1 /* 2 * 3 * BRIEF MODULE DESCRIPTION 4 * The Descriptor Based DMA channel manager that first appeared 5 * on the Au1550. I started with dma.c, but I think all that is 6 * left is this initial comment :-) 7 * 8 * Copyright 2004 Embedded Edge, LLC 9 * dan@embeddededge.com 10 * 11 * This program is free software; you can redistribute it and/or modify it 12 * under the terms of the GNU General Public License as published by the 13 * Free Software Foundation; either version 2 of the License, or (at your 14 * option) any later version. 15 * 16 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 18 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN 19 * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF 22 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON 23 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * 27 * You should have received a copy of the GNU General Public License along 28 * with this program; if not, write to the Free Software Foundation, Inc., 29 * 675 Mass Ave, Cambridge, MA 02139, USA. 30 * 31 */ 32 33 #include <linux/dma-map-ops.h> /* for dma_default_coherent */ 34 #include <linux/init.h> 35 #include <linux/kernel.h> 36 #include <linux/slab.h> 37 #include <linux/spinlock.h> 38 #include <linux/interrupt.h> 39 #include <linux/export.h> 40 #include <linux/syscore_ops.h> 41 #include <asm/mach-au1x00/au1000.h> 42 #include <asm/mach-au1x00/au1xxx_dbdma.h> 43 44 /* 45 * The Descriptor Based DMA supports up to 16 channels. 46 * 47 * There are 32 devices defined. We keep an internal structure 48 * of devices using these channels, along with additional 49 * information. 50 * 51 * We allocate the descriptors and allow access to them through various 52 * functions. The drivers allocate the data buffers and assign them 53 * to the descriptors. 54 */ 55 static DEFINE_SPINLOCK(au1xxx_dbdma_spin_lock); 56 57 /* I couldn't find a macro that did this... */ 58 #define ALIGN_ADDR(x, a) ((((u32)(x)) + (a-1)) & ~(a-1)) 59 60 static dbdma_global_t *dbdma_gptr = 61 (dbdma_global_t *)KSEG1ADDR(AU1550_DBDMA_CONF_PHYS_ADDR); 62 static int dbdma_initialized; 63 64 static dbdev_tab_t *dbdev_tab; 65 66 static dbdev_tab_t au1550_dbdev_tab[] __initdata = { 67 /* UARTS */ 68 { AU1550_DSCR_CMD0_UART0_TX, DEV_FLAGS_OUT, 0, 8, 0x11100004, 0, 0 }, 69 { AU1550_DSCR_CMD0_UART0_RX, DEV_FLAGS_IN, 0, 8, 0x11100000, 0, 0 }, 70 { AU1550_DSCR_CMD0_UART3_TX, DEV_FLAGS_OUT, 0, 8, 0x11400004, 0, 0 }, 71 { AU1550_DSCR_CMD0_UART3_RX, DEV_FLAGS_IN, 0, 8, 0x11400000, 0, 0 }, 72 73 /* EXT DMA */ 74 { AU1550_DSCR_CMD0_DMA_REQ0, 0, 0, 0, 0x00000000, 0, 0 }, 75 { AU1550_DSCR_CMD0_DMA_REQ1, 0, 0, 0, 0x00000000, 0, 0 }, 76 { AU1550_DSCR_CMD0_DMA_REQ2, 0, 0, 0, 0x00000000, 0, 0 }, 77 { AU1550_DSCR_CMD0_DMA_REQ3, 0, 0, 0, 0x00000000, 0, 0 }, 78 79 /* USB DEV */ 80 { AU1550_DSCR_CMD0_USBDEV_RX0, DEV_FLAGS_IN, 4, 8, 0x10200000, 0, 0 }, 81 { AU1550_DSCR_CMD0_USBDEV_TX0, DEV_FLAGS_OUT, 4, 8, 0x10200004, 0, 0 }, 82 { AU1550_DSCR_CMD0_USBDEV_TX1, DEV_FLAGS_OUT, 4, 8, 0x10200008, 0, 0 }, 83 { AU1550_DSCR_CMD0_USBDEV_TX2, DEV_FLAGS_OUT, 4, 8, 0x1020000c, 0, 0 }, 84 { AU1550_DSCR_CMD0_USBDEV_RX3, DEV_FLAGS_IN, 4, 8, 0x10200010, 0, 0 }, 85 { AU1550_DSCR_CMD0_USBDEV_RX4, DEV_FLAGS_IN, 4, 8, 0x10200014, 0, 0 }, 86 87 /* PSCs */ 88 { AU1550_DSCR_CMD0_PSC0_TX, DEV_FLAGS_OUT, 0, 0, 0x11a0001c, 0, 0 }, 89 { AU1550_DSCR_CMD0_PSC0_RX, DEV_FLAGS_IN, 0, 0, 0x11a0001c, 0, 0 }, 90 { AU1550_DSCR_CMD0_PSC1_TX, DEV_FLAGS_OUT, 0, 0, 0x11b0001c, 0, 0 }, 91 { AU1550_DSCR_CMD0_PSC1_RX, DEV_FLAGS_IN, 0, 0, 0x11b0001c, 0, 0 }, 92 { AU1550_DSCR_CMD0_PSC2_TX, DEV_FLAGS_OUT, 0, 0, 0x10a0001c, 0, 0 }, 93 { AU1550_DSCR_CMD0_PSC2_RX, DEV_FLAGS_IN, 0, 0, 0x10a0001c, 0, 0 }, 94 { AU1550_DSCR_CMD0_PSC3_TX, DEV_FLAGS_OUT, 0, 0, 0x10b0001c, 0, 0 }, 95 { AU1550_DSCR_CMD0_PSC3_RX, DEV_FLAGS_IN, 0, 0, 0x10b0001c, 0, 0 }, 96 97 { AU1550_DSCR_CMD0_PCI_WRITE, 0, 0, 0, 0x00000000, 0, 0 }, /* PCI */ 98 { AU1550_DSCR_CMD0_NAND_FLASH, 0, 0, 0, 0x00000000, 0, 0 }, /* NAND */ 99 100 /* MAC 0 */ 101 { AU1550_DSCR_CMD0_MAC0_RX, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 }, 102 { AU1550_DSCR_CMD0_MAC0_TX, DEV_FLAGS_OUT, 0, 0, 0x00000000, 0, 0 }, 103 104 /* MAC 1 */ 105 { AU1550_DSCR_CMD0_MAC1_RX, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 }, 106 { AU1550_DSCR_CMD0_MAC1_TX, DEV_FLAGS_OUT, 0, 0, 0x00000000, 0, 0 }, 107 108 { DSCR_CMD0_THROTTLE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 }, 109 { DSCR_CMD0_ALWAYS, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 }, 110 }; 111 112 static dbdev_tab_t au1200_dbdev_tab[] __initdata = { 113 { AU1200_DSCR_CMD0_UART0_TX, DEV_FLAGS_OUT, 0, 8, 0x11100004, 0, 0 }, 114 { AU1200_DSCR_CMD0_UART0_RX, DEV_FLAGS_IN, 0, 8, 0x11100000, 0, 0 }, 115 { AU1200_DSCR_CMD0_UART1_TX, DEV_FLAGS_OUT, 0, 8, 0x11200004, 0, 0 }, 116 { AU1200_DSCR_CMD0_UART1_RX, DEV_FLAGS_IN, 0, 8, 0x11200000, 0, 0 }, 117 118 { AU1200_DSCR_CMD0_DMA_REQ0, 0, 0, 0, 0x00000000, 0, 0 }, 119 { AU1200_DSCR_CMD0_DMA_REQ1, 0, 0, 0, 0x00000000, 0, 0 }, 120 121 { AU1200_DSCR_CMD0_MAE_BE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 }, 122 { AU1200_DSCR_CMD0_MAE_FE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 }, 123 { AU1200_DSCR_CMD0_MAE_BOTH, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 }, 124 { AU1200_DSCR_CMD0_LCD, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 }, 125 126 { AU1200_DSCR_CMD0_SDMS_TX0, DEV_FLAGS_OUT, 4, 8, 0x10600000, 0, 0 }, 127 { AU1200_DSCR_CMD0_SDMS_RX0, DEV_FLAGS_IN, 4, 8, 0x10600004, 0, 0 }, 128 { AU1200_DSCR_CMD0_SDMS_TX1, DEV_FLAGS_OUT, 4, 8, 0x10680000, 0, 0 }, 129 { AU1200_DSCR_CMD0_SDMS_RX1, DEV_FLAGS_IN, 4, 8, 0x10680004, 0, 0 }, 130 131 { AU1200_DSCR_CMD0_AES_RX, DEV_FLAGS_IN , 4, 32, 0x10300008, 0, 0 }, 132 { AU1200_DSCR_CMD0_AES_TX, DEV_FLAGS_OUT, 4, 32, 0x10300004, 0, 0 }, 133 134 { AU1200_DSCR_CMD0_PSC0_TX, DEV_FLAGS_OUT, 0, 16, 0x11a0001c, 0, 0 }, 135 { AU1200_DSCR_CMD0_PSC0_RX, DEV_FLAGS_IN, 0, 16, 0x11a0001c, 0, 0 }, 136 { AU1200_DSCR_CMD0_PSC0_SYNC, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 }, 137 { AU1200_DSCR_CMD0_PSC1_TX, DEV_FLAGS_OUT, 0, 16, 0x11b0001c, 0, 0 }, 138 { AU1200_DSCR_CMD0_PSC1_RX, DEV_FLAGS_IN, 0, 16, 0x11b0001c, 0, 0 }, 139 { AU1200_DSCR_CMD0_PSC1_SYNC, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 }, 140 141 { AU1200_DSCR_CMD0_CIM_RXA, DEV_FLAGS_IN, 0, 32, 0x14004020, 0, 0 }, 142 { AU1200_DSCR_CMD0_CIM_RXB, DEV_FLAGS_IN, 0, 32, 0x14004040, 0, 0 }, 143 { AU1200_DSCR_CMD0_CIM_RXC, DEV_FLAGS_IN, 0, 32, 0x14004060, 0, 0 }, 144 { AU1200_DSCR_CMD0_CIM_SYNC, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 }, 145 146 { AU1200_DSCR_CMD0_NAND_FLASH, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 }, 147 148 { DSCR_CMD0_THROTTLE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 }, 149 { DSCR_CMD0_ALWAYS, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 }, 150 }; 151 152 static dbdev_tab_t au1300_dbdev_tab[] __initdata = { 153 { AU1300_DSCR_CMD0_UART0_TX, DEV_FLAGS_OUT, 0, 8, 0x10100004, 0, 0 }, 154 { AU1300_DSCR_CMD0_UART0_RX, DEV_FLAGS_IN, 0, 8, 0x10100000, 0, 0 }, 155 { AU1300_DSCR_CMD0_UART1_TX, DEV_FLAGS_OUT, 0, 8, 0x10101004, 0, 0 }, 156 { AU1300_DSCR_CMD0_UART1_RX, DEV_FLAGS_IN, 0, 8, 0x10101000, 0, 0 }, 157 { AU1300_DSCR_CMD0_UART2_TX, DEV_FLAGS_OUT, 0, 8, 0x10102004, 0, 0 }, 158 { AU1300_DSCR_CMD0_UART2_RX, DEV_FLAGS_IN, 0, 8, 0x10102000, 0, 0 }, 159 { AU1300_DSCR_CMD0_UART3_TX, DEV_FLAGS_OUT, 0, 8, 0x10103004, 0, 0 }, 160 { AU1300_DSCR_CMD0_UART3_RX, DEV_FLAGS_IN, 0, 8, 0x10103000, 0, 0 }, 161 162 { AU1300_DSCR_CMD0_SDMS_TX0, DEV_FLAGS_OUT, 4, 8, 0x10600000, 0, 0 }, 163 { AU1300_DSCR_CMD0_SDMS_RX0, DEV_FLAGS_IN, 4, 8, 0x10600004, 0, 0 }, 164 { AU1300_DSCR_CMD0_SDMS_TX1, DEV_FLAGS_OUT, 8, 8, 0x10601000, 0, 0 }, 165 { AU1300_DSCR_CMD0_SDMS_RX1, DEV_FLAGS_IN, 8, 8, 0x10601004, 0, 0 }, 166 167 { AU1300_DSCR_CMD0_AES_RX, DEV_FLAGS_IN , 4, 32, 0x10300008, 0, 0 }, 168 { AU1300_DSCR_CMD0_AES_TX, DEV_FLAGS_OUT, 4, 32, 0x10300004, 0, 0 }, 169 170 { AU1300_DSCR_CMD0_PSC0_TX, DEV_FLAGS_OUT, 0, 16, 0x10a0001c, 0, 0 }, 171 { AU1300_DSCR_CMD0_PSC0_RX, DEV_FLAGS_IN, 0, 16, 0x10a0001c, 0, 0 }, 172 { AU1300_DSCR_CMD0_PSC1_TX, DEV_FLAGS_OUT, 0, 16, 0x10a0101c, 0, 0 }, 173 { AU1300_DSCR_CMD0_PSC1_RX, DEV_FLAGS_IN, 0, 16, 0x10a0101c, 0, 0 }, 174 { AU1300_DSCR_CMD0_PSC2_TX, DEV_FLAGS_OUT, 0, 16, 0x10a0201c, 0, 0 }, 175 { AU1300_DSCR_CMD0_PSC2_RX, DEV_FLAGS_IN, 0, 16, 0x10a0201c, 0, 0 }, 176 { AU1300_DSCR_CMD0_PSC3_TX, DEV_FLAGS_OUT, 0, 16, 0x10a0301c, 0, 0 }, 177 { AU1300_DSCR_CMD0_PSC3_RX, DEV_FLAGS_IN, 0, 16, 0x10a0301c, 0, 0 }, 178 179 { AU1300_DSCR_CMD0_LCD, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 }, 180 { AU1300_DSCR_CMD0_NAND_FLASH, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 }, 181 182 { AU1300_DSCR_CMD0_SDMS_TX2, DEV_FLAGS_OUT, 4, 8, 0x10602000, 0, 0 }, 183 { AU1300_DSCR_CMD0_SDMS_RX2, DEV_FLAGS_IN, 4, 8, 0x10602004, 0, 0 }, 184 185 { AU1300_DSCR_CMD0_CIM_SYNC, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 }, 186 187 { AU1300_DSCR_CMD0_UDMA, DEV_FLAGS_ANYUSE, 0, 32, 0x14001810, 0, 0 }, 188 189 { AU1300_DSCR_CMD0_DMA_REQ0, 0, 0, 0, 0x00000000, 0, 0 }, 190 { AU1300_DSCR_CMD0_DMA_REQ1, 0, 0, 0, 0x00000000, 0, 0 }, 191 192 { DSCR_CMD0_THROTTLE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 }, 193 { DSCR_CMD0_ALWAYS, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 }, 194 }; 195 196 /* 32 predefined plus 32 custom */ 197 #define DBDEV_TAB_SIZE 64 198 199 static chan_tab_t *chan_tab_ptr[NUM_DBDMA_CHANS]; 200 201 static dbdev_tab_t *find_dbdev_id(u32 id) 202 { 203 int i; 204 dbdev_tab_t *p; 205 for (i = 0; i < DBDEV_TAB_SIZE; ++i) { 206 p = &dbdev_tab[i]; 207 if (p->dev_id == id) 208 return p; 209 } 210 return NULL; 211 } 212 213 void *au1xxx_ddma_get_nextptr_virt(au1x_ddma_desc_t *dp) 214 { 215 return phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr)); 216 } 217 EXPORT_SYMBOL(au1xxx_ddma_get_nextptr_virt); 218 219 u32 au1xxx_ddma_add_device(dbdev_tab_t *dev) 220 { 221 u32 ret = 0; 222 dbdev_tab_t *p; 223 static u16 new_id = 0x1000; 224 225 p = find_dbdev_id(~0); 226 if (NULL != p) { 227 memcpy(p, dev, sizeof(dbdev_tab_t)); 228 p->dev_id = DSCR_DEV2CUSTOM_ID(new_id, dev->dev_id); 229 ret = p->dev_id; 230 new_id++; 231 #if 0 232 printk(KERN_DEBUG "add_device: id:%x flags:%x padd:%x\n", 233 p->dev_id, p->dev_flags, p->dev_physaddr); 234 #endif 235 } 236 237 return ret; 238 } 239 EXPORT_SYMBOL(au1xxx_ddma_add_device); 240 241 void au1xxx_ddma_del_device(u32 devid) 242 { 243 dbdev_tab_t *p = find_dbdev_id(devid); 244 245 if (p != NULL) { 246 memset(p, 0, sizeof(dbdev_tab_t)); 247 p->dev_id = ~0; 248 } 249 } 250 EXPORT_SYMBOL(au1xxx_ddma_del_device); 251 252 /* Allocate a channel and return a non-zero descriptor if successful. */ 253 u32 au1xxx_dbdma_chan_alloc(u32 srcid, u32 destid, 254 void (*callback)(int, void *), void *callparam) 255 { 256 unsigned long flags; 257 u32 used, chan; 258 u32 dcp; 259 int i; 260 dbdev_tab_t *stp, *dtp; 261 chan_tab_t *ctp; 262 au1x_dma_chan_t *cp; 263 264 /* 265 * We do the initialization on the first channel allocation. 266 * We have to wait because of the interrupt handler initialization 267 * which can't be done successfully during board set up. 268 */ 269 if (!dbdma_initialized) 270 return 0; 271 272 stp = find_dbdev_id(srcid); 273 if (stp == NULL) 274 return 0; 275 dtp = find_dbdev_id(destid); 276 if (dtp == NULL) 277 return 0; 278 279 used = 0; 280 281 /* Check to see if we can get both channels. */ 282 spin_lock_irqsave(&au1xxx_dbdma_spin_lock, flags); 283 if (!(stp->dev_flags & DEV_FLAGS_INUSE) || 284 (stp->dev_flags & DEV_FLAGS_ANYUSE)) { 285 /* Got source */ 286 stp->dev_flags |= DEV_FLAGS_INUSE; 287 if (!(dtp->dev_flags & DEV_FLAGS_INUSE) || 288 (dtp->dev_flags & DEV_FLAGS_ANYUSE)) { 289 /* Got destination */ 290 dtp->dev_flags |= DEV_FLAGS_INUSE; 291 } else { 292 /* Can't get dest. Release src. */ 293 stp->dev_flags &= ~DEV_FLAGS_INUSE; 294 used++; 295 } 296 } else 297 used++; 298 spin_unlock_irqrestore(&au1xxx_dbdma_spin_lock, flags); 299 300 if (used) 301 return 0; 302 303 /* Let's see if we can allocate a channel for it. */ 304 ctp = NULL; 305 chan = 0; 306 spin_lock_irqsave(&au1xxx_dbdma_spin_lock, flags); 307 for (i = 0; i < NUM_DBDMA_CHANS; i++) 308 if (chan_tab_ptr[i] == NULL) { 309 /* 310 * If kmalloc fails, it is caught below same 311 * as a channel not available. 312 */ 313 ctp = kmalloc(sizeof(chan_tab_t), GFP_ATOMIC); 314 chan_tab_ptr[i] = ctp; 315 break; 316 } 317 spin_unlock_irqrestore(&au1xxx_dbdma_spin_lock, flags); 318 319 if (ctp != NULL) { 320 memset(ctp, 0, sizeof(chan_tab_t)); 321 ctp->chan_index = chan = i; 322 dcp = KSEG1ADDR(AU1550_DBDMA_PHYS_ADDR); 323 dcp += (0x0100 * chan); 324 ctp->chan_ptr = (au1x_dma_chan_t *)dcp; 325 cp = (au1x_dma_chan_t *)dcp; 326 ctp->chan_src = stp; 327 ctp->chan_dest = dtp; 328 ctp->chan_callback = callback; 329 ctp->chan_callparam = callparam; 330 331 /* Initialize channel configuration. */ 332 i = 0; 333 if (stp->dev_intlevel) 334 i |= DDMA_CFG_SED; 335 if (stp->dev_intpolarity) 336 i |= DDMA_CFG_SP; 337 if (dtp->dev_intlevel) 338 i |= DDMA_CFG_DED; 339 if (dtp->dev_intpolarity) 340 i |= DDMA_CFG_DP; 341 if ((stp->dev_flags & DEV_FLAGS_SYNC) || 342 (dtp->dev_flags & DEV_FLAGS_SYNC)) 343 i |= DDMA_CFG_SYNC; 344 cp->ddma_cfg = i; 345 wmb(); /* drain writebuffer */ 346 347 /* 348 * Return a non-zero value that can be used to find the channel 349 * information in subsequent operations. 350 */ 351 return (u32)(&chan_tab_ptr[chan]); 352 } 353 354 /* Release devices */ 355 stp->dev_flags &= ~DEV_FLAGS_INUSE; 356 dtp->dev_flags &= ~DEV_FLAGS_INUSE; 357 358 return 0; 359 } 360 EXPORT_SYMBOL(au1xxx_dbdma_chan_alloc); 361 362 /* 363 * Set the device width if source or destination is a FIFO. 364 * Should be 8, 16, or 32 bits. 365 */ 366 u32 au1xxx_dbdma_set_devwidth(u32 chanid, int bits) 367 { 368 u32 rv; 369 chan_tab_t *ctp; 370 dbdev_tab_t *stp, *dtp; 371 372 ctp = *((chan_tab_t **)chanid); 373 stp = ctp->chan_src; 374 dtp = ctp->chan_dest; 375 rv = 0; 376 377 if (stp->dev_flags & DEV_FLAGS_IN) { /* Source in fifo */ 378 rv = stp->dev_devwidth; 379 stp->dev_devwidth = bits; 380 } 381 if (dtp->dev_flags & DEV_FLAGS_OUT) { /* Destination out fifo */ 382 rv = dtp->dev_devwidth; 383 dtp->dev_devwidth = bits; 384 } 385 386 return rv; 387 } 388 EXPORT_SYMBOL(au1xxx_dbdma_set_devwidth); 389 390 /* Allocate a descriptor ring, initializing as much as possible. */ 391 u32 au1xxx_dbdma_ring_alloc(u32 chanid, int entries) 392 { 393 int i; 394 u32 desc_base, srcid, destid; 395 u32 cmd0, cmd1, src1, dest1; 396 u32 src0, dest0; 397 chan_tab_t *ctp; 398 dbdev_tab_t *stp, *dtp; 399 au1x_ddma_desc_t *dp; 400 401 /* 402 * I guess we could check this to be within the 403 * range of the table...... 404 */ 405 ctp = *((chan_tab_t **)chanid); 406 stp = ctp->chan_src; 407 dtp = ctp->chan_dest; 408 409 /* 410 * The descriptors must be 32-byte aligned. There is a 411 * possibility the allocation will give us such an address, 412 * and if we try that first we are likely to not waste larger 413 * slabs of memory. 414 */ 415 desc_base = (u32)kmalloc_array(entries, sizeof(au1x_ddma_desc_t), 416 GFP_KERNEL|GFP_DMA); 417 if (desc_base == 0) 418 return 0; 419 420 if (desc_base & 0x1f) { 421 /* 422 * Lost....do it again, allocate extra, and round 423 * the address base. 424 */ 425 kfree((const void *)desc_base); 426 i = entries * sizeof(au1x_ddma_desc_t); 427 i += (sizeof(au1x_ddma_desc_t) - 1); 428 desc_base = (u32)kmalloc(i, GFP_KERNEL|GFP_DMA); 429 if (desc_base == 0) 430 return 0; 431 432 ctp->cdb_membase = desc_base; 433 desc_base = ALIGN_ADDR(desc_base, sizeof(au1x_ddma_desc_t)); 434 } else 435 ctp->cdb_membase = desc_base; 436 437 dp = (au1x_ddma_desc_t *)desc_base; 438 439 /* Keep track of the base descriptor. */ 440 ctp->chan_desc_base = dp; 441 442 /* Initialize the rings with as much information as we know. */ 443 srcid = stp->dev_id; 444 destid = dtp->dev_id; 445 446 cmd0 = cmd1 = src1 = dest1 = 0; 447 src0 = dest0 = 0; 448 449 cmd0 |= DSCR_CMD0_SID(srcid); 450 cmd0 |= DSCR_CMD0_DID(destid); 451 cmd0 |= DSCR_CMD0_IE | DSCR_CMD0_CV; 452 cmd0 |= DSCR_CMD0_ST(DSCR_CMD0_ST_NOCHANGE); 453 454 /* Is it mem to mem transfer? */ 455 if (((DSCR_CUSTOM2DEV_ID(srcid) == DSCR_CMD0_THROTTLE) || 456 (DSCR_CUSTOM2DEV_ID(srcid) == DSCR_CMD0_ALWAYS)) && 457 ((DSCR_CUSTOM2DEV_ID(destid) == DSCR_CMD0_THROTTLE) || 458 (DSCR_CUSTOM2DEV_ID(destid) == DSCR_CMD0_ALWAYS))) 459 cmd0 |= DSCR_CMD0_MEM; 460 461 switch (stp->dev_devwidth) { 462 case 8: 463 cmd0 |= DSCR_CMD0_SW(DSCR_CMD0_BYTE); 464 break; 465 case 16: 466 cmd0 |= DSCR_CMD0_SW(DSCR_CMD0_HALFWORD); 467 break; 468 case 32: 469 default: 470 cmd0 |= DSCR_CMD0_SW(DSCR_CMD0_WORD); 471 break; 472 } 473 474 switch (dtp->dev_devwidth) { 475 case 8: 476 cmd0 |= DSCR_CMD0_DW(DSCR_CMD0_BYTE); 477 break; 478 case 16: 479 cmd0 |= DSCR_CMD0_DW(DSCR_CMD0_HALFWORD); 480 break; 481 case 32: 482 default: 483 cmd0 |= DSCR_CMD0_DW(DSCR_CMD0_WORD); 484 break; 485 } 486 487 /* 488 * If the device is marked as an in/out FIFO, ensure it is 489 * set non-coherent. 490 */ 491 if (stp->dev_flags & DEV_FLAGS_IN) 492 cmd0 |= DSCR_CMD0_SN; /* Source in FIFO */ 493 if (dtp->dev_flags & DEV_FLAGS_OUT) 494 cmd0 |= DSCR_CMD0_DN; /* Destination out FIFO */ 495 496 /* 497 * Set up source1. For now, assume no stride and increment. 498 * A channel attribute update can change this later. 499 */ 500 switch (stp->dev_tsize) { 501 case 1: 502 src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE1); 503 break; 504 case 2: 505 src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE2); 506 break; 507 case 4: 508 src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE4); 509 break; 510 case 8: 511 default: 512 src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE8); 513 break; 514 } 515 516 /* If source input is FIFO, set static address. */ 517 if (stp->dev_flags & DEV_FLAGS_IN) { 518 if (stp->dev_flags & DEV_FLAGS_BURSTABLE) 519 src1 |= DSCR_SRC1_SAM(DSCR_xAM_BURST); 520 else 521 src1 |= DSCR_SRC1_SAM(DSCR_xAM_STATIC); 522 } 523 524 if (stp->dev_physaddr) 525 src0 = stp->dev_physaddr; 526 527 /* 528 * Set up dest1. For now, assume no stride and increment. 529 * A channel attribute update can change this later. 530 */ 531 switch (dtp->dev_tsize) { 532 case 1: 533 dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE1); 534 break; 535 case 2: 536 dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE2); 537 break; 538 case 4: 539 dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE4); 540 break; 541 case 8: 542 default: 543 dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE8); 544 break; 545 } 546 547 /* If destination output is FIFO, set static address. */ 548 if (dtp->dev_flags & DEV_FLAGS_OUT) { 549 if (dtp->dev_flags & DEV_FLAGS_BURSTABLE) 550 dest1 |= DSCR_DEST1_DAM(DSCR_xAM_BURST); 551 else 552 dest1 |= DSCR_DEST1_DAM(DSCR_xAM_STATIC); 553 } 554 555 if (dtp->dev_physaddr) 556 dest0 = dtp->dev_physaddr; 557 558 #if 0 559 printk(KERN_DEBUG "did:%x sid:%x cmd0:%x cmd1:%x source0:%x " 560 "source1:%x dest0:%x dest1:%x\n", 561 dtp->dev_id, stp->dev_id, cmd0, cmd1, src0, 562 src1, dest0, dest1); 563 #endif 564 for (i = 0; i < entries; i++) { 565 dp->dscr_cmd0 = cmd0; 566 dp->dscr_cmd1 = cmd1; 567 dp->dscr_source0 = src0; 568 dp->dscr_source1 = src1; 569 dp->dscr_dest0 = dest0; 570 dp->dscr_dest1 = dest1; 571 dp->dscr_stat = 0; 572 dp->sw_context = 0; 573 dp->sw_status = 0; 574 dp->dscr_nxtptr = DSCR_NXTPTR(virt_to_phys(dp + 1)); 575 dp++; 576 } 577 578 /* Make last descriptor point to the first. */ 579 dp--; 580 dp->dscr_nxtptr = DSCR_NXTPTR(virt_to_phys(ctp->chan_desc_base)); 581 ctp->get_ptr = ctp->put_ptr = ctp->cur_ptr = ctp->chan_desc_base; 582 583 return (u32)ctp->chan_desc_base; 584 } 585 EXPORT_SYMBOL(au1xxx_dbdma_ring_alloc); 586 587 /* 588 * Put a source buffer into the DMA ring. 589 * This updates the source pointer and byte count. Normally used 590 * for memory to fifo transfers. 591 */ 592 u32 au1xxx_dbdma_put_source(u32 chanid, dma_addr_t buf, int nbytes, u32 flags) 593 { 594 chan_tab_t *ctp; 595 au1x_ddma_desc_t *dp; 596 597 /* 598 * I guess we could check this to be within the 599 * range of the table...... 600 */ 601 ctp = *(chan_tab_t **)chanid; 602 603 /* 604 * We should have multiple callers for a particular channel, 605 * an interrupt doesn't affect this pointer nor the descriptor, 606 * so no locking should be needed. 607 */ 608 dp = ctp->put_ptr; 609 610 /* 611 * If the descriptor is valid, we are way ahead of the DMA 612 * engine, so just return an error condition. 613 */ 614 if (dp->dscr_cmd0 & DSCR_CMD0_V) 615 return 0; 616 617 /* Load up buffer address and byte count. */ 618 dp->dscr_source0 = buf & ~0UL; 619 dp->dscr_cmd1 = nbytes; 620 /* Check flags */ 621 if (flags & DDMA_FLAGS_IE) 622 dp->dscr_cmd0 |= DSCR_CMD0_IE; 623 if (flags & DDMA_FLAGS_NOIE) 624 dp->dscr_cmd0 &= ~DSCR_CMD0_IE; 625 626 /* 627 * There is an erratum on certain Au1200/Au1550 revisions that could 628 * result in "stale" data being DMA'ed. It has to do with the snoop 629 * logic on the cache eviction buffer. dma_default_coherent is set 630 * to false on these parts. 631 */ 632 if (!dma_default_coherent) 633 dma_cache_wback_inv(KSEG0ADDR(buf), nbytes); 634 dp->dscr_cmd0 |= DSCR_CMD0_V; /* Let it rip */ 635 wmb(); /* drain writebuffer */ 636 dma_cache_wback_inv((unsigned long)dp, sizeof(*dp)); 637 ctp->chan_ptr->ddma_dbell = 0; 638 wmb(); /* force doorbell write out to dma engine */ 639 640 /* Get next descriptor pointer. */ 641 ctp->put_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr)); 642 643 /* Return something non-zero. */ 644 return nbytes; 645 } 646 EXPORT_SYMBOL(au1xxx_dbdma_put_source); 647 648 /* Put a destination buffer into the DMA ring. 649 * This updates the destination pointer and byte count. Normally used 650 * to place an empty buffer into the ring for fifo to memory transfers. 651 */ 652 u32 au1xxx_dbdma_put_dest(u32 chanid, dma_addr_t buf, int nbytes, u32 flags) 653 { 654 chan_tab_t *ctp; 655 au1x_ddma_desc_t *dp; 656 657 /* I guess we could check this to be within the 658 * range of the table...... 659 */ 660 ctp = *((chan_tab_t **)chanid); 661 662 /* We should have multiple callers for a particular channel, 663 * an interrupt doesn't affect this pointer nor the descriptor, 664 * so no locking should be needed. 665 */ 666 dp = ctp->put_ptr; 667 668 /* If the descriptor is valid, we are way ahead of the DMA 669 * engine, so just return an error condition. 670 */ 671 if (dp->dscr_cmd0 & DSCR_CMD0_V) 672 return 0; 673 674 /* Load up buffer address and byte count */ 675 676 /* Check flags */ 677 if (flags & DDMA_FLAGS_IE) 678 dp->dscr_cmd0 |= DSCR_CMD0_IE; 679 if (flags & DDMA_FLAGS_NOIE) 680 dp->dscr_cmd0 &= ~DSCR_CMD0_IE; 681 682 dp->dscr_dest0 = buf & ~0UL; 683 dp->dscr_cmd1 = nbytes; 684 #if 0 685 printk(KERN_DEBUG "cmd0:%x cmd1:%x source0:%x source1:%x dest0:%x dest1:%x\n", 686 dp->dscr_cmd0, dp->dscr_cmd1, dp->dscr_source0, 687 dp->dscr_source1, dp->dscr_dest0, dp->dscr_dest1); 688 #endif 689 /* 690 * There is an erratum on certain Au1200/Au1550 revisions that could 691 * result in "stale" data being DMA'ed. It has to do with the snoop 692 * logic on the cache eviction buffer. dma_default_coherent is set 693 * to false on these parts. 694 */ 695 if (!dma_default_coherent) 696 dma_cache_inv(KSEG0ADDR(buf), nbytes); 697 dp->dscr_cmd0 |= DSCR_CMD0_V; /* Let it rip */ 698 wmb(); /* drain writebuffer */ 699 dma_cache_wback_inv((unsigned long)dp, sizeof(*dp)); 700 ctp->chan_ptr->ddma_dbell = 0; 701 wmb(); /* force doorbell write out to dma engine */ 702 703 /* Get next descriptor pointer. */ 704 ctp->put_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr)); 705 706 /* Return something non-zero. */ 707 return nbytes; 708 } 709 EXPORT_SYMBOL(au1xxx_dbdma_put_dest); 710 711 /* 712 * Get a destination buffer into the DMA ring. 713 * Normally used to get a full buffer from the ring during fifo 714 * to memory transfers. This does not set the valid bit, you will 715 * have to put another destination buffer to keep the DMA going. 716 */ 717 u32 au1xxx_dbdma_get_dest(u32 chanid, void **buf, int *nbytes) 718 { 719 chan_tab_t *ctp; 720 au1x_ddma_desc_t *dp; 721 u32 rv; 722 723 /* 724 * I guess we could check this to be within the 725 * range of the table...... 726 */ 727 ctp = *((chan_tab_t **)chanid); 728 729 /* 730 * We should have multiple callers for a particular channel, 731 * an interrupt doesn't affect this pointer nor the descriptor, 732 * so no locking should be needed. 733 */ 734 dp = ctp->get_ptr; 735 736 /* 737 * If the descriptor is valid, we are way ahead of the DMA 738 * engine, so just return an error condition. 739 */ 740 if (dp->dscr_cmd0 & DSCR_CMD0_V) 741 return 0; 742 743 /* Return buffer address and byte count. */ 744 *buf = (void *)(phys_to_virt(dp->dscr_dest0)); 745 *nbytes = dp->dscr_cmd1; 746 rv = dp->dscr_stat; 747 748 /* Get next descriptor pointer. */ 749 ctp->get_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr)); 750 751 /* Return something non-zero. */ 752 return rv; 753 } 754 EXPORT_SYMBOL_GPL(au1xxx_dbdma_get_dest); 755 756 void au1xxx_dbdma_stop(u32 chanid) 757 { 758 chan_tab_t *ctp; 759 au1x_dma_chan_t *cp; 760 int halt_timeout = 0; 761 762 ctp = *((chan_tab_t **)chanid); 763 764 cp = ctp->chan_ptr; 765 cp->ddma_cfg &= ~DDMA_CFG_EN; /* Disable channel */ 766 wmb(); /* drain writebuffer */ 767 while (!(cp->ddma_stat & DDMA_STAT_H)) { 768 udelay(1); 769 halt_timeout++; 770 if (halt_timeout > 100) { 771 printk(KERN_WARNING "warning: DMA channel won't halt\n"); 772 break; 773 } 774 } 775 /* clear current desc valid and doorbell */ 776 cp->ddma_stat |= (DDMA_STAT_DB | DDMA_STAT_V); 777 wmb(); /* drain writebuffer */ 778 } 779 EXPORT_SYMBOL(au1xxx_dbdma_stop); 780 781 /* 782 * Start using the current descriptor pointer. If the DBDMA encounters 783 * a non-valid descriptor, it will stop. In this case, we can just 784 * continue by adding a buffer to the list and starting again. 785 */ 786 void au1xxx_dbdma_start(u32 chanid) 787 { 788 chan_tab_t *ctp; 789 au1x_dma_chan_t *cp; 790 791 ctp = *((chan_tab_t **)chanid); 792 cp = ctp->chan_ptr; 793 cp->ddma_desptr = virt_to_phys(ctp->cur_ptr); 794 cp->ddma_cfg |= DDMA_CFG_EN; /* Enable channel */ 795 wmb(); /* drain writebuffer */ 796 cp->ddma_dbell = 0; 797 wmb(); /* drain writebuffer */ 798 } 799 EXPORT_SYMBOL(au1xxx_dbdma_start); 800 801 void au1xxx_dbdma_reset(u32 chanid) 802 { 803 chan_tab_t *ctp; 804 au1x_ddma_desc_t *dp; 805 806 au1xxx_dbdma_stop(chanid); 807 808 ctp = *((chan_tab_t **)chanid); 809 ctp->get_ptr = ctp->put_ptr = ctp->cur_ptr = ctp->chan_desc_base; 810 811 /* Run through the descriptors and reset the valid indicator. */ 812 dp = ctp->chan_desc_base; 813 814 do { 815 dp->dscr_cmd0 &= ~DSCR_CMD0_V; 816 /* 817 * Reset our software status -- this is used to determine 818 * if a descriptor is in use by upper level software. Since 819 * posting can reset 'V' bit. 820 */ 821 dp->sw_status = 0; 822 dp = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr)); 823 } while (dp != ctp->chan_desc_base); 824 } 825 EXPORT_SYMBOL(au1xxx_dbdma_reset); 826 827 u32 au1xxx_get_dma_residue(u32 chanid) 828 { 829 chan_tab_t *ctp; 830 au1x_dma_chan_t *cp; 831 u32 rv; 832 833 ctp = *((chan_tab_t **)chanid); 834 cp = ctp->chan_ptr; 835 836 /* This is only valid if the channel is stopped. */ 837 rv = cp->ddma_bytecnt; 838 wmb(); /* drain writebuffer */ 839 840 return rv; 841 } 842 EXPORT_SYMBOL_GPL(au1xxx_get_dma_residue); 843 844 void au1xxx_dbdma_chan_free(u32 chanid) 845 { 846 chan_tab_t *ctp; 847 dbdev_tab_t *stp, *dtp; 848 849 ctp = *((chan_tab_t **)chanid); 850 stp = ctp->chan_src; 851 dtp = ctp->chan_dest; 852 853 au1xxx_dbdma_stop(chanid); 854 855 kfree((void *)ctp->cdb_membase); 856 857 stp->dev_flags &= ~DEV_FLAGS_INUSE; 858 dtp->dev_flags &= ~DEV_FLAGS_INUSE; 859 chan_tab_ptr[ctp->chan_index] = NULL; 860 861 kfree(ctp); 862 } 863 EXPORT_SYMBOL(au1xxx_dbdma_chan_free); 864 865 static irqreturn_t dbdma_interrupt(int irq, void *dev_id) 866 { 867 u32 intstat; 868 u32 chan_index; 869 chan_tab_t *ctp; 870 au1x_ddma_desc_t *dp; 871 au1x_dma_chan_t *cp; 872 873 intstat = dbdma_gptr->ddma_intstat; 874 wmb(); /* drain writebuffer */ 875 chan_index = __ffs(intstat); 876 877 ctp = chan_tab_ptr[chan_index]; 878 cp = ctp->chan_ptr; 879 dp = ctp->cur_ptr; 880 881 /* Reset interrupt. */ 882 cp->ddma_irq = 0; 883 wmb(); /* drain writebuffer */ 884 885 if (ctp->chan_callback) 886 ctp->chan_callback(irq, ctp->chan_callparam); 887 888 ctp->cur_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr)); 889 return IRQ_RETVAL(1); 890 } 891 892 void au1xxx_dbdma_dump(u32 chanid) 893 { 894 chan_tab_t *ctp; 895 au1x_ddma_desc_t *dp; 896 dbdev_tab_t *stp, *dtp; 897 au1x_dma_chan_t *cp; 898 u32 i = 0; 899 900 ctp = *((chan_tab_t **)chanid); 901 stp = ctp->chan_src; 902 dtp = ctp->chan_dest; 903 cp = ctp->chan_ptr; 904 905 printk(KERN_DEBUG "Chan %x, stp %x (dev %d) dtp %x (dev %d)\n", 906 (u32)ctp, (u32)stp, stp - dbdev_tab, (u32)dtp, 907 dtp - dbdev_tab); 908 printk(KERN_DEBUG "desc base %x, get %x, put %x, cur %x\n", 909 (u32)(ctp->chan_desc_base), (u32)(ctp->get_ptr), 910 (u32)(ctp->put_ptr), (u32)(ctp->cur_ptr)); 911 912 printk(KERN_DEBUG "dbdma chan %x\n", (u32)cp); 913 printk(KERN_DEBUG "cfg %08x, desptr %08x, statptr %08x\n", 914 cp->ddma_cfg, cp->ddma_desptr, cp->ddma_statptr); 915 printk(KERN_DEBUG "dbell %08x, irq %08x, stat %08x, bytecnt %08x\n", 916 cp->ddma_dbell, cp->ddma_irq, cp->ddma_stat, 917 cp->ddma_bytecnt); 918 919 /* Run through the descriptors */ 920 dp = ctp->chan_desc_base; 921 922 do { 923 printk(KERN_DEBUG "Dp[%d]= %08x, cmd0 %08x, cmd1 %08x\n", 924 i++, (u32)dp, dp->dscr_cmd0, dp->dscr_cmd1); 925 printk(KERN_DEBUG "src0 %08x, src1 %08x, dest0 %08x, dest1 %08x\n", 926 dp->dscr_source0, dp->dscr_source1, 927 dp->dscr_dest0, dp->dscr_dest1); 928 printk(KERN_DEBUG "stat %08x, nxtptr %08x\n", 929 dp->dscr_stat, dp->dscr_nxtptr); 930 dp = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr)); 931 } while (dp != ctp->chan_desc_base); 932 } 933 934 /* Put a descriptor into the DMA ring. 935 * This updates the source/destination pointers and byte count. 936 */ 937 u32 au1xxx_dbdma_put_dscr(u32 chanid, au1x_ddma_desc_t *dscr) 938 { 939 chan_tab_t *ctp; 940 au1x_ddma_desc_t *dp; 941 u32 nbytes = 0; 942 943 /* 944 * I guess we could check this to be within the 945 * range of the table...... 946 */ 947 ctp = *((chan_tab_t **)chanid); 948 949 /* 950 * We should have multiple callers for a particular channel, 951 * an interrupt doesn't affect this pointer nor the descriptor, 952 * so no locking should be needed. 953 */ 954 dp = ctp->put_ptr; 955 956 /* 957 * If the descriptor is valid, we are way ahead of the DMA 958 * engine, so just return an error condition. 959 */ 960 if (dp->dscr_cmd0 & DSCR_CMD0_V) 961 return 0; 962 963 /* Load up buffer addresses and byte count. */ 964 dp->dscr_dest0 = dscr->dscr_dest0; 965 dp->dscr_source0 = dscr->dscr_source0; 966 dp->dscr_dest1 = dscr->dscr_dest1; 967 dp->dscr_source1 = dscr->dscr_source1; 968 dp->dscr_cmd1 = dscr->dscr_cmd1; 969 nbytes = dscr->dscr_cmd1; 970 /* Allow the caller to specify if an interrupt is generated */ 971 dp->dscr_cmd0 &= ~DSCR_CMD0_IE; 972 dp->dscr_cmd0 |= dscr->dscr_cmd0 | DSCR_CMD0_V; 973 ctp->chan_ptr->ddma_dbell = 0; 974 975 /* Get next descriptor pointer. */ 976 ctp->put_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr)); 977 978 /* Return something non-zero. */ 979 return nbytes; 980 } 981 982 983 static unsigned long alchemy_dbdma_pm_data[NUM_DBDMA_CHANS + 1][6]; 984 985 static int alchemy_dbdma_suspend(void) 986 { 987 int i; 988 void __iomem *addr; 989 990 addr = (void __iomem *)KSEG1ADDR(AU1550_DBDMA_CONF_PHYS_ADDR); 991 alchemy_dbdma_pm_data[0][0] = __raw_readl(addr + 0x00); 992 alchemy_dbdma_pm_data[0][1] = __raw_readl(addr + 0x04); 993 alchemy_dbdma_pm_data[0][2] = __raw_readl(addr + 0x08); 994 alchemy_dbdma_pm_data[0][3] = __raw_readl(addr + 0x0c); 995 996 /* save channel configurations */ 997 addr = (void __iomem *)KSEG1ADDR(AU1550_DBDMA_PHYS_ADDR); 998 for (i = 1; i <= NUM_DBDMA_CHANS; i++) { 999 alchemy_dbdma_pm_data[i][0] = __raw_readl(addr + 0x00); 1000 alchemy_dbdma_pm_data[i][1] = __raw_readl(addr + 0x04); 1001 alchemy_dbdma_pm_data[i][2] = __raw_readl(addr + 0x08); 1002 alchemy_dbdma_pm_data[i][3] = __raw_readl(addr + 0x0c); 1003 alchemy_dbdma_pm_data[i][4] = __raw_readl(addr + 0x10); 1004 alchemy_dbdma_pm_data[i][5] = __raw_readl(addr + 0x14); 1005 1006 /* halt channel */ 1007 __raw_writel(alchemy_dbdma_pm_data[i][0] & ~1, addr + 0x00); 1008 wmb(); 1009 while (!(__raw_readl(addr + 0x14) & 1)) 1010 wmb(); 1011 1012 addr += 0x100; /* next channel base */ 1013 } 1014 /* disable channel interrupts */ 1015 addr = (void __iomem *)KSEG1ADDR(AU1550_DBDMA_CONF_PHYS_ADDR); 1016 __raw_writel(0, addr + 0x0c); 1017 wmb(); 1018 1019 return 0; 1020 } 1021 1022 static void alchemy_dbdma_resume(void) 1023 { 1024 int i; 1025 void __iomem *addr; 1026 1027 addr = (void __iomem *)KSEG1ADDR(AU1550_DBDMA_CONF_PHYS_ADDR); 1028 __raw_writel(alchemy_dbdma_pm_data[0][0], addr + 0x00); 1029 __raw_writel(alchemy_dbdma_pm_data[0][1], addr + 0x04); 1030 __raw_writel(alchemy_dbdma_pm_data[0][2], addr + 0x08); 1031 __raw_writel(alchemy_dbdma_pm_data[0][3], addr + 0x0c); 1032 1033 /* restore channel configurations */ 1034 addr = (void __iomem *)KSEG1ADDR(AU1550_DBDMA_PHYS_ADDR); 1035 for (i = 1; i <= NUM_DBDMA_CHANS; i++) { 1036 __raw_writel(alchemy_dbdma_pm_data[i][0], addr + 0x00); 1037 __raw_writel(alchemy_dbdma_pm_data[i][1], addr + 0x04); 1038 __raw_writel(alchemy_dbdma_pm_data[i][2], addr + 0x08); 1039 __raw_writel(alchemy_dbdma_pm_data[i][3], addr + 0x0c); 1040 __raw_writel(alchemy_dbdma_pm_data[i][4], addr + 0x10); 1041 __raw_writel(alchemy_dbdma_pm_data[i][5], addr + 0x14); 1042 wmb(); 1043 addr += 0x100; /* next channel base */ 1044 } 1045 } 1046 1047 static struct syscore_ops alchemy_dbdma_syscore_ops = { 1048 .suspend = alchemy_dbdma_suspend, 1049 .resume = alchemy_dbdma_resume, 1050 }; 1051 1052 static int __init dbdma_setup(unsigned int irq, dbdev_tab_t *idtable) 1053 { 1054 int ret; 1055 1056 dbdev_tab = kcalloc(DBDEV_TAB_SIZE, sizeof(dbdev_tab_t), GFP_KERNEL); 1057 if (!dbdev_tab) 1058 return -ENOMEM; 1059 1060 memcpy(dbdev_tab, idtable, 32 * sizeof(dbdev_tab_t)); 1061 for (ret = 32; ret < DBDEV_TAB_SIZE; ret++) 1062 dbdev_tab[ret].dev_id = ~0; 1063 1064 dbdma_gptr->ddma_config = 0; 1065 dbdma_gptr->ddma_throttle = 0; 1066 dbdma_gptr->ddma_inten = 0xffff; 1067 wmb(); /* drain writebuffer */ 1068 1069 ret = request_irq(irq, dbdma_interrupt, 0, "dbdma", (void *)dbdma_gptr); 1070 if (ret) 1071 printk(KERN_ERR "Cannot grab DBDMA interrupt!\n"); 1072 else { 1073 dbdma_initialized = 1; 1074 register_syscore_ops(&alchemy_dbdma_syscore_ops); 1075 } 1076 1077 return ret; 1078 } 1079 1080 static int __init alchemy_dbdma_init(void) 1081 { 1082 switch (alchemy_get_cputype()) { 1083 case ALCHEMY_CPU_AU1550: 1084 return dbdma_setup(AU1550_DDMA_INT, au1550_dbdev_tab); 1085 case ALCHEMY_CPU_AU1200: 1086 return dbdma_setup(AU1200_DDMA_INT, au1200_dbdev_tab); 1087 case ALCHEMY_CPU_AU1300: 1088 return dbdma_setup(AU1300_DDMA_INT, au1300_dbdev_tab); 1089 } 1090 return 0; 1091 } 1092 subsys_initcall(alchemy_dbdma_init); 1093