)(ctp->chan_desc_base), (u32)(ctp->get_ptr),
889 			  (u32)(ctp->put_ptr), (u32)(ctp->cur_ptr));
890 
891 	printk(KERN_DEBUG "dbdma chan %x\n", (u32)cp);
892 	printk(KERN_DEBUG "cfg %08x, desptr %08x, statptr %08x\n",
893 			  cp->ddma_cfg, cp->ddma_desptr, cp->ddma_statptr);
894 	printk(KERN_DEBUG "dbell %08x, irq %08x, stat %08x, bytecnt %08x\n",
895 			  cp->ddma_dbell, cp->ddma_irq, cp->ddma_stat,
896 			  cp->ddma_bytecnt);
897 
898 	/* Run through the descriptors */
899 	dp = ctp->chan_desc_base;
900 
901 	do {
902 		printk(KERN_DEBUG "Dp[%d]= %08x, cmd0 %08x, cmd1 %08x\n",
903 				  i++, (u32)dp, dp->dscr_cmd0, dp->dscr_cmd1);
904 		printk(KERN_DEBUG "src0 %08x, src1 %08x, dest0 %08x, dest1 %08x\n",
905 				  dp->dscr_source0, dp->dscr_source1,
906 				  dp->dscr_dest0, dp->dscr_dest1);
907 		printk(KERN_DEBUG "stat %08x, nxtptr %08x\n",
908 				  dp->dscr_stat, dp->dscr_nxtptr);
909 		dp = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
910 	} while (dp != ctp->chan_desc_base);
911 }
912 
913 /* Put a descriptor into the DMA ring.
914  * This updates the source/destination pointers and byte count.
915  */
916 u32 au1xxx_dbdma_put_dscr(u32 chanid, au1x_ddma_desc_t *dscr)
917 {
918 	chan_tab_t *ctp;
919 	au1x_ddma_desc_t *dp;
920 	u32 nbytes = 0;
921 
922 	/*
923 	 * I guess we could check this to be within the
924 	 * range of the table......
925 	 */
926 	ctp = *((chan_tab_t **)chanid);
927 
928 	/*
929 	 * We should have multiple callers for a particular channel,
930 	 * an interrupt doesn't affect this pointer nor the descriptor,
931 	 * so no locking should be needed.
932 	 */
933 	dp = ctp->put_ptr;
934 
935 	/*
936 	 * If the descriptor is valid, we are way ahead of the DMA
937 	 * engine, so just return an error condition.
938 	 */
939 	if (dp->dscr_cmd0 & DSCR_CMD0_V)
940 		return 0;
941 
942 	/* Load up buffer addresses and byte count. */
943 	dp->dscr_dest0 = dscr->dscr_dest0;
944 	dp->dscr_source0 = dscr->dscr_source0;
945 	dp->dscr_dest1 = dscr->dscr_dest1;
946 	dp->dscr_source1 = dscr->dscr_source1;
947 	dp->dscr_cmd1 = dscr->dscr_cmd1;
948 	nbytes = dscr->dscr_cmd1;
949 	/* Allow the caller to specifiy if an interrupt is generated */
950 	dp->dscr_cmd0 &= ~DSCR_CMD0_IE;
951 	dp->dscr_cmd0 |= dscr->dscr_cmd0 | DSCR_CMD0_V;
952 	ctp->chan_ptr->ddma_dbell = 0;
953 
954 	/* Get next descriptor pointer.	*/
955 	ctp->put_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
956 
957 	/* Return something non-zero. */
958 	return nbytes;
959 }
960 
961 
962 static unsigned long alchemy_dbdma_pm_data[NUM_DBDMA_CHANS + 1][6];
963 
964 static int alchemy_dbdma_suspend(void)
965 {
966 	int i;
967 	void __iomem *addr;
968 
969 	addr = (void __iomem *)KSEG1ADDR(AU1550_DBDMA_CONF_PHYS_ADDR);
970 	alchemy_dbdma_pm_data[0][0] = __raw_readl(addr + 0x00);
971 	alchemy_dbdma_pm_data[0][1] = __raw_readl(addr + 0x04);
972 	alchemy_dbdma_pm_data[0][2] = __raw_readl(addr + 0x08);
973 	alchemy_dbdma_pm_data[0][3] = __raw_readl(addr + 0x0c);
974 
975 	/* save channel configurations */
976 	addr = (void __iomem *)KSEG1ADDR(AU1550_DBDMA_PHYS_ADDR);
977 	for (i = 1; i <= NUM_DBDMA_CHANS; i++) {
978 		alchemy_dbdma_pm_data[i][0] = __raw_readl(addr + 0x00);
979 		alchemy_dbdma_pm_data[i][1] = __raw_readl(addr + 0x04);
980 		alchemy_dbdma_pm_data[i][2] = __raw_readl(addr + 0x08);
981 		alchemy_dbdma_pm_data[i][3] = __raw_readl(addr + 0x0c);
982 		alchemy_dbdma_pm_data[i][4] = __raw_readl(addr + 0x10);
983 		alchemy_dbdma_pm_data[i][5] = __raw_readl(addr + 0x14);
984 
985 		/* halt channel */
986 		__raw_writel(alchemy_dbdma_pm_data[i][0] & ~1, addr + 0x00);
987 		wmb();
988 		while (!(__raw_readl(addr + 0x14) & 1))
989 			wmb();
990 
991 		addr += 0x100;	/* next channel base */
992 	}
993 	/* disable channel interrupts */
994 	addr = (void __iomem *)KSEG1ADDR(AU1550_DBDMA_CONF_PHYS_ADDR);
995 	__raw_writel(0, addr + 0x0c);
996 	wmb();
997 
998 	return 0;
999 }
1000 
1001 static void alchemy_dbdma_resume(void)
1002 {
1003 	int i;
1004 	void __iomem *addr;
1005 
1006 	addr = (void __iomem *)KSEG1ADDR(AU1550_DBDMA_CONF_PHYS_ADDR);
1007 	__raw_writel(alchemy_dbdma_pm_data[0][0], addr + 0x00);
1008 	__raw_writel(alchemy_dbdma_pm_data[0][1], addr + 0x04);
1009 	__raw_writel(alchemy_dbdma_pm_data[0][2], addr + 0x08);
1010 	__raw_writel(alchemy_dbdma_pm_data[0][3], addr + 0x0c);
1011 
1012 	/* restore channel configurations */
1013 	addr = (void __iomem *)KSEG1ADDR(AU1550_DBDMA_PHYS_ADDR);
1014 	for (i = 1; i <= NUM_DBDMA_CHANS; i++) {
1015 		__raw_writel(alchemy_dbdma_pm_data[i][0], addr + 0x00);
1016 		__raw_writel(alchemy_dbdma_pm_data[i][1], addr + 0x04);
1017 		__raw_writel(alchemy_dbdma_pm_data[i][2], addr + 0x08);
1018 		__raw_writel(alchemy_dbdma_pm_data[i][3], addr + 0x0c);
1019 		__raw_writel(alchemy_dbdma_pm_data[i][4], addr + 0x10);
1020 		__raw_writel(alchemy_dbdma_pm_data[i][5], addr + 0x14);
1021 		wmb();
1022 		addr += 0x100;	/* next channel base */
1023 	}
1024 }
1025 
1026 static struct syscore_ops alchemy_dbdma_syscore_ops = {
1027 	.suspend	= alchemy_dbdma_suspend,
1028 	.resume		= alchemy_dbdma_resume,
1029 };
1030 
1031 static int __init au1xxx_dbdma_init(void)
1032 {
1033 	int irq_nr, ret;
1034 
1035 	dbdma_gptr->ddma_config = 0;
1036 	dbdma_gptr->ddma_throttle = 0;
1037 	dbdma_gptr->ddma_inten = 0xffff;
1038 	au_sync();
1039 
1040 	switch (alchemy_get_cputype()) {
1041 	case ALCHEMY_CPU_AU1550:
1042 		irq_nr = AU1550_DDMA_INT;
1043 		break;
1044 	case ALCHEMY_CPU_AU1200:
1045 		irq_nr = AU1200_DDMA_INT;
1046 		break;
1047 	default:
1048 		return -ENODEV;
1049 	}
1050 
1051 	ret = request_irq(irq_nr, dbdma_interrupt, IRQF_DISABLED,
1052 			"Au1xxx dbdma", (void *)dbdma_gptr);
1053 	if (ret)
1054 		printk(KERN_ERR "Cannot grab DBDMA interrupt!\n");
1055 	else {
1056 		dbdma_initialized = 1;
1057 		printk(KERN_INFO "Alchemy DBDMA initialized\n");
1058 		register_syscore_ops(&alchemy_dbdma_syscore_ops);
1059 	}
1060 
1061 	return ret;
1062 }
1063 subsys_initcall(au1xxx_dbdma_init);
1064 
1065 #endif /* defined(CONFIG_SOC_AU1550) || defined(CONFIG_SOC_AU1200) */
1066