1 /*
2 *
3 * BRIEF MODULE DESCRIPTION
4 * The Descriptor Based DMA channel manager that first appeared
5 * on the Au1550. I started with dma.c, but I think all that is
6 * left is this initial comment :-)
7 *
8 * Copyright 2004 Embedded Edge, LLC
9 * dan@embeddededge.com
10 *
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the
13 * Free Software Foundation; either version 2 of the License, or (at your
14 * option) any later version.
15 *
16 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
17 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
18 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
19 * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
22 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
23 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 *
27 * You should have received a copy of the GNU General Public License along
28 * with this program; if not, write to the Free Software Foundation, Inc.,
29 * 675 Mass Ave, Cambridge, MA 02139, USA.
30 *
31 */
32
33 #include <linux/dma-map-ops.h> /* for dma_default_coherent */
34 #include <linux/init.h>
35 #include <linux/kernel.h>
36 #include <linux/slab.h>
37 #include <linux/spinlock.h>
38 #include <linux/interrupt.h>
39 #include <linux/export.h>
40 #include <linux/syscore_ops.h>
41 #include <asm/mach-au1x00/au1000.h>
42 #include <asm/mach-au1x00/au1xxx_dbdma.h>
43
44 /*
45 * The Descriptor Based DMA supports up to 16 channels.
46 *
47 * There are 32 devices defined. We keep an internal structure
48 * of devices using these channels, along with additional
49 * information.
50 *
51 * We allocate the descriptors and allow access to them through various
52 * functions. The drivers allocate the data buffers and assign them
53 * to the descriptors.
54 */
55 static DEFINE_SPINLOCK(au1xxx_dbdma_spin_lock);
56
57 /* I couldn't find a macro that did this... */
58 #define ALIGN_ADDR(x, a) ((((u32)(x)) + (a-1)) & ~(a-1))
59
60 static dbdma_global_t *dbdma_gptr =
61 (dbdma_global_t *)KSEG1ADDR(AU1550_DBDMA_CONF_PHYS_ADDR);
62 static int dbdma_initialized;
63
64 static dbdev_tab_t *dbdev_tab;
65
66 static dbdev_tab_t au1550_dbdev_tab[] __initdata = {
67 /* UARTS */
68 { AU1550_DSCR_CMD0_UART0_TX, DEV_FLAGS_OUT, 0, 8, 0x11100004, 0, 0 },
69 { AU1550_DSCR_CMD0_UART0_RX, DEV_FLAGS_IN, 0, 8, 0x11100000, 0, 0 },
70 { AU1550_DSCR_CMD0_UART3_TX, DEV_FLAGS_OUT, 0, 8, 0x11400004, 0, 0 },
71 { AU1550_DSCR_CMD0_UART3_RX, DEV_FLAGS_IN, 0, 8, 0x11400000, 0, 0 },
72
73 /* EXT DMA */
74 { AU1550_DSCR_CMD0_DMA_REQ0, 0, 0, 0, 0x00000000, 0, 0 },
75 { AU1550_DSCR_CMD0_DMA_REQ1, 0, 0, 0, 0x00000000, 0, 0 },
76 { AU1550_DSCR_CMD0_DMA_REQ2, 0, 0, 0, 0x00000000, 0, 0 },
77 { AU1550_DSCR_CMD0_DMA_REQ3, 0, 0, 0, 0x00000000, 0, 0 },
78
79 /* USB DEV */
80 { AU1550_DSCR_CMD0_USBDEV_RX0, DEV_FLAGS_IN, 4, 8, 0x10200000, 0, 0 },
81 { AU1550_DSCR_CMD0_USBDEV_TX0, DEV_FLAGS_OUT, 4, 8, 0x10200004, 0, 0 },
82 { AU1550_DSCR_CMD0_USBDEV_TX1, DEV_FLAGS_OUT, 4, 8, 0x10200008, 0, 0 },
83 { AU1550_DSCR_CMD0_USBDEV_TX2, DEV_FLAGS_OUT, 4, 8, 0x1020000c, 0, 0 },
84 { AU1550_DSCR_CMD0_USBDEV_RX3, DEV_FLAGS_IN, 4, 8, 0x10200010, 0, 0 },
85 { AU1550_DSCR_CMD0_USBDEV_RX4, DEV_FLAGS_IN, 4, 8, 0x10200014, 0, 0 },
86
87 /* PSCs */
88 { AU1550_DSCR_CMD0_PSC0_TX, DEV_FLAGS_OUT, 0, 0, 0x11a0001c, 0, 0 },
89 { AU1550_DSCR_CMD0_PSC0_RX, DEV_FLAGS_IN, 0, 0, 0x11a0001c, 0, 0 },
90 { AU1550_DSCR_CMD0_PSC1_TX, DEV_FLAGS_OUT, 0, 0, 0x11b0001c, 0, 0 },
91 { AU1550_DSCR_CMD0_PSC1_RX, DEV_FLAGS_IN, 0, 0, 0x11b0001c, 0, 0 },
92 { AU1550_DSCR_CMD0_PSC2_TX, DEV_FLAGS_OUT, 0, 0, 0x10a0001c, 0, 0 },
93 { AU1550_DSCR_CMD0_PSC2_RX, DEV_FLAGS_IN, 0, 0, 0x10a0001c, 0, 0 },
94 { AU1550_DSCR_CMD0_PSC3_TX, DEV_FLAGS_OUT, 0, 0, 0x10b0001c, 0, 0 },
95 { AU1550_DSCR_CMD0_PSC3_RX, DEV_FLAGS_IN, 0, 0, 0x10b0001c, 0, 0 },
96
97 { AU1550_DSCR_CMD0_PCI_WRITE, 0, 0, 0, 0x00000000, 0, 0 }, /* PCI */
98 { AU1550_DSCR_CMD0_NAND_FLASH, 0, 0, 0, 0x00000000, 0, 0 }, /* NAND */
99
100 /* MAC 0 */
101 { AU1550_DSCR_CMD0_MAC0_RX, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 },
102 { AU1550_DSCR_CMD0_MAC0_TX, DEV_FLAGS_OUT, 0, 0, 0x00000000, 0, 0 },
103
104 /* MAC 1 */
105 { AU1550_DSCR_CMD0_MAC1_RX, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 },
106 { AU1550_DSCR_CMD0_MAC1_TX, DEV_FLAGS_OUT, 0, 0, 0x00000000, 0, 0 },
107
108 { DSCR_CMD0_THROTTLE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
109 { DSCR_CMD0_ALWAYS, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
110 };
111
112 static dbdev_tab_t au1200_dbdev_tab[] __initdata = {
113 { AU1200_DSCR_CMD0_UART0_TX, DEV_FLAGS_OUT, 0, 8, 0x11100004, 0, 0 },
114 { AU1200_DSCR_CMD0_UART0_RX, DEV_FLAGS_IN, 0, 8, 0x11100000, 0, 0 },
115 { AU1200_DSCR_CMD0_UART1_TX, DEV_FLAGS_OUT, 0, 8, 0x11200004, 0, 0 },
116 { AU1200_DSCR_CMD0_UART1_RX, DEV_FLAGS_IN, 0, 8, 0x11200000, 0, 0 },
117
118 { AU1200_DSCR_CMD0_DMA_REQ0, 0, 0, 0, 0x00000000, 0, 0 },
119 { AU1200_DSCR_CMD0_DMA_REQ1, 0, 0, 0, 0x00000000, 0, 0 },
120
121 { AU1200_DSCR_CMD0_MAE_BE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
122 { AU1200_DSCR_CMD0_MAE_FE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
123 { AU1200_DSCR_CMD0_MAE_BOTH, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
124 { AU1200_DSCR_CMD0_LCD, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
125
126 { AU1200_DSCR_CMD0_SDMS_TX0, DEV_FLAGS_OUT, 4, 8, 0x10600000, 0, 0 },
127 { AU1200_DSCR_CMD0_SDMS_RX0, DEV_FLAGS_IN, 4, 8, 0x10600004, 0, 0 },
128 { AU1200_DSCR_CMD0_SDMS_TX1, DEV_FLAGS_OUT, 4, 8, 0x10680000, 0, 0 },
129 { AU1200_DSCR_CMD0_SDMS_RX1, DEV_FLAGS_IN, 4, 8, 0x10680004, 0, 0 },
130
131 { AU1200_DSCR_CMD0_AES_RX, DEV_FLAGS_IN , 4, 32, 0x10300008, 0, 0 },
132 { AU1200_DSCR_CMD0_AES_TX, DEV_FLAGS_OUT, 4, 32, 0x10300004, 0, 0 },
133
134 { AU1200_DSCR_CMD0_PSC0_TX, DEV_FLAGS_OUT, 0, 16, 0x11a0001c, 0, 0 },
135 { AU1200_DSCR_CMD0_PSC0_RX, DEV_FLAGS_IN, 0, 16, 0x11a0001c, 0, 0 },
136 { AU1200_DSCR_CMD0_PSC0_SYNC, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
137 { AU1200_DSCR_CMD0_PSC1_TX, DEV_FLAGS_OUT, 0, 16, 0x11b0001c, 0, 0 },
138 { AU1200_DSCR_CMD0_PSC1_RX, DEV_FLAGS_IN, 0, 16, 0x11b0001c, 0, 0 },
139 { AU1200_DSCR_CMD0_PSC1_SYNC, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
140
141 { AU1200_DSCR_CMD0_CIM_RXA, DEV_FLAGS_IN, 0, 32, 0x14004020, 0, 0 },
142 { AU1200_DSCR_CMD0_CIM_RXB, DEV_FLAGS_IN, 0, 32, 0x14004040, 0, 0 },
143 { AU1200_DSCR_CMD0_CIM_RXC, DEV_FLAGS_IN, 0, 32, 0x14004060, 0, 0 },
144 { AU1200_DSCR_CMD0_CIM_SYNC, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
145
146 { AU1200_DSCR_CMD0_NAND_FLASH, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 },
147
148 { DSCR_CMD0_THROTTLE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
149 { DSCR_CMD0_ALWAYS, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
150 };
151
152 static dbdev_tab_t au1300_dbdev_tab[] __initdata = {
153 { AU1300_DSCR_CMD0_UART0_TX, DEV_FLAGS_OUT, 0, 8, 0x10100004, 0, 0 },
154 { AU1300_DSCR_CMD0_UART0_RX, DEV_FLAGS_IN, 0, 8, 0x10100000, 0, 0 },
155 { AU1300_DSCR_CMD0_UART1_TX, DEV_FLAGS_OUT, 0, 8, 0x10101004, 0, 0 },
156 { AU1300_DSCR_CMD0_UART1_RX, DEV_FLAGS_IN, 0, 8, 0x10101000, 0, 0 },
157 { AU1300_DSCR_CMD0_UART2_TX, DEV_FLAGS_OUT, 0, 8, 0x10102004, 0, 0 },
158 { AU1300_DSCR_CMD0_UART2_RX, DEV_FLAGS_IN, 0, 8, 0x10102000, 0, 0 },
159 { AU1300_DSCR_CMD0_UART3_TX, DEV_FLAGS_OUT, 0, 8, 0x10103004, 0, 0 },
160 { AU1300_DSCR_CMD0_UART3_RX, DEV_FLAGS_IN, 0, 8, 0x10103000, 0, 0 },
161
162 { AU1300_DSCR_CMD0_SDMS_TX0, DEV_FLAGS_OUT, 4, 8, 0x10600000, 0, 0 },
163 { AU1300_DSCR_CMD0_SDMS_RX0, DEV_FLAGS_IN, 4, 8, 0x10600004, 0, 0 },
164 { AU1300_DSCR_CMD0_SDMS_TX1, DEV_FLAGS_OUT, 8, 8, 0x10601000, 0, 0 },
165 { AU1300_DSCR_CMD0_SDMS_RX1, DEV_FLAGS_IN, 8, 8, 0x10601004, 0, 0 },
166
167 { AU1300_DSCR_CMD0_AES_RX, DEV_FLAGS_IN , 4, 32, 0x10300008, 0, 0 },
168 { AU1300_DSCR_CMD0_AES_TX, DEV_FLAGS_OUT, 4, 32, 0x10300004, 0, 0 },
169
170 { AU1300_DSCR_CMD0_PSC0_TX, DEV_FLAGS_OUT, 0, 16, 0x10a0001c, 0, 0 },
171 { AU1300_DSCR_CMD0_PSC0_RX, DEV_FLAGS_IN, 0, 16, 0x10a0001c, 0, 0 },
172 { AU1300_DSCR_CMD0_PSC1_TX, DEV_FLAGS_OUT, 0, 16, 0x10a0101c, 0, 0 },
173 { AU1300_DSCR_CMD0_PSC1_RX, DEV_FLAGS_IN, 0, 16, 0x10a0101c, 0, 0 },
174 { AU1300_DSCR_CMD0_PSC2_TX, DEV_FLAGS_OUT, 0, 16, 0x10a0201c, 0, 0 },
175 { AU1300_DSCR_CMD0_PSC2_RX, DEV_FLAGS_IN, 0, 16, 0x10a0201c, 0, 0 },
176 { AU1300_DSCR_CMD0_PSC3_TX, DEV_FLAGS_OUT, 0, 16, 0x10a0301c, 0, 0 },
177 { AU1300_DSCR_CMD0_PSC3_RX, DEV_FLAGS_IN, 0, 16, 0x10a0301c, 0, 0 },
178
179 { AU1300_DSCR_CMD0_LCD, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
180 { AU1300_DSCR_CMD0_NAND_FLASH, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 },
181
182 { AU1300_DSCR_CMD0_SDMS_TX2, DEV_FLAGS_OUT, 4, 8, 0x10602000, 0, 0 },
183 { AU1300_DSCR_CMD0_SDMS_RX2, DEV_FLAGS_IN, 4, 8, 0x10602004, 0, 0 },
184
185 { AU1300_DSCR_CMD0_CIM_SYNC, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
186
187 { AU1300_DSCR_CMD0_UDMA, DEV_FLAGS_ANYUSE, 0, 32, 0x14001810, 0, 0 },
188
189 { AU1300_DSCR_CMD0_DMA_REQ0, 0, 0, 0, 0x00000000, 0, 0 },
190 { AU1300_DSCR_CMD0_DMA_REQ1, 0, 0, 0, 0x00000000, 0, 0 },
191
192 { DSCR_CMD0_THROTTLE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
193 { DSCR_CMD0_ALWAYS, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
194 };
195
196 /* 32 predefined plus 32 custom */
197 #define DBDEV_TAB_SIZE 64
198
199 static chan_tab_t *chan_tab_ptr[NUM_DBDMA_CHANS];
200
find_dbdev_id(u32 id)201 static dbdev_tab_t *find_dbdev_id(u32 id)
202 {
203 int i;
204 dbdev_tab_t *p;
205 for (i = 0; i < DBDEV_TAB_SIZE; ++i) {
206 p = &dbdev_tab[i];
207 if (p->dev_id == id)
208 return p;
209 }
210 return NULL;
211 }
212
au1xxx_ddma_get_nextptr_virt(au1x_ddma_desc_t * dp)213 void *au1xxx_ddma_get_nextptr_virt(au1x_ddma_desc_t *dp)
214 {
215 return phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
216 }
217 EXPORT_SYMBOL(au1xxx_ddma_get_nextptr_virt);
218
au1xxx_ddma_add_device(dbdev_tab_t * dev)219 u32 au1xxx_ddma_add_device(dbdev_tab_t *dev)
220 {
221 u32 ret = 0;
222 dbdev_tab_t *p;
223 static u16 new_id = 0x1000;
224
225 p = find_dbdev_id(~0);
226 if (NULL != p) {
227 memcpy(p, dev, sizeof(dbdev_tab_t));
228 p->dev_id = DSCR_DEV2CUSTOM_ID(new_id, dev->dev_id);
229 ret = p->dev_id;
230 new_id++;
231 #if 0
232 printk(KERN_DEBUG "add_device: id:%x flags:%x padd:%x\n",
233 p->dev_id, p->dev_flags, p->dev_physaddr);
234 #endif
235 }
236
237 return ret;
238 }
239 EXPORT_SYMBOL(au1xxx_ddma_add_device);
240
au1xxx_ddma_del_device(u32 devid)241 void au1xxx_ddma_del_device(u32 devid)
242 {
243 dbdev_tab_t *p = find_dbdev_id(devid);
244
245 if (p != NULL) {
246 memset(p, 0, sizeof(dbdev_tab_t));
247 p->dev_id = ~0;
248 }
249 }
250 EXPORT_SYMBOL(au1xxx_ddma_del_device);
251
252 /* Allocate a channel and return a non-zero descriptor if successful. */
au1xxx_dbdma_chan_alloc(u32 srcid,u32 destid,void (* callback)(int,void *),void * callparam)253 u32 au1xxx_dbdma_chan_alloc(u32 srcid, u32 destid,
254 void (*callback)(int, void *), void *callparam)
255 {
256 unsigned long flags;
257 u32 used, chan;
258 u32 dcp;
259 int i;
260 dbdev_tab_t *stp, *dtp;
261 chan_tab_t *ctp;
262 au1x_dma_chan_t *cp;
263
264 /*
265 * We do the initialization on the first channel allocation.
266 * We have to wait because of the interrupt handler initialization
267 * which can't be done successfully during board set up.
268 */
269 if (!dbdma_initialized)
270 return 0;
271
272 stp = find_dbdev_id(srcid);
273 if (stp == NULL)
274 return 0;
275 dtp = find_dbdev_id(destid);
276 if (dtp == NULL)
277 return 0;
278
279 used = 0;
280
281 /* Check to see if we can get both channels. */
282 spin_lock_irqsave(&au1xxx_dbdma_spin_lock, flags);
283 if (!(stp->dev_flags & DEV_FLAGS_INUSE) ||
284 (stp->dev_flags & DEV_FLAGS_ANYUSE)) {
285 /* Got source */
286 stp->dev_flags |= DEV_FLAGS_INUSE;
287 if (!(dtp->dev_flags & DEV_FLAGS_INUSE) ||
288 (dtp->dev_flags & DEV_FLAGS_ANYUSE)) {
289 /* Got destination */
290 dtp->dev_flags |= DEV_FLAGS_INUSE;
291 } else {
292 /* Can't get dest. Release src. */
293 stp->dev_flags &= ~DEV_FLAGS_INUSE;
294 used++;
295 }
296 } else
297 used++;
298 spin_unlock_irqrestore(&au1xxx_dbdma_spin_lock, flags);
299
300 if (used)
301 return 0;
302
303 /* Let's see if we can allocate a channel for it. */
304 ctp = NULL;
305 chan = 0;
306 spin_lock_irqsave(&au1xxx_dbdma_spin_lock, flags);
307 for (i = 0; i < NUM_DBDMA_CHANS; i++)
308 if (chan_tab_ptr[i] == NULL) {
309 /*
310 * If kmalloc fails, it is caught below same
311 * as a channel not available.
312 */
313 ctp = kmalloc(sizeof(chan_tab_t), GFP_ATOMIC);
314 chan_tab_ptr[i] = ctp;
315 break;
316 }
317 spin_unlock_irqrestore(&au1xxx_dbdma_spin_lock, flags);
318
319 if (ctp != NULL) {
320 memset(ctp, 0, sizeof(chan_tab_t));
321 ctp->chan_index = chan = i;
322 dcp = KSEG1ADDR(AU1550_DBDMA_PHYS_ADDR);
323 dcp += (0x0100 * chan);
324 ctp->chan_ptr = (au1x_dma_chan_t *)dcp;
325 cp = (au1x_dma_chan_t *)dcp;
326 ctp->chan_src = stp;
327 ctp->chan_dest = dtp;
328 ctp->chan_callback = callback;
329 ctp->chan_callparam = callparam;
330
331 /* Initialize channel configuration. */
332 i = 0;
333 if (stp->dev_intlevel)
334 i |= DDMA_CFG_SED;
335 if (stp->dev_intpolarity)
336 i |= DDMA_CFG_SP;
337 if (dtp->dev_intlevel)
338 i |= DDMA_CFG_DED;
339 if (dtp->dev_intpolarity)
340 i |= DDMA_CFG_DP;
341 if ((stp->dev_flags & DEV_FLAGS_SYNC) ||
342 (dtp->dev_flags & DEV_FLAGS_SYNC))
343 i |= DDMA_CFG_SYNC;
344 cp->ddma_cfg = i;
345 wmb(); /* drain writebuffer */
346
347 /*
348 * Return a non-zero value that can be used to find the channel
349 * information in subsequent operations.
350 */
351 return (u32)(&chan_tab_ptr[chan]);
352 }
353
354 /* Release devices */
355 stp->dev_flags &= ~DEV_FLAGS_INUSE;
356 dtp->dev_flags &= ~DEV_FLAGS_INUSE;
357
358 return 0;
359 }
360 EXPORT_SYMBOL(au1xxx_dbdma_chan_alloc);
361
362 /*
363 * Set the device width if source or destination is a FIFO.
364 * Should be 8, 16, or 32 bits.
365 */
au1xxx_dbdma_set_devwidth(u32 chanid,int bits)366 u32 au1xxx_dbdma_set_devwidth(u32 chanid, int bits)
367 {
368 u32 rv;
369 chan_tab_t *ctp;
370 dbdev_tab_t *stp, *dtp;
371
372 ctp = *((chan_tab_t **)chanid);
373 stp = ctp->chan_src;
374 dtp = ctp->chan_dest;
375 rv = 0;
376
377 if (stp->dev_flags & DEV_FLAGS_IN) { /* Source in fifo */
378 rv = stp->dev_devwidth;
379 stp->dev_devwidth = bits;
380 }
381 if (dtp->dev_flags & DEV_FLAGS_OUT) { /* Destination out fifo */
382 rv = dtp->dev_devwidth;
383 dtp->dev_devwidth = bits;
384 }
385
386 return rv;
387 }
388 EXPORT_SYMBOL(au1xxx_dbdma_set_devwidth);
389
390 /* Allocate a descriptor ring, initializing as much as possible. */
au1xxx_dbdma_ring_alloc(u32 chanid,int entries)391 u32 au1xxx_dbdma_ring_alloc(u32 chanid, int entries)
392 {
393 int i;
394 u32 desc_base, srcid, destid;
395 u32 cmd0, cmd1, src1, dest1;
396 u32 src0, dest0;
397 chan_tab_t *ctp;
398 dbdev_tab_t *stp, *dtp;
399 au1x_ddma_desc_t *dp;
400
401 /*
402 * I guess we could check this to be within the
403 * range of the table......
404 */
405 ctp = *((chan_tab_t **)chanid);
406 stp = ctp->chan_src;
407 dtp = ctp->chan_dest;
408
409 /*
410 * The descriptors must be 32-byte aligned. There is a
411 * possibility the allocation will give us such an address,
412 * and if we try that first we are likely to not waste larger
413 * slabs of memory.
414 */
415 desc_base = (u32)kmalloc_array(entries, sizeof(au1x_ddma_desc_t),
416 GFP_KERNEL|GFP_DMA);
417 if (desc_base == 0)
418 return 0;
419
420 if (desc_base & 0x1f) {
421 /*
422 * Lost....do it again, allocate extra, and round
423 * the address base.
424 */
425 kfree((const void *)desc_base);
426 i = entries * sizeof(au1x_ddma_desc_t);
427 i += (sizeof(au1x_ddma_desc_t) - 1);
428 desc_base = (u32)kmalloc(i, GFP_KERNEL|GFP_DMA);
429 if (desc_base == 0)
430 return 0;
431
432 ctp->cdb_membase = desc_base;
433 desc_base = ALIGN_ADDR(desc_base, sizeof(au1x_ddma_desc_t));
434 } else
435 ctp->cdb_membase = desc_base;
436
437 dp = (au1x_ddma_desc_t *)desc_base;
438
439 /* Keep track of the base descriptor. */
440 ctp->chan_desc_base = dp;
441
442 /* Initialize the rings with as much information as we know. */
443 srcid = stp->dev_id;
444 destid = dtp->dev_id;
445
446 cmd0 = cmd1 = src1 = dest1 = 0;
447 src0 = dest0 = 0;
448
449 cmd0 |= DSCR_CMD0_SID(srcid);
450 cmd0 |= DSCR_CMD0_DID(destid);
451 cmd0 |= DSCR_CMD0_IE | DSCR_CMD0_CV;
452 cmd0 |= DSCR_CMD0_ST(DSCR_CMD0_ST_NOCHANGE);
453
454 /* Is it mem to mem transfer? */
455 if (((DSCR_CUSTOM2DEV_ID(srcid) == DSCR_CMD0_THROTTLE) ||
456 (DSCR_CUSTOM2DEV_ID(srcid) == DSCR_CMD0_ALWAYS)) &&
457 ((DSCR_CUSTOM2DEV_ID(destid) == DSCR_CMD0_THROTTLE) ||
458 (DSCR_CUSTOM2DEV_ID(destid) == DSCR_CMD0_ALWAYS)))
459 cmd0 |= DSCR_CMD0_MEM;
460
461 switch (stp->dev_devwidth) {
462 case 8:
463 cmd0 |= DSCR_CMD0_SW(DSCR_CMD0_BYTE);
464 break;
465 case 16:
466 cmd0 |= DSCR_CMD0_SW(DSCR_CMD0_HALFWORD);
467 break;
468 case 32:
469 default:
470 cmd0 |= DSCR_CMD0_SW(DSCR_CMD0_WORD);
471 break;
472 }
473
474 switch (dtp->dev_devwidth) {
475 case 8:
476 cmd0 |= DSCR_CMD0_DW(DSCR_CMD0_BYTE);
477 break;
478 case 16:
479 cmd0 |= DSCR_CMD0_DW(DSCR_CMD0_HALFWORD);
480 break;
481 case 32:
482 default:
483 cmd0 |= DSCR_CMD0_DW(DSCR_CMD0_WORD);
484 break;
485 }
486
487 /*
488 * If the device is marked as an in/out FIFO, ensure it is
489 * set non-coherent.
490 */
491 if (stp->dev_flags & DEV_FLAGS_IN)
492 cmd0 |= DSCR_CMD0_SN; /* Source in FIFO */
493 if (dtp->dev_flags & DEV_FLAGS_OUT)
494 cmd0 |= DSCR_CMD0_DN; /* Destination out FIFO */
495
496 /*
497 * Set up source1. For now, assume no stride and increment.
498 * A channel attribute update can change this later.
499 */
500 switch (stp->dev_tsize) {
501 case 1:
502 src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE1);
503 break;
504 case 2:
505 src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE2);
506 break;
507 case 4:
508 src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE4);
509 break;
510 case 8:
511 default:
512 src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE8);
513 break;
514 }
515
516 /* If source input is FIFO, set static address. */
517 if (stp->dev_flags & DEV_FLAGS_IN) {
518 if (stp->dev_flags & DEV_FLAGS_BURSTABLE)
519 src1 |= DSCR_SRC1_SAM(DSCR_xAM_BURST);
520 else
521 src1 |= DSCR_SRC1_SAM(DSCR_xAM_STATIC);
522 }
523
524 if (stp->dev_physaddr)
525 src0 = stp->dev_physaddr;
526
527 /*
528 * Set up dest1. For now, assume no stride and increment.
529 * A channel attribute update can change this later.
530 */
531 switch (dtp->dev_tsize) {
532 case 1:
533 dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE1);
534 break;
535 case 2:
536 dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE2);
537 break;
538 case 4:
539 dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE4);
540 break;
541 case 8:
542 default:
543 dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE8);
544 break;
545 }
546
547 /* If destination output is FIFO, set static address. */
548 if (dtp->dev_flags & DEV_FLAGS_OUT) {
549 if (dtp->dev_flags & DEV_FLAGS_BURSTABLE)
550 dest1 |= DSCR_DEST1_DAM(DSCR_xAM_BURST);
551 else
552 dest1 |= DSCR_DEST1_DAM(DSCR_xAM_STATIC);
553 }
554
555 if (dtp->dev_physaddr)
556 dest0 = dtp->dev_physaddr;
557
558 #if 0
559 printk(KERN_DEBUG "did:%x sid:%x cmd0:%x cmd1:%x source0:%x "
560 "source1:%x dest0:%x dest1:%x\n",
561 dtp->dev_id, stp->dev_id, cmd0, cmd1, src0,
562 src1, dest0, dest1);
563 #endif
564 for (i = 0; i < entries; i++) {
565 dp->dscr_cmd0 = cmd0;
566 dp->dscr_cmd1 = cmd1;
567 dp->dscr_source0 = src0;
568 dp->dscr_source1 = src1;
569 dp->dscr_dest0 = dest0;
570 dp->dscr_dest1 = dest1;
571 dp->dscr_stat = 0;
572 dp->sw_context = 0;
573 dp->sw_status = 0;
574 dp->dscr_nxtptr = DSCR_NXTPTR(virt_to_phys(dp + 1));
575 dp++;
576 }
577
578 /* Make last descriptor point to the first. */
579 dp--;
580 dp->dscr_nxtptr = DSCR_NXTPTR(virt_to_phys(ctp->chan_desc_base));
581 ctp->get_ptr = ctp->put_ptr = ctp->cur_ptr = ctp->chan_desc_base;
582
583 return (u32)ctp->chan_desc_base;
584 }
585 EXPORT_SYMBOL(au1xxx_dbdma_ring_alloc);
586
587 /*
588 * Put a source buffer into the DMA ring.
589 * This updates the source pointer and byte count. Normally used
590 * for memory to fifo transfers.
591 */
au1xxx_dbdma_put_source(u32 chanid,dma_addr_t buf,int nbytes,u32 flags)592 u32 au1xxx_dbdma_put_source(u32 chanid, dma_addr_t buf, int nbytes, u32 flags)
593 {
594 chan_tab_t *ctp;
595 au1x_ddma_desc_t *dp;
596
597 /*
598 * I guess we could check this to be within the
599 * range of the table......
600 */
601 ctp = *(chan_tab_t **)chanid;
602
603 /*
604 * We should have multiple callers for a particular channel,
605 * an interrupt doesn't affect this pointer nor the descriptor,
606 * so no locking should be needed.
607 */
608 dp = ctp->put_ptr;
609
610 /*
611 * If the descriptor is valid, we are way ahead of the DMA
612 * engine, so just return an error condition.
613 */
614 if (dp->dscr_cmd0 & DSCR_CMD0_V)
615 return 0;
616
617 /* Load up buffer address and byte count. */
618 dp->dscr_source0 = buf & ~0UL;
619 dp->dscr_cmd1 = nbytes;
620 /* Check flags */
621 if (flags & DDMA_FLAGS_IE)
622 dp->dscr_cmd0 |= DSCR_CMD0_IE;
623 if (flags & DDMA_FLAGS_NOIE)
624 dp->dscr_cmd0 &= ~DSCR_CMD0_IE;
625
626 /*
627 * There is an erratum on certain Au1200/Au1550 revisions that could
628 * result in "stale" data being DMA'ed. It has to do with the snoop
629 * logic on the cache eviction buffer. dma_default_coherent is set
630 * to false on these parts.
631 */
632 if (!dma_default_coherent)
633 dma_cache_wback_inv(KSEG0ADDR(buf), nbytes);
634 dp->dscr_cmd0 |= DSCR_CMD0_V; /* Let it rip */
635 wmb(); /* drain writebuffer */
636 dma_cache_wback_inv((unsigned long)dp, sizeof(*dp));
637 ctp->chan_ptr->ddma_dbell = 0;
638 wmb(); /* force doorbell write out to dma engine */
639
640 /* Get next descriptor pointer. */
641 ctp->put_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
642
643 /* Return something non-zero. */
644 return nbytes;
645 }
646 EXPORT_SYMBOL(au1xxx_dbdma_put_source);
647
648 /* Put a destination buffer into the DMA ring.
649 * This updates the destination pointer and byte count. Normally used
650 * to place an empty buffer into the ring for fifo to memory transfers.
651 */
au1xxx_dbdma_put_dest(u32 chanid,dma_addr_t buf,int nbytes,u32 flags)652 u32 au1xxx_dbdma_put_dest(u32 chanid, dma_addr_t buf, int nbytes, u32 flags)
653 {
654 chan_tab_t *ctp;
655 au1x_ddma_desc_t *dp;
656
657 /* I guess we could check this to be within the
658 * range of the table......
659 */
660 ctp = *((chan_tab_t **)chanid);
661
662 /* We should have multiple callers for a particular channel,
663 * an interrupt doesn't affect this pointer nor the descriptor,
664 * so no locking should be needed.
665 */
666 dp = ctp->put_ptr;
667
668 /* If the descriptor is valid, we are way ahead of the DMA
669 * engine, so just return an error condition.
670 */
671 if (dp->dscr_cmd0 & DSCR_CMD0_V)
672 return 0;
673
674 /* Load up buffer address and byte count */
675
676 /* Check flags */
677 if (flags & DDMA_FLAGS_IE)
678 dp->dscr_cmd0 |= DSCR_CMD0_IE;
679 if (flags & DDMA_FLAGS_NOIE)
680 dp->dscr_cmd0 &= ~DSCR_CMD0_IE;
681
682 dp->dscr_dest0 = buf & ~0UL;
683 dp->dscr_cmd1 = nbytes;
684 #if 0
685 printk(KERN_DEBUG "cmd0:%x cmd1:%x source0:%x source1:%x dest0:%x dest1:%x\n",
686 dp->dscr_cmd0, dp->dscr_cmd1, dp->dscr_source0,
687 dp->dscr_source1, dp->dscr_dest0, dp->dscr_dest1);
688 #endif
689 /*
690 * There is an erratum on certain Au1200/Au1550 revisions that could
691 * result in "stale" data being DMA'ed. It has to do with the snoop
692 * logic on the cache eviction buffer. dma_default_coherent is set
693 * to false on these parts.
694 */
695 if (!dma_default_coherent)
696 dma_cache_inv(KSEG0ADDR(buf), nbytes);
697 dp->dscr_cmd0 |= DSCR_CMD0_V; /* Let it rip */
698 wmb(); /* drain writebuffer */
699 dma_cache_wback_inv((unsigned long)dp, sizeof(*dp));
700 ctp->chan_ptr->ddma_dbell = 0;
701 wmb(); /* force doorbell write out to dma engine */
702
703 /* Get next descriptor pointer. */
704 ctp->put_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
705
706 /* Return something non-zero. */
707 return nbytes;
708 }
709 EXPORT_SYMBOL(au1xxx_dbdma_put_dest);
710
711 /*
712 * Get a destination buffer into the DMA ring.
713 * Normally used to get a full buffer from the ring during fifo
714 * to memory transfers. This does not set the valid bit, you will
715 * have to put another destination buffer to keep the DMA going.
716 */
au1xxx_dbdma_get_dest(u32 chanid,void ** buf,int * nbytes)717 u32 au1xxx_dbdma_get_dest(u32 chanid, void **buf, int *nbytes)
718 {
719 chan_tab_t *ctp;
720 au1x_ddma_desc_t *dp;
721 u32 rv;
722
723 /*
724 * I guess we could check this to be within the
725 * range of the table......
726 */
727 ctp = *((chan_tab_t **)chanid);
728
729 /*
730 * We should have multiple callers for a particular channel,
731 * an interrupt doesn't affect this pointer nor the descriptor,
732 * so no locking should be needed.
733 */
734 dp = ctp->get_ptr;
735
736 /*
737 * If the descriptor is valid, we are way ahead of the DMA
738 * engine, so just return an error condition.
739 */
740 if (dp->dscr_cmd0 & DSCR_CMD0_V)
741 return 0;
742
743 /* Return buffer address and byte count. */
744 *buf = (void *)(phys_to_virt(dp->dscr_dest0));
745 *nbytes = dp->dscr_cmd1;
746 rv = dp->dscr_stat;
747
748 /* Get next descriptor pointer. */
749 ctp->get_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
750
751 /* Return something non-zero. */
752 return rv;
753 }
754 EXPORT_SYMBOL_GPL(au1xxx_dbdma_get_dest);
755
au1xxx_dbdma_stop(u32 chanid)756 void au1xxx_dbdma_stop(u32 chanid)
757 {
758 chan_tab_t *ctp;
759 au1x_dma_chan_t *cp;
760 int halt_timeout = 0;
761
762 ctp = *((chan_tab_t **)chanid);
763
764 cp = ctp->chan_ptr;
765 cp->ddma_cfg &= ~DDMA_CFG_EN; /* Disable channel */
766 wmb(); /* drain writebuffer */
767 while (!(cp->ddma_stat & DDMA_STAT_H)) {
768 udelay(1);
769 halt_timeout++;
770 if (halt_timeout > 100) {
771 printk(KERN_WARNING "warning: DMA channel won't halt\n");
772 break;
773 }
774 }
775 /* clear current desc valid and doorbell */
776 cp->ddma_stat |= (DDMA_STAT_DB | DDMA_STAT_V);
777 wmb(); /* drain writebuffer */
778 }
779 EXPORT_SYMBOL(au1xxx_dbdma_stop);
780
781 /*
782 * Start using the current descriptor pointer. If the DBDMA encounters
783 * a non-valid descriptor, it will stop. In this case, we can just
784 * continue by adding a buffer to the list and starting again.
785 */
au1xxx_dbdma_start(u32 chanid)786 void au1xxx_dbdma_start(u32 chanid)
787 {
788 chan_tab_t *ctp;
789 au1x_dma_chan_t *cp;
790
791 ctp = *((chan_tab_t **)chanid);
792 cp = ctp->chan_ptr;
793 cp->ddma_desptr = virt_to_phys(ctp->cur_ptr);
794 cp->ddma_cfg |= DDMA_CFG_EN; /* Enable channel */
795 wmb(); /* drain writebuffer */
796 cp->ddma_dbell = 0;
797 wmb(); /* drain writebuffer */
798 }
799 EXPORT_SYMBOL(au1xxx_dbdma_start);
800
au1xxx_dbdma_reset(u32 chanid)801 void au1xxx_dbdma_reset(u32 chanid)
802 {
803 chan_tab_t *ctp;
804 au1x_ddma_desc_t *dp;
805
806 au1xxx_dbdma_stop(chanid);
807
808 ctp = *((chan_tab_t **)chanid);
809 ctp->get_ptr = ctp->put_ptr = ctp->cur_ptr = ctp->chan_desc_base;
810
811 /* Run through the descriptors and reset the valid indicator. */
812 dp = ctp->chan_desc_base;
813
814 do {
815 dp->dscr_cmd0 &= ~DSCR_CMD0_V;
816 /*
817 * Reset our software status -- this is used to determine
818 * if a descriptor is in use by upper level software. Since
819 * posting can reset 'V' bit.
820 */
821 dp->sw_status = 0;
822 dp = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
823 } while (dp != ctp->chan_desc_base);
824 }
825 EXPORT_SYMBOL(au1xxx_dbdma_reset);
826
au1xxx_get_dma_residue(u32 chanid)827 u32 au1xxx_get_dma_residue(u32 chanid)
828 {
829 chan_tab_t *ctp;
830 au1x_dma_chan_t *cp;
831 u32 rv;
832
833 ctp = *((chan_tab_t **)chanid);
834 cp = ctp->chan_ptr;
835
836 /* This is only valid if the channel is stopped. */
837 rv = cp->ddma_bytecnt;
838 wmb(); /* drain writebuffer */
839
840 return rv;
841 }
842 EXPORT_SYMBOL_GPL(au1xxx_get_dma_residue);
843
au1xxx_dbdma_chan_free(u32 chanid)844 void au1xxx_dbdma_chan_free(u32 chanid)
845 {
846 chan_tab_t *ctp;
847 dbdev_tab_t *stp, *dtp;
848
849 ctp = *((chan_tab_t **)chanid);
850 stp = ctp->chan_src;
851 dtp = ctp->chan_dest;
852
853 au1xxx_dbdma_stop(chanid);
854
855 kfree((void *)ctp->cdb_membase);
856
857 stp->dev_flags &= ~DEV_FLAGS_INUSE;
858 dtp->dev_flags &= ~DEV_FLAGS_INUSE;
859 chan_tab_ptr[ctp->chan_index] = NULL;
860
861 kfree(ctp);
862 }
863 EXPORT_SYMBOL(au1xxx_dbdma_chan_free);
864
dbdma_interrupt(int irq,void * dev_id)865 static irqreturn_t dbdma_interrupt(int irq, void *dev_id)
866 {
867 u32 intstat;
868 u32 chan_index;
869 chan_tab_t *ctp;
870 au1x_ddma_desc_t *dp;
871 au1x_dma_chan_t *cp;
872
873 intstat = dbdma_gptr->ddma_intstat;
874 wmb(); /* drain writebuffer */
875 chan_index = __ffs(intstat);
876
877 ctp = chan_tab_ptr[chan_index];
878 cp = ctp->chan_ptr;
879 dp = ctp->cur_ptr;
880
881 /* Reset interrupt. */
882 cp->ddma_irq = 0;
883 wmb(); /* drain writebuffer */
884
885 if (ctp->chan_callback)
886 ctp->chan_callback(irq, ctp->chan_callparam);
887
888 ctp->cur_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
889 return IRQ_RETVAL(1);
890 }
891
au1xxx_dbdma_dump(u32 chanid)892 void au1xxx_dbdma_dump(u32 chanid)
893 {
894 chan_tab_t *ctp;
895 au1x_ddma_desc_t *dp;
896 dbdev_tab_t *stp, *dtp;
897 au1x_dma_chan_t *cp;
898 u32 i = 0;
899
900 ctp = *((chan_tab_t **)chanid);
901 stp = ctp->chan_src;
902 dtp = ctp->chan_dest;
903 cp = ctp->chan_ptr;
904
905 printk(KERN_DEBUG "Chan %x, stp %x (dev %d) dtp %x (dev %d)\n",
906 (u32)ctp, (u32)stp, stp - dbdev_tab, (u32)dtp,
907 dtp - dbdev_tab);
908 printk(KERN_DEBUG "desc base %x, get %x, put %x, cur %x\n",
909 (u32)(ctp->chan_desc_base), (u32)(ctp->get_ptr),
910 (u32)(ctp->put_ptr), (u32)(ctp->cur_ptr));
911
912 printk(KERN_DEBUG "dbdma chan %x\n", (u32)cp);
913 printk(KERN_DEBUG "cfg %08x, desptr %08x, statptr %08x\n",
914 cp->ddma_cfg, cp->ddma_desptr, cp->ddma_statptr);
915 printk(KERN_DEBUG "dbell %08x, irq %08x, stat %08x, bytecnt %08x\n",
916 cp->ddma_dbell, cp->ddma_irq, cp->ddma_stat,
917 cp->ddma_bytecnt);
918
919 /* Run through the descriptors */
920 dp = ctp->chan_desc_base;
921
922 do {
923 printk(KERN_DEBUG "Dp[%d]= %08x, cmd0 %08x, cmd1 %08x\n",
924 i++, (u32)dp, dp->dscr_cmd0, dp->dscr_cmd1);
925 printk(KERN_DEBUG "src0 %08x, src1 %08x, dest0 %08x, dest1 %08x\n",
926 dp->dscr_source0, dp->dscr_source1,
927 dp->dscr_dest0, dp->dscr_dest1);
928 printk(KERN_DEBUG "stat %08x, nxtptr %08x\n",
929 dp->dscr_stat, dp->dscr_nxtptr);
930 dp = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
931 } while (dp != ctp->chan_desc_base);
932 }
933
934 /* Put a descriptor into the DMA ring.
935 * This updates the source/destination pointers and byte count.
936 */
au1xxx_dbdma_put_dscr(u32 chanid,au1x_ddma_desc_t * dscr)937 u32 au1xxx_dbdma_put_dscr(u32 chanid, au1x_ddma_desc_t *dscr)
938 {
939 chan_tab_t *ctp;
940 au1x_ddma_desc_t *dp;
941 u32 nbytes = 0;
942
943 /*
944 * I guess we could check this to be within the
945 * range of the table......
946 */
947 ctp = *((chan_tab_t **)chanid);
948
949 /*
950 * We should have multiple callers for a particular channel,
951 * an interrupt doesn't affect this pointer nor the descriptor,
952 * so no locking should be needed.
953 */
954 dp = ctp->put_ptr;
955
956 /*
957 * If the descriptor is valid, we are way ahead of the DMA
958 * engine, so just return an error condition.
959 */
960 if (dp->dscr_cmd0 & DSCR_CMD0_V)
961 return 0;
962
963 /* Load up buffer addresses and byte count. */
964 dp->dscr_dest0 = dscr->dscr_dest0;
965 dp->dscr_source0 = dscr->dscr_source0;
966 dp->dscr_dest1 = dscr->dscr_dest1;
967 dp->dscr_source1 = dscr->dscr_source1;
968 dp->dscr_cmd1 = dscr->dscr_cmd1;
969 nbytes = dscr->dscr_cmd1;
970 /* Allow the caller to specify if an interrupt is generated */
971 dp->dscr_cmd0 &= ~DSCR_CMD0_IE;
972 dp->dscr_cmd0 |= dscr->dscr_cmd0 | DSCR_CMD0_V;
973 ctp->chan_ptr->ddma_dbell = 0;
974
975 /* Get next descriptor pointer. */
976 ctp->put_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
977
978 /* Return something non-zero. */
979 return nbytes;
980 }
981
982
983 static unsigned long alchemy_dbdma_pm_data[NUM_DBDMA_CHANS + 1][6];
984
alchemy_dbdma_suspend(void)985 static int alchemy_dbdma_suspend(void)
986 {
987 int i;
988 void __iomem *addr;
989
990 addr = (void __iomem *)KSEG1ADDR(AU1550_DBDMA_CONF_PHYS_ADDR);
991 alchemy_dbdma_pm_data[0][0] = __raw_readl(addr + 0x00);
992 alchemy_dbdma_pm_data[0][1] = __raw_readl(addr + 0x04);
993 alchemy_dbdma_pm_data[0][2] = __raw_readl(addr + 0x08);
994 alchemy_dbdma_pm_data[0][3] = __raw_readl(addr + 0x0c);
995
996 /* save channel configurations */
997 addr = (void __iomem *)KSEG1ADDR(AU1550_DBDMA_PHYS_ADDR);
998 for (i = 1; i <= NUM_DBDMA_CHANS; i++) {
999 alchemy_dbdma_pm_data[i][0] = __raw_readl(addr + 0x00);
1000 alchemy_dbdma_pm_data[i][1] = __raw_readl(addr + 0x04);
1001 alchemy_dbdma_pm_data[i][2] = __raw_readl(addr + 0x08);
1002 alchemy_dbdma_pm_data[i][3] = __raw_readl(addr + 0x0c);
1003 alchemy_dbdma_pm_data[i][4] = __raw_readl(addr + 0x10);
1004 alchemy_dbdma_pm_data[i][5] = __raw_readl(addr + 0x14);
1005
1006 /* halt channel */
1007 __raw_writel(alchemy_dbdma_pm_data[i][0] & ~1, addr + 0x00);
1008 wmb();
1009 while (!(__raw_readl(addr + 0x14) & 1))
1010 wmb();
1011
1012 addr += 0x100; /* next channel base */
1013 }
1014 /* disable channel interrupts */
1015 addr = (void __iomem *)KSEG1ADDR(AU1550_DBDMA_CONF_PHYS_ADDR);
1016 __raw_writel(0, addr + 0x0c);
1017 wmb();
1018
1019 return 0;
1020 }
1021
alchemy_dbdma_resume(void)1022 static void alchemy_dbdma_resume(void)
1023 {
1024 int i;
1025 void __iomem *addr;
1026
1027 addr = (void __iomem *)KSEG1ADDR(AU1550_DBDMA_CONF_PHYS_ADDR);
1028 __raw_writel(alchemy_dbdma_pm_data[0][0], addr + 0x00);
1029 __raw_writel(alchemy_dbdma_pm_data[0][1], addr + 0x04);
1030 __raw_writel(alchemy_dbdma_pm_data[0][2], addr + 0x08);
1031 __raw_writel(alchemy_dbdma_pm_data[0][3], addr + 0x0c);
1032
1033 /* restore channel configurations */
1034 addr = (void __iomem *)KSEG1ADDR(AU1550_DBDMA_PHYS_ADDR);
1035 for (i = 1; i <= NUM_DBDMA_CHANS; i++) {
1036 __raw_writel(alchemy_dbdma_pm_data[i][0], addr + 0x00);
1037 __raw_writel(alchemy_dbdma_pm_data[i][1], addr + 0x04);
1038 __raw_writel(alchemy_dbdma_pm_data[i][2], addr + 0x08);
1039 __raw_writel(alchemy_dbdma_pm_data[i][3], addr + 0x0c);
1040 __raw_writel(alchemy_dbdma_pm_data[i][4], addr + 0x10);
1041 __raw_writel(alchemy_dbdma_pm_data[i][5], addr + 0x14);
1042 wmb();
1043 addr += 0x100; /* next channel base */
1044 }
1045 }
1046
1047 static struct syscore_ops alchemy_dbdma_syscore_ops = {
1048 .suspend = alchemy_dbdma_suspend,
1049 .resume = alchemy_dbdma_resume,
1050 };
1051
dbdma_setup(unsigned int irq,dbdev_tab_t * idtable)1052 static int __init dbdma_setup(unsigned int irq, dbdev_tab_t *idtable)
1053 {
1054 int ret;
1055
1056 dbdev_tab = kcalloc(DBDEV_TAB_SIZE, sizeof(dbdev_tab_t), GFP_KERNEL);
1057 if (!dbdev_tab)
1058 return -ENOMEM;
1059
1060 memcpy(dbdev_tab, idtable, 32 * sizeof(dbdev_tab_t));
1061 for (ret = 32; ret < DBDEV_TAB_SIZE; ret++)
1062 dbdev_tab[ret].dev_id = ~0;
1063
1064 dbdma_gptr->ddma_config = 0;
1065 dbdma_gptr->ddma_throttle = 0;
1066 dbdma_gptr->ddma_inten = 0xffff;
1067 wmb(); /* drain writebuffer */
1068
1069 ret = request_irq(irq, dbdma_interrupt, 0, "dbdma", (void *)dbdma_gptr);
1070 if (ret)
1071 printk(KERN_ERR "Cannot grab DBDMA interrupt!\n");
1072 else {
1073 dbdma_initialized = 1;
1074 register_syscore_ops(&alchemy_dbdma_syscore_ops);
1075 }
1076
1077 return ret;
1078 }
1079
alchemy_dbdma_init(void)1080 static int __init alchemy_dbdma_init(void)
1081 {
1082 switch (alchemy_get_cputype()) {
1083 case ALCHEMY_CPU_AU1550:
1084 return dbdma_setup(AU1550_DDMA_INT, au1550_dbdev_tab);
1085 case ALCHEMY_CPU_AU1200:
1086 return dbdma_setup(AU1200_DDMA_INT, au1200_dbdev_tab);
1087 case ALCHEMY_CPU_AU1300:
1088 return dbdma_setup(AU1300_DDMA_INT, au1300_dbdev_tab);
1089 }
1090 return 0;
1091 }
1092 subsys_initcall(alchemy_dbdma_init);
1093