xref: /linux/arch/microblaze/kernel/hw_exception_handler.S (revision a33f32244d8550da8b4a26e277ce07d5c6d158b5)
1/*
2 * Exception handling for Microblaze
3 *
4 * Rewriten interrupt handling
5 *
6 * Copyright (C) 2008-2009 Michal Simek <monstr@monstr.eu>
7 * Copyright (C) 2008-2009 PetaLogix
8 *
9 * uClinux customisation (C) 2005 John Williams
10 *
11 * MMU code derived from arch/ppc/kernel/head_4xx.S:
12 *	Copyright (C) 1995-1996 Gary Thomas <gdt@linuxppc.org>
13 *		Initial PowerPC version.
14 *	Copyright (C) 1996 Cort Dougan <cort@cs.nmt.edu>
15 *		Rewritten for PReP
16 *	Copyright (C) 1996 Paul Mackerras <paulus@cs.anu.edu.au>
17 *		Low-level exception handers, MMU support, and rewrite.
18 *	Copyright (C) 1997 Dan Malek <dmalek@jlc.net>
19 *		PowerPC 8xx modifications.
20 *	Copyright (C) 1998-1999 TiVo, Inc.
21 *		PowerPC 403GCX modifications.
22 *	Copyright (C) 1999 Grant Erickson <grant@lcse.umn.edu>
23 *		PowerPC 403GCX/405GP modifications.
24 *	Copyright 2000 MontaVista Software Inc.
25 *		PPC405 modifications
26 *	PowerPC 403GCX/405GP modifications.
27 *		Author: MontaVista Software, Inc.
28 *		frank_rowand@mvista.com or source@mvista.com
29 *		debbie_chu@mvista.com
30 *
31 * Original code
32 * Copyright (C) 2004 Xilinx, Inc.
33 *
34 * This program is free software; you can redistribute it and/or modify it
35 * under the terms of the GNU General Public License version 2 as published
36 * by the Free Software Foundation.
37 */
38
39/*
40 * Here are the handlers which don't require enabling translation
41 * and calling other kernel code thus we can keep their design very simple
42 * and do all processing in real mode. All what they need is a valid current
43 * (that is an issue for the CONFIG_REGISTER_TASK_PTR case)
44 * This handlers use r3,r4,r5,r6 and optionally r[current] to work therefore
45 * these registers are saved/restored
46 * The handlers which require translation are in entry.S --KAA
47 *
48 * Microblaze HW Exception Handler
49 * - Non self-modifying exception handler for the following exception conditions
50 *   - Unalignment
51 *   - Instruction bus error
52 *   - Data bus error
53 *   - Illegal instruction opcode
54 *   - Divide-by-zero
55 *
56 *   - Privileged instruction exception (MMU)
57 *   - Data storage exception (MMU)
58 *   - Instruction storage exception (MMU)
59 *   - Data TLB miss exception (MMU)
60 *   - Instruction TLB miss exception (MMU)
61 *
62 * Note we disable interrupts during exception handling, otherwise we will
63 * possibly get multiple re-entrancy if interrupt handles themselves cause
64 * exceptions. JW
65 */
66
67#include <asm/exceptions.h>
68#include <asm/unistd.h>
69#include <asm/page.h>
70
71#include <asm/entry.h>
72#include <asm/current.h>
73#include <linux/linkage.h>
74
75#include <asm/mmu.h>
76#include <asm/pgtable.h>
77#include <asm/signal.h>
78#include <asm/asm-offsets.h>
79
80/* Helpful Macros */
81#ifndef CONFIG_MMU
82#define EX_HANDLER_STACK_SIZ	(4*19)
83#endif
84#define NUM_TO_REG(num)		r ## num
85
86#ifdef CONFIG_MMU
87	#define RESTORE_STATE			\
88		lwi	r5, r1, 0;		\
89		mts	rmsr, r5;		\
90		nop;				\
91		lwi	r3, r1, PT_R3;		\
92		lwi	r4, r1, PT_R4;		\
93		lwi	r5, r1, PT_R5;		\
94		lwi	r6, r1, PT_R6;		\
95		lwi	r11, r1, PT_R11;	\
96		lwi	r31, r1, PT_R31;	\
97		lwi	r1, r0, TOPHYS(r0_ram + 0);
98#endif /* CONFIG_MMU */
99
100#define LWREG_NOP			\
101	bri	ex_handler_unhandled;	\
102	nop;
103
104#define SWREG_NOP			\
105	bri	ex_handler_unhandled;	\
106	nop;
107
108/* FIXME this is weird - for noMMU kernel is not possible to use brid
109 * instruction which can shorten executed time
110 */
111
112/* r3 is the source */
113#define R3_TO_LWREG_V(regnum)				\
114	swi	r3, r1, 4 * regnum;				\
115	bri	ex_handler_done;
116
117/* r3 is the source */
118#define R3_TO_LWREG(regnum)				\
119	or	NUM_TO_REG (regnum), r0, r3;		\
120	bri	ex_handler_done;
121
122/* r3 is the target */
123#define SWREG_TO_R3_V(regnum)				\
124	lwi	r3, r1, 4 * regnum;				\
125	bri	ex_sw_tail;
126
127/* r3 is the target */
128#define SWREG_TO_R3(regnum)				\
129	or	r3, r0, NUM_TO_REG (regnum);		\
130	bri	ex_sw_tail;
131
132#ifdef CONFIG_MMU
133	#define R3_TO_LWREG_VM_V(regnum)		\
134		brid	ex_lw_end_vm;			\
135		swi	r3, r7, 4 * regnum;
136
137	#define R3_TO_LWREG_VM(regnum)			\
138		brid	ex_lw_end_vm;			\
139		or	NUM_TO_REG (regnum), r0, r3;
140
141	#define SWREG_TO_R3_VM_V(regnum)		\
142		brid	ex_sw_tail_vm;			\
143		lwi	r3, r7, 4 * regnum;
144
145	#define SWREG_TO_R3_VM(regnum)			\
146		brid	ex_sw_tail_vm;			\
147		or	r3, r0, NUM_TO_REG (regnum);
148
149	/* Shift right instruction depending on available configuration */
150	#if CONFIG_XILINX_MICROBLAZE0_USE_BARREL > 0
151	#define BSRLI(rD, rA, imm)	\
152		bsrli rD, rA, imm
153	#elif CONFIG_XILINX_MICROBLAZE0_USE_DIV > 0
154	#define BSRLI(rD, rA, imm)	\
155		ori rD, r0, (1 << imm);	\
156		idivu rD, rD, rA
157	#else
158	#define BSRLI(rD, rA, imm) BSRLI ## imm (rD, rA)
159	/* Only the used shift constants defined here - add more if needed */
160	#define BSRLI2(rD, rA)				\
161		srl rD, rA;		/* << 1 */	\
162		srl rD, rD;		/* << 2 */
163	#define BSRLI10(rD, rA)				\
164		srl rD, rA;		/* << 1 */	\
165		srl rD, rD;		/* << 2 */	\
166		srl rD, rD;		/* << 3 */	\
167		srl rD, rD;		/* << 4 */	\
168		srl rD, rD;		/* << 5 */	\
169		srl rD, rD;		/* << 6 */	\
170		srl rD, rD;		/* << 7 */	\
171		srl rD, rD;		/* << 8 */	\
172		srl rD, rD;		/* << 9 */	\
173		srl rD, rD		/* << 10 */
174	#define BSRLI20(rD, rA)		\
175		BSRLI10(rD, rA);	\
176		BSRLI10(rD, rD)
177	#endif
178#endif /* CONFIG_MMU */
179
180.extern other_exception_handler /* Defined in exception.c */
181
182/*
183 * hw_exception_handler - Handler for exceptions
184 *
185 * Exception handler notes:
186 * - Handles all exceptions
187 * - Does not handle unaligned exceptions during load into r17, r1, r0.
188 * - Does not handle unaligned exceptions during store from r17 (cannot be
189 *   done) and r1 (slows down common case)
190 *
191 *  Relevant register structures
192 *
193 *  EAR - |----|----|----|----|----|----|----|----|
194 *      - <  ##   32 bit faulting address     ##  >
195 *
196 *  ESR - |----|----|----|----|----| - | - |-----|-----|
197 *      -                            W   S   REG   EXC
198 *
199 *
200 * STACK FRAME STRUCTURE (for NO_MMU)
201 * ---------------------------------
202 *
203 *      +-------------+         + 0
204 *      |     MSR     |
205 *      +-------------+         + 4
206 *      |     r1      |
207 *      |      .      |
208 *      |      .      |
209 *      |      .      |
210 *      |      .      |
211 *      |     r18     |
212 *      +-------------+         + 76
213 *      |      .      |
214 *      |      .      |
215 *
216 * NO_MMU kernel use the same r0_ram pointed space - look to vmlinux.lds.S
217 * which is used for storing register values - old style was, that value were
218 * stored in stack but in case of failure you lost information about register.
219 * Currently you can see register value in memory in specific place.
220 * In compare to with previous solution the speed should be the same.
221 *
222 * MMU exception handler has different handling compare to no MMU kernel.
223 * Exception handler use jump table for directing of what happen. For MMU kernel
224 * is this approach better because MMU relate exception are handled by asm code
225 * in this file. In compare to with MMU expect of unaligned exception
226 * is everything handled by C code.
227 */
228
229/*
230 * every of these handlers is entered having R3/4/5/6/11/current saved on stack
231 * and clobbered so care should be taken to restore them if someone is going to
232 * return from exception
233 */
234
235/* wrappers to restore state before coming to entry.S */
236
237#ifdef CONFIG_MMU
238.section .rodata
239.align 4
240_MB_HW_ExceptionVectorTable:
241/*  0 - Undefined */
242	.long	TOPHYS(ex_handler_unhandled)
243/*  1 - Unaligned data access exception */
244	.long	TOPHYS(handle_unaligned_ex)
245/*  2 - Illegal op-code exception */
246	.long	TOPHYS(full_exception_trapw)
247/*  3 - Instruction bus error exception */
248	.long	TOPHYS(full_exception_trapw)
249/*  4 - Data bus error exception */
250	.long	TOPHYS(full_exception_trapw)
251/*  5 - Divide by zero exception */
252	.long	TOPHYS(full_exception_trapw)
253/*  6 - Floating point unit exception */
254	.long	TOPHYS(full_exception_trapw)
255/*  7 - Privileged instruction exception */
256	.long	TOPHYS(full_exception_trapw)
257/*  8 - 15 - Undefined */
258	.long	TOPHYS(ex_handler_unhandled)
259	.long	TOPHYS(ex_handler_unhandled)
260	.long	TOPHYS(ex_handler_unhandled)
261	.long	TOPHYS(ex_handler_unhandled)
262	.long	TOPHYS(ex_handler_unhandled)
263	.long	TOPHYS(ex_handler_unhandled)
264	.long	TOPHYS(ex_handler_unhandled)
265	.long	TOPHYS(ex_handler_unhandled)
266/* 16 - Data storage exception */
267	.long	TOPHYS(handle_data_storage_exception)
268/* 17 - Instruction storage exception */
269	.long	TOPHYS(handle_instruction_storage_exception)
270/* 18 - Data TLB miss exception */
271	.long	TOPHYS(handle_data_tlb_miss_exception)
272/* 19 - Instruction TLB miss exception */
273	.long	TOPHYS(handle_instruction_tlb_miss_exception)
274/* 20 - 31 - Undefined */
275	.long	TOPHYS(ex_handler_unhandled)
276	.long	TOPHYS(ex_handler_unhandled)
277	.long	TOPHYS(ex_handler_unhandled)
278	.long	TOPHYS(ex_handler_unhandled)
279	.long	TOPHYS(ex_handler_unhandled)
280	.long	TOPHYS(ex_handler_unhandled)
281	.long	TOPHYS(ex_handler_unhandled)
282	.long	TOPHYS(ex_handler_unhandled)
283	.long	TOPHYS(ex_handler_unhandled)
284	.long	TOPHYS(ex_handler_unhandled)
285	.long	TOPHYS(ex_handler_unhandled)
286	.long	TOPHYS(ex_handler_unhandled)
287#endif
288
289.global _hw_exception_handler
290.section .text
291.align 4
292.ent _hw_exception_handler
293_hw_exception_handler:
294#ifndef CONFIG_MMU
295	addik	r1, r1, -(EX_HANDLER_STACK_SIZ); /* Create stack frame */
296#else
297	swi	r1, r0, TOPHYS(r0_ram + 0); /* GET_SP */
298	/* Save date to kernel memory. Here is the problem
299	 * when you came from user space */
300	ori	r1, r0, TOPHYS(r0_ram + 28);
301#endif
302	swi	r3, r1, PT_R3
303	swi	r4, r1, PT_R4
304	swi	r5, r1, PT_R5
305	swi	r6, r1, PT_R6
306
307#ifdef CONFIG_MMU
308	swi	r11, r1, PT_R11
309	swi	r31, r1, PT_R31
310	lwi	r31, r0, TOPHYS(PER_CPU(CURRENT_SAVE)) /* get saved current */
311#endif
312
313	mfs	r5, rmsr;
314	nop
315	swi	r5, r1, 0;
316	mfs	r4, resr
317	nop
318	mfs	r3, rear;
319	nop
320
321#ifndef CONFIG_MMU
322	andi	r5, r4, 0x1000;		/* Check ESR[DS] */
323	beqi	r5, not_in_delay_slot;	/* Branch if ESR[DS] not set */
324	mfs	r17, rbtr;	/* ESR[DS] set - return address in BTR */
325	nop
326not_in_delay_slot:
327	swi	r17, r1, PT_R17
328#endif
329
330	andi	r5, r4, 0x1F;		/* Extract ESR[EXC] */
331
332#ifdef CONFIG_MMU
333	/* Calculate exception vector offset = r5 << 2 */
334	addk	r6, r5, r5; /* << 1 */
335	addk	r6, r6, r6; /* << 2 */
336
337#ifdef DEBUG
338/* counting which exception happen */
339	lwi	r5, r0, 0x200 + TOPHYS(r0_ram)
340	addi	r5, r5, 1
341	swi	r5, r0, 0x200 + TOPHYS(r0_ram)
342	lwi	r5, r6, 0x200 + TOPHYS(r0_ram)
343	addi	r5, r5, 1
344	swi	r5, r6, 0x200 + TOPHYS(r0_ram)
345#endif
346/* end */
347	/* Load the HW Exception vector */
348	lwi	r6, r6, TOPHYS(_MB_HW_ExceptionVectorTable)
349	bra	r6
350
351full_exception_trapw:
352	RESTORE_STATE
353	bri	full_exception_trap
354#else
355	/* Exceptions enabled here. This will allow nested exceptions */
356	mfs	r6, rmsr;
357	nop
358	swi	r6, r1, 0; /* RMSR_OFFSET */
359	ori	r6, r6, 0x100; /* Turn ON the EE bit */
360	andi	r6, r6, ~2; /* Disable interrupts */
361	mts	rmsr, r6;
362	nop
363
364	xori	r6, r5, 1; /* 00001 = Unaligned Exception */
365	/* Jump to unalignment exception handler */
366	beqi	r6, handle_unaligned_ex;
367
368handle_other_ex: /* Handle Other exceptions here */
369	/* Save other volatiles before we make procedure calls below */
370	swi	r7, r1, PT_R7
371	swi	r8, r1, PT_R8
372	swi	r9, r1, PT_R9
373	swi	r10, r1, PT_R10
374	swi	r11, r1, PT_R11
375	swi	r12, r1, PT_R12
376	swi	r14, r1, PT_R14
377	swi	r15, r1, PT_R15
378	swi	r18, r1, PT_R18
379
380	or	r5, r1, r0
381	andi	r6, r4, 0x1F; /* Load ESR[EC] */
382	lwi	r7, r0, PER_CPU(KM) /* MS: saving current kernel mode to regs */
383	swi	r7, r1, PT_MODE
384	mfs	r7, rfsr
385	nop
386	addk	r8, r17, r0; /* Load exception address */
387	bralid	r15, full_exception; /* Branch to the handler */
388	nop;
389	mts	rfsr, r0;	/* Clear sticky fsr */
390	nop
391
392	/*
393	 * Trigger execution of the signal handler by enabling
394	 * interrupts and calling an invalid syscall.
395	 */
396	mfs	r5, rmsr;
397	nop
398	ori	r5, r5, 2;
399	mts	rmsr, r5; /* enable interrupt */
400	nop
401	addi	r12, r0, __NR_syscalls;
402	brki	r14, 0x08;
403	mfs	r5, rmsr; /* disable interrupt */
404	nop
405	andi	r5, r5, ~2;
406	mts	rmsr, r5;
407	nop
408
409	lwi	r7, r1, PT_R7
410	lwi	r8, r1, PT_R8
411	lwi	r9, r1, PT_R9
412	lwi	r10, r1, PT_R10
413	lwi	r11, r1, PT_R11
414	lwi	r12, r1, PT_R12
415	lwi	r14, r1, PT_R14
416	lwi	r15, r1, PT_R15
417	lwi	r18, r1, PT_R18
418
419	bri	ex_handler_done; /* Complete exception handling */
420#endif
421
422/* 0x01 - Unaligned data access exception
423 * This occurs when a word access is not aligned on a word boundary,
424 * or when a 16-bit access is not aligned on a 16-bit boundary.
425 * This handler perform the access, and returns, except for MMU when
426 * the unaligned address is last on a 4k page or the physical address is
427 * not found in the page table, in which case unaligned_data_trap is called.
428 */
429handle_unaligned_ex:
430	/* Working registers already saved: R3, R4, R5, R6
431	 *  R4 = ESR
432	 *  R3 = EAR
433	 */
434#ifdef CONFIG_MMU
435	andi	r6, r4, 0x1000			/* Check ESR[DS] */
436	beqi	r6, _no_delayslot		/* Branch if ESR[DS] not set */
437	mfs	r17, rbtr;	/* ESR[DS] set - return address in BTR */
438	nop
439_no_delayslot:
440	/* jump to high level unaligned handler */
441	RESTORE_STATE;
442	bri	unaligned_data_trap
443#endif
444	andi	r6, r4, 0x3E0; /* Mask and extract the register operand */
445	srl	r6, r6; /* r6 >> 5 */
446	srl	r6, r6;
447	srl	r6, r6;
448	srl	r6, r6;
449	srl	r6, r6;
450	/* Store the register operand in a temporary location */
451	sbi	r6, r0, TOPHYS(ex_reg_op);
452
453	andi	r6, r4, 0x400; /* Extract ESR[S] */
454	bnei	r6, ex_sw;
455ex_lw:
456	andi	r6, r4, 0x800; /* Extract ESR[W] */
457	beqi	r6, ex_lhw;
458	lbui	r5, r3, 0; /* Exception address in r3 */
459	/* Load a word, byte-by-byte from destination address
460		and save it in tmp space */
461	sbi	r5, r0, TOPHYS(ex_tmp_data_loc_0);
462	lbui	r5, r3, 1;
463	sbi	r5, r0, TOPHYS(ex_tmp_data_loc_1);
464	lbui	r5, r3, 2;
465	sbi	r5, r0, TOPHYS(ex_tmp_data_loc_2);
466	lbui	r5, r3, 3;
467	sbi	r5, r0, TOPHYS(ex_tmp_data_loc_3);
468	/* Get the destination register value into r4 */
469	lwi	r4, r0, TOPHYS(ex_tmp_data_loc_0);
470	bri	ex_lw_tail;
471ex_lhw:
472	lbui	r5, r3, 0; /* Exception address in r3 */
473	/* Load a half-word, byte-by-byte from destination
474		address and save it in tmp space */
475	sbi	r5, r0, TOPHYS(ex_tmp_data_loc_0);
476	lbui	r5, r3, 1;
477	sbi	r5, r0, TOPHYS(ex_tmp_data_loc_1);
478	/* Get the destination register value into r4 */
479	lhui	r4, r0, TOPHYS(ex_tmp_data_loc_0);
480ex_lw_tail:
481	/* Get the destination register number into r5 */
482	lbui	r5, r0, TOPHYS(ex_reg_op);
483	/* Form load_word jump table offset (lw_table + (8 * regnum)) */
484	la	r6, r0, TOPHYS(lw_table);
485	addk	r5, r5, r5;
486	addk	r5, r5, r5;
487	addk	r5, r5, r5;
488	addk	r5, r5, r6;
489	bra	r5;
490ex_lw_end: /* Exception handling of load word, ends */
491ex_sw:
492	/* Get the destination register number into r5 */
493	lbui	r5, r0, TOPHYS(ex_reg_op);
494	/* Form store_word jump table offset (sw_table + (8 * regnum)) */
495	la	r6, r0, TOPHYS(sw_table);
496	add	r5, r5, r5;
497	add	r5, r5, r5;
498	add	r5, r5, r5;
499	add	r5, r5, r6;
500	bra	r5;
501ex_sw_tail:
502	mfs	r6, resr;
503	nop
504	andi	r6, r6, 0x800; /* Extract ESR[W] */
505	beqi	r6, ex_shw;
506	/* Get the word - delay slot */
507	swi	r4, r0, TOPHYS(ex_tmp_data_loc_0);
508	/* Store the word, byte-by-byte into destination address */
509	lbui	r4, r0, TOPHYS(ex_tmp_data_loc_0);
510	sbi	r4, r3, 0;
511	lbui	r4, r0, TOPHYS(ex_tmp_data_loc_1);
512	sbi	r4, r3, 1;
513	lbui	r4, r0, TOPHYS(ex_tmp_data_loc_2);
514	sbi	r4, r3, 2;
515	lbui	r4, r0, TOPHYS(ex_tmp_data_loc_3);
516	sbi	r4, r3, 3;
517	bri	ex_handler_done;
518
519ex_shw:
520	/* Store the lower half-word, byte-by-byte into destination address */
521	swi	r4, r0, TOPHYS(ex_tmp_data_loc_0);
522	lbui	r4, r0, TOPHYS(ex_tmp_data_loc_2);
523	sbi	r4, r3, 0;
524	lbui	r4, r0, TOPHYS(ex_tmp_data_loc_3);
525	sbi	r4, r3, 1;
526ex_sw_end: /* Exception handling of store word, ends. */
527
528ex_handler_done:
529#ifndef CONFIG_MMU
530	lwi	r5, r1, 0 /* RMSR */
531	mts	rmsr, r5
532	nop
533	lwi	r3, r1, PT_R3
534	lwi	r4, r1, PT_R4
535	lwi	r5, r1, PT_R5
536	lwi	r6, r1, PT_R6
537	lwi	r17, r1, PT_R17
538
539	rted	r17, 0
540	addik	r1, r1, (EX_HANDLER_STACK_SIZ); /* Restore stack frame */
541#else
542	RESTORE_STATE;
543	rted	r17, 0
544	nop
545#endif
546
547#ifdef CONFIG_MMU
548	/* Exception vector entry code. This code runs with address translation
549	 * turned off (i.e. using physical addresses). */
550
551	/* Exception vectors. */
552
553	/* 0x10 - Data Storage Exception
554	 * This happens for just a few reasons. U0 set (but we don't do that),
555	 * or zone protection fault (user violation, write to protected page).
556	 * If this is just an update of modified status, we do that quickly
557	 * and exit. Otherwise, we call heavyweight functions to do the work.
558	 */
559	handle_data_storage_exception:
560		/* Working registers already saved: R3, R4, R5, R6
561		 * R3 = ESR
562		 */
563		mfs	r11, rpid
564		nop
565		/* If we are faulting a kernel address, we have to use the
566		 * kernel page tables.
567		 */
568		ori	r5, r0, CONFIG_KERNEL_START
569		cmpu	r5, r3, r5
570		bgti	r5, ex3
571		/* First, check if it was a zone fault (which means a user
572		 * tried to access a kernel or read-protected page - always
573		 * a SEGV). All other faults here must be stores, so no
574		 * need to check ESR_S as well. */
575		andi	r4, r4, 0x800		/* ESR_Z - zone protection */
576		bnei	r4, ex2
577
578		ori	r4, r0, swapper_pg_dir
579		mts	rpid, r0		/* TLB will have 0 TID */
580		nop
581		bri	ex4
582
583		/* Get the PGD for the current thread. */
584	ex3:
585		/* First, check if it was a zone fault (which means a user
586		 * tried to access a kernel or read-protected page - always
587		 * a SEGV). All other faults here must be stores, so no
588		 * need to check ESR_S as well. */
589		andi	r4, r4, 0x800		/* ESR_Z */
590		bnei	r4, ex2
591		/* get current task address */
592		addi	r4 ,CURRENT_TASK, TOPHYS(0);
593		lwi	r4, r4, TASK_THREAD+PGDIR
594	ex4:
595		tophys(r4,r4)
596		BSRLI(r5,r3,20)		/* Create L1 (pgdir/pmd) address */
597		andi	r5, r5, 0xffc
598/* Assume pgdir aligned on 4K boundary, no need for "andi r4,r4,0xfffff003" */
599		or	r4, r4, r5
600		lwi	r4, r4, 0		/* Get L1 entry */
601		andi	r5, r4, 0xfffff000 /* Extract L2 (pte) base address */
602		beqi	r5, ex2			/* Bail if no table */
603
604		tophys(r5,r5)
605		BSRLI(r6,r3,10)			/* Compute PTE address */
606		andi	r6, r6, 0xffc
607		andi	r5, r5, 0xfffff003
608		or	r5, r5, r6
609		lwi	r4, r5, 0		/* Get Linux PTE */
610
611		andi	r6, r4, _PAGE_RW	/* Is it writeable? */
612		beqi	r6, ex2			/* Bail if not */
613
614		/* Update 'changed' */
615		ori	r4, r4, _PAGE_DIRTY|_PAGE_ACCESSED|_PAGE_HWWRITE
616		swi	r4, r5, 0		/* Update Linux page table */
617
618		/* Most of the Linux PTE is ready to load into the TLB LO.
619		 * We set ZSEL, where only the LS-bit determines user access.
620		 * We set execute, because we don't have the granularity to
621		 * properly set this at the page level (Linux problem).
622		 * If shared is set, we cause a zero PID->TID load.
623		 * Many of these bits are software only. Bits we don't set
624		 * here we (properly should) assume have the appropriate value.
625		 */
626		andni	r4, r4, 0x0ce2		/* Make sure 20, 21 are zero */
627		ori	r4, r4, _PAGE_HWEXEC	/* make it executable */
628
629		/* find the TLB index that caused the fault. It has to be here*/
630		mts	rtlbsx, r3
631		nop
632		mfs	r5, rtlbx		/* DEBUG: TBD */
633		nop
634		mts	rtlblo, r4		/* Load TLB LO */
635		nop
636						/* Will sync shadow TLBs */
637
638		/* Done...restore registers and get out of here. */
639		mts	rpid, r11
640		nop
641		bri 4
642
643		RESTORE_STATE;
644		rted	r17, 0
645		nop
646	ex2:
647		/* The bailout. Restore registers to pre-exception conditions
648		 * and call the heavyweights to help us out. */
649		mts	rpid, r11
650		nop
651		bri 4
652		RESTORE_STATE;
653		bri	page_fault_data_trap
654
655
656	/* 0x11 - Instruction Storage Exception
657	 * This is caused by a fetch from non-execute or guarded pages. */
658	handle_instruction_storage_exception:
659		/* Working registers already saved: R3, R4, R5, R6
660		 * R3 = ESR
661		 */
662
663		RESTORE_STATE;
664		bri	page_fault_instr_trap
665
666	/* 0x12 - Data TLB Miss Exception
667	 * As the name implies, translation is not in the MMU, so search the
668	 * page tables and fix it. The only purpose of this function is to
669	 * load TLB entries from the page table if they exist.
670	 */
671	handle_data_tlb_miss_exception:
672		/* Working registers already saved: R3, R4, R5, R6
673		 * R3 = EAR, R4 = ESR
674		 */
675		mfs	r11, rpid
676		nop
677
678		/* If we are faulting a kernel address, we have to use the
679		 * kernel page tables. */
680		ori	r6, r0, CONFIG_KERNEL_START
681		cmpu	r4, r3, r6
682		bgti	r4, ex5
683		ori	r4, r0, swapper_pg_dir
684		mts	rpid, r0		/* TLB will have 0 TID */
685		nop
686		bri	ex6
687
688		/* Get the PGD for the current thread. */
689	ex5:
690		/* get current task address */
691		addi	r4 ,CURRENT_TASK, TOPHYS(0);
692		lwi	r4, r4, TASK_THREAD+PGDIR
693	ex6:
694		tophys(r4,r4)
695		BSRLI(r5,r3,20)		/* Create L1 (pgdir/pmd) address */
696		andi	r5, r5, 0xffc
697/* Assume pgdir aligned on 4K boundary, no need for "andi r4,r4,0xfffff003" */
698		or	r4, r4, r5
699		lwi	r4, r4, 0		/* Get L1 entry */
700		andi	r5, r4, 0xfffff000 /* Extract L2 (pte) base address */
701		beqi	r5, ex7			/* Bail if no table */
702
703		tophys(r5,r5)
704		BSRLI(r6,r3,10)			/* Compute PTE address */
705		andi	r6, r6, 0xffc
706		andi	r5, r5, 0xfffff003
707		or	r5, r5, r6
708		lwi	r4, r5, 0		/* Get Linux PTE */
709
710		andi	r6, r4, _PAGE_PRESENT
711		beqi	r6, ex7
712
713		ori	r4, r4, _PAGE_ACCESSED
714		swi	r4, r5, 0
715
716		/* Most of the Linux PTE is ready to load into the TLB LO.
717		 * We set ZSEL, where only the LS-bit determines user access.
718		 * We set execute, because we don't have the granularity to
719		 * properly set this at the page level (Linux problem).
720		 * If shared is set, we cause a zero PID->TID load.
721		 * Many of these bits are software only. Bits we don't set
722		 * here we (properly should) assume have the appropriate value.
723		 */
724		brid	finish_tlb_load
725		andni	r4, r4, 0x0ce2		/* Make sure 20, 21 are zero */
726	ex7:
727		/* The bailout. Restore registers to pre-exception conditions
728		 * and call the heavyweights to help us out.
729		 */
730		mts	rpid, r11
731		nop
732		bri	4
733		RESTORE_STATE;
734		bri	page_fault_data_trap
735
736	/* 0x13 - Instruction TLB Miss Exception
737	 * Nearly the same as above, except we get our information from
738	 * different registers and bailout to a different point.
739	 */
740	handle_instruction_tlb_miss_exception:
741		/* Working registers already saved: R3, R4, R5, R6
742		 *  R3 = ESR
743		 */
744		mfs	r11, rpid
745		nop
746
747		/* If we are faulting a kernel address, we have to use the
748		 * kernel page tables.
749		 */
750		ori	r4, r0, CONFIG_KERNEL_START
751		cmpu	r4, r3, r4
752		bgti	r4, ex8
753		ori	r4, r0, swapper_pg_dir
754		mts	rpid, r0		/* TLB will have 0 TID */
755		nop
756		bri	ex9
757
758		/* Get the PGD for the current thread. */
759	ex8:
760		/* get current task address */
761		addi	r4 ,CURRENT_TASK, TOPHYS(0);
762		lwi	r4, r4, TASK_THREAD+PGDIR
763	ex9:
764		tophys(r4,r4)
765		BSRLI(r5,r3,20)		/* Create L1 (pgdir/pmd) address */
766		andi	r5, r5, 0xffc
767/* Assume pgdir aligned on 4K boundary, no need for "andi r4,r4,0xfffff003" */
768		or	r4, r4, r5
769		lwi	r4, r4, 0		/* Get L1 entry */
770		andi	r5, r4, 0xfffff000 /* Extract L2 (pte) base address */
771		beqi	r5, ex10		/* Bail if no table */
772
773		tophys(r5,r5)
774		BSRLI(r6,r3,10)			/* Compute PTE address */
775		andi	r6, r6, 0xffc
776		andi	r5, r5, 0xfffff003
777		or	r5, r5, r6
778		lwi	r4, r5, 0		/* Get Linux PTE */
779
780		andi	r6, r4, _PAGE_PRESENT
781		beqi	r6, ex10
782
783		ori	r4, r4, _PAGE_ACCESSED
784		swi	r4, r5, 0
785
786		/* Most of the Linux PTE is ready to load into the TLB LO.
787		 * We set ZSEL, where only the LS-bit determines user access.
788		 * We set execute, because we don't have the granularity to
789		 * properly set this at the page level (Linux problem).
790		 * If shared is set, we cause a zero PID->TID load.
791		 * Many of these bits are software only. Bits we don't set
792		 * here we (properly should) assume have the appropriate value.
793		 */
794		brid	finish_tlb_load
795		andni	r4, r4, 0x0ce2		/* Make sure 20, 21 are zero */
796	ex10:
797		/* The bailout. Restore registers to pre-exception conditions
798		 * and call the heavyweights to help us out.
799		 */
800		mts	rpid, r11
801		nop
802		bri 4
803		RESTORE_STATE;
804		bri	page_fault_instr_trap
805
806/* Both the instruction and data TLB miss get to this point to load the TLB.
807 *	r3 - EA of fault
808 *	r4 - TLB LO (info from Linux PTE)
809 *	r5, r6 - available to use
810 *	PID - loaded with proper value when we get here
811 *	Upon exit, we reload everything and RFI.
812 * A common place to load the TLB.
813 */
814	tlb_index:
815		.long	1 /* MS: storing last used tlb index */
816	finish_tlb_load:
817		/* MS: load the last used TLB index. */
818		lwi	r5, r0, TOPHYS(tlb_index)
819		addik	r5, r5, 1 /* MS: inc tlb_index -> use next one */
820
821/* MS: FIXME this is potential fault, because this is mask not count */
822		andi	r5, r5, (MICROBLAZE_TLB_SIZE-1)
823		ori	r6, r0, 1
824		cmp	r31, r5, r6
825		blti	r31, ex12
826		addik	r5, r6, 1
827	ex12:
828		/* MS: save back current TLB index */
829		swi	r5, r0, TOPHYS(tlb_index)
830
831		ori	r4, r4, _PAGE_HWEXEC	/* make it executable */
832		mts	rtlbx, r5		/* MS: save current TLB */
833		nop
834		mts	rtlblo,	r4		/* MS: save to TLB LO */
835		nop
836
837		/* Create EPN. This is the faulting address plus a static
838		 * set of bits. These are size, valid, E, U0, and ensure
839		 * bits 20 and 21 are zero.
840		 */
841		andi	r3, r3, 0xfffff000
842		ori	r3, r3, 0x0c0
843		mts	rtlbhi,	r3		/* Load TLB HI */
844		nop
845
846		/* Done...restore registers and get out of here. */
847		mts	rpid, r11
848		nop
849		bri 4
850		RESTORE_STATE;
851		rted	r17, 0
852		nop
853
854	/* extern void giveup_fpu(struct task_struct *prev)
855	 *
856	 * The MicroBlaze processor may have an FPU, so this should not just
857	 * return: TBD.
858	 */
859	.globl giveup_fpu;
860	.align 4;
861	giveup_fpu:
862		bralid	r15,0			/* TBD */
863		nop
864
865	/* At present, this routine just hangs. - extern void abort(void) */
866	.globl abort;
867	.align 4;
868	abort:
869		br	r0
870
871	.globl set_context;
872	.align 4;
873	set_context:
874		mts	rpid, r5	/* Shadow TLBs are automatically */
875		nop
876		bri	4		/* flushed by changing PID */
877		rtsd	r15,8
878		nop
879
880#endif
881.end _hw_exception_handler
882
883#ifdef CONFIG_MMU
884/* Unaligned data access exception last on a 4k page for MMU.
885 * When this is called, we are in virtual mode with exceptions enabled
886 * and registers 1-13,15,17,18 saved.
887 *
888 * R3 = ESR
889 * R4 = EAR
890 * R7 = pointer to saved registers (struct pt_regs *regs)
891 *
892 * This handler perform the access, and returns via ret_from_exc.
893 */
894.global _unaligned_data_exception
895.ent _unaligned_data_exception
896_unaligned_data_exception:
897	andi	r8, r3, 0x3E0;	/* Mask and extract the register operand */
898	BSRLI(r8,r8,2);		/* r8 >> 2 = register operand * 8 */
899	andi	r6, r3, 0x400;	/* Extract ESR[S] */
900	bneid	r6, ex_sw_vm;
901	andi	r6, r3, 0x800;	/* Extract ESR[W] - delay slot */
902ex_lw_vm:
903	beqid	r6, ex_lhw_vm;
904load1:	lbui	r5, r4, 0;	/* Exception address in r4 - delay slot */
905/* Load a word, byte-by-byte from destination address and save it in tmp space*/
906	la	r6, r0, ex_tmp_data_loc_0;
907	sbi	r5, r6, 0;
908load2:	lbui	r5, r4, 1;
909	sbi	r5, r6, 1;
910load3:	lbui	r5, r4, 2;
911	sbi	r5, r6, 2;
912load4:	lbui	r5, r4, 3;
913	sbi	r5, r6, 3;
914	brid	ex_lw_tail_vm;
915/* Get the destination register value into r3 - delay slot */
916	lwi	r3, r6, 0;
917ex_lhw_vm:
918	/* Load a half-word, byte-by-byte from destination address and
919	 * save it in tmp space */
920	la	r6, r0, ex_tmp_data_loc_0;
921	sbi	r5, r6, 0;
922load5:	lbui	r5, r4, 1;
923	sbi	r5, r6, 1;
924	lhui	r3, r6, 0;	/* Get the destination register value into r3 */
925ex_lw_tail_vm:
926	/* Form load_word jump table offset (lw_table_vm + (8 * regnum)) */
927	addik	r5, r8, lw_table_vm;
928	bra	r5;
929ex_lw_end_vm:			/* Exception handling of load word, ends */
930	brai	ret_from_exc;
931ex_sw_vm:
932/* Form store_word jump table offset (sw_table_vm + (8 * regnum)) */
933	addik	r5, r8, sw_table_vm;
934	bra	r5;
935ex_sw_tail_vm:
936	la	r5, r0, ex_tmp_data_loc_0;
937	beqid	r6, ex_shw_vm;
938	swi	r3, r5, 0;	/* Get the word - delay slot */
939	/* Store the word, byte-by-byte into destination address */
940	lbui	r3, r5, 0;
941store1:	sbi	r3, r4, 0;
942	lbui	r3, r5, 1;
943store2:	sbi	r3, r4, 1;
944	lbui	r3, r5, 2;
945store3:	sbi	r3, r4, 2;
946	lbui	r3, r5, 3;
947	brid	ret_from_exc;
948store4:	sbi	r3, r4, 3;	/* Delay slot */
949ex_shw_vm:
950	/* Store the lower half-word, byte-by-byte into destination address */
951	lbui	r3, r5, 2;
952store5:	sbi	r3, r4, 0;
953	lbui	r3, r5, 3;
954	brid	ret_from_exc;
955store6:	sbi	r3, r4, 1;	/* Delay slot */
956ex_sw_end_vm:			/* Exception handling of store word, ends. */
957
958/* We have to prevent cases that get/put_user macros get unaligned pointer
959 * to bad page area. We have to find out which origin instruction caused it
960 * and called fixup for that origin instruction not instruction in unaligned
961 * handler */
962ex_unaligned_fixup:
963	ori	r5, r7, 0 /* setup pointer to pt_regs */
964	lwi	r6, r7, PT_PC; /* faulting address is one instruction above */
965	addik	r6, r6, -4 /* for finding proper fixup */
966	swi	r6, r7, PT_PC; /* a save back it to PT_PC */
967	addik	r7, r0, SIGSEGV
968	/* call bad_page_fault for finding aligned fixup, fixup address is saved
969	 * in PT_PC which is used as return address from exception */
970	la	r15, r0, ret_from_exc-8 /* setup return address */
971	brid	bad_page_fault
972	nop
973
974/* We prevent all load/store because it could failed any attempt to access */
975.section __ex_table,"a";
976	.word	load1,ex_unaligned_fixup;
977	.word	load2,ex_unaligned_fixup;
978	.word	load3,ex_unaligned_fixup;
979	.word	load4,ex_unaligned_fixup;
980	.word	load5,ex_unaligned_fixup;
981	.word	store1,ex_unaligned_fixup;
982	.word	store2,ex_unaligned_fixup;
983	.word	store3,ex_unaligned_fixup;
984	.word	store4,ex_unaligned_fixup;
985	.word	store5,ex_unaligned_fixup;
986	.word	store6,ex_unaligned_fixup;
987.previous;
988.end _unaligned_data_exception
989#endif /* CONFIG_MMU */
990
991ex_handler_unhandled:
992/* FIXME add handle function for unhandled exception - dump register */
993	bri 0
994
995/*
996 * hw_exception_handler Jump Table
997 * - Contains code snippets for each register that caused the unalign exception
998 * - Hence exception handler is NOT self-modifying
999 * - Separate table for load exceptions and store exceptions.
1000 * - Each table is of size: (8 * 32) = 256 bytes
1001 */
1002
1003.section .text
1004.align 4
1005lw_table:
1006lw_r0:		R3_TO_LWREG	(0);
1007lw_r1:		LWREG_NOP;
1008lw_r2:		R3_TO_LWREG	(2);
1009lw_r3:		R3_TO_LWREG_V	(3);
1010lw_r4:		R3_TO_LWREG_V	(4);
1011lw_r5:		R3_TO_LWREG_V	(5);
1012lw_r6:		R3_TO_LWREG_V	(6);
1013lw_r7:		R3_TO_LWREG	(7);
1014lw_r8:		R3_TO_LWREG	(8);
1015lw_r9:		R3_TO_LWREG	(9);
1016lw_r10:		R3_TO_LWREG	(10);
1017lw_r11:		R3_TO_LWREG	(11);
1018lw_r12:		R3_TO_LWREG	(12);
1019lw_r13:		R3_TO_LWREG	(13);
1020lw_r14:		R3_TO_LWREG	(14);
1021lw_r15:		R3_TO_LWREG	(15);
1022lw_r16:		R3_TO_LWREG	(16);
1023lw_r17:		LWREG_NOP;
1024lw_r18:		R3_TO_LWREG	(18);
1025lw_r19:		R3_TO_LWREG	(19);
1026lw_r20:		R3_TO_LWREG	(20);
1027lw_r21:		R3_TO_LWREG	(21);
1028lw_r22:		R3_TO_LWREG	(22);
1029lw_r23:		R3_TO_LWREG	(23);
1030lw_r24:		R3_TO_LWREG	(24);
1031lw_r25:		R3_TO_LWREG	(25);
1032lw_r26:		R3_TO_LWREG	(26);
1033lw_r27:		R3_TO_LWREG	(27);
1034lw_r28:		R3_TO_LWREG	(28);
1035lw_r29:		R3_TO_LWREG	(29);
1036lw_r30:		R3_TO_LWREG	(30);
1037#ifdef CONFIG_MMU
1038lw_r31: 	R3_TO_LWREG_V	(31);
1039#else
1040lw_r31:		R3_TO_LWREG	(31);
1041#endif
1042
1043sw_table:
1044sw_r0:		SWREG_TO_R3	(0);
1045sw_r1:		SWREG_NOP;
1046sw_r2:		SWREG_TO_R3	(2);
1047sw_r3:		SWREG_TO_R3_V	(3);
1048sw_r4:		SWREG_TO_R3_V	(4);
1049sw_r5:		SWREG_TO_R3_V	(5);
1050sw_r6:		SWREG_TO_R3_V	(6);
1051sw_r7:		SWREG_TO_R3	(7);
1052sw_r8:		SWREG_TO_R3	(8);
1053sw_r9:		SWREG_TO_R3	(9);
1054sw_r10:		SWREG_TO_R3	(10);
1055sw_r11:		SWREG_TO_R3	(11);
1056sw_r12:		SWREG_TO_R3	(12);
1057sw_r13:		SWREG_TO_R3	(13);
1058sw_r14:		SWREG_TO_R3	(14);
1059sw_r15:		SWREG_TO_R3	(15);
1060sw_r16:		SWREG_TO_R3	(16);
1061sw_r17:		SWREG_NOP;
1062sw_r18:		SWREG_TO_R3	(18);
1063sw_r19:		SWREG_TO_R3	(19);
1064sw_r20:		SWREG_TO_R3	(20);
1065sw_r21:		SWREG_TO_R3	(21);
1066sw_r22:		SWREG_TO_R3	(22);
1067sw_r23:		SWREG_TO_R3	(23);
1068sw_r24:		SWREG_TO_R3	(24);
1069sw_r25:		SWREG_TO_R3	(25);
1070sw_r26:		SWREG_TO_R3	(26);
1071sw_r27:		SWREG_TO_R3	(27);
1072sw_r28:		SWREG_TO_R3	(28);
1073sw_r29:		SWREG_TO_R3	(29);
1074sw_r30:		SWREG_TO_R3	(30);
1075#ifdef CONFIG_MMU
1076sw_r31:		SWREG_TO_R3_V	(31);
1077#else
1078sw_r31:		SWREG_TO_R3	(31);
1079#endif
1080
1081#ifdef CONFIG_MMU
1082lw_table_vm:
1083lw_r0_vm:	R3_TO_LWREG_VM		(0);
1084lw_r1_vm:	R3_TO_LWREG_VM_V	(1);
1085lw_r2_vm:	R3_TO_LWREG_VM_V	(2);
1086lw_r3_vm:	R3_TO_LWREG_VM_V	(3);
1087lw_r4_vm:	R3_TO_LWREG_VM_V	(4);
1088lw_r5_vm:	R3_TO_LWREG_VM_V	(5);
1089lw_r6_vm:	R3_TO_LWREG_VM_V	(6);
1090lw_r7_vm:	R3_TO_LWREG_VM_V	(7);
1091lw_r8_vm:	R3_TO_LWREG_VM_V	(8);
1092lw_r9_vm:	R3_TO_LWREG_VM_V	(9);
1093lw_r10_vm:	R3_TO_LWREG_VM_V	(10);
1094lw_r11_vm:	R3_TO_LWREG_VM_V	(11);
1095lw_r12_vm:	R3_TO_LWREG_VM_V	(12);
1096lw_r13_vm:	R3_TO_LWREG_VM_V	(13);
1097lw_r14_vm:	R3_TO_LWREG_VM		(14);
1098lw_r15_vm:	R3_TO_LWREG_VM_V	(15);
1099lw_r16_vm:	R3_TO_LWREG_VM		(16);
1100lw_r17_vm:	R3_TO_LWREG_VM_V	(17);
1101lw_r18_vm:	R3_TO_LWREG_VM_V	(18);
1102lw_r19_vm:	R3_TO_LWREG_VM		(19);
1103lw_r20_vm:	R3_TO_LWREG_VM		(20);
1104lw_r21_vm:	R3_TO_LWREG_VM		(21);
1105lw_r22_vm:	R3_TO_LWREG_VM		(22);
1106lw_r23_vm:	R3_TO_LWREG_VM		(23);
1107lw_r24_vm:	R3_TO_LWREG_VM		(24);
1108lw_r25_vm:	R3_TO_LWREG_VM		(25);
1109lw_r26_vm:	R3_TO_LWREG_VM		(26);
1110lw_r27_vm:	R3_TO_LWREG_VM		(27);
1111lw_r28_vm:	R3_TO_LWREG_VM		(28);
1112lw_r29_vm:	R3_TO_LWREG_VM		(29);
1113lw_r30_vm:	R3_TO_LWREG_VM		(30);
1114lw_r31_vm:	R3_TO_LWREG_VM_V	(31);
1115
1116sw_table_vm:
1117sw_r0_vm:	SWREG_TO_R3_VM		(0);
1118sw_r1_vm:	SWREG_TO_R3_VM_V	(1);
1119sw_r2_vm:	SWREG_TO_R3_VM_V	(2);
1120sw_r3_vm:	SWREG_TO_R3_VM_V	(3);
1121sw_r4_vm:	SWREG_TO_R3_VM_V	(4);
1122sw_r5_vm:	SWREG_TO_R3_VM_V	(5);
1123sw_r6_vm:	SWREG_TO_R3_VM_V	(6);
1124sw_r7_vm:	SWREG_TO_R3_VM_V	(7);
1125sw_r8_vm:	SWREG_TO_R3_VM_V	(8);
1126sw_r9_vm:	SWREG_TO_R3_VM_V	(9);
1127sw_r10_vm:	SWREG_TO_R3_VM_V	(10);
1128sw_r11_vm:	SWREG_TO_R3_VM_V	(11);
1129sw_r12_vm:	SWREG_TO_R3_VM_V	(12);
1130sw_r13_vm:	SWREG_TO_R3_VM_V	(13);
1131sw_r14_vm:	SWREG_TO_R3_VM		(14);
1132sw_r15_vm:	SWREG_TO_R3_VM_V	(15);
1133sw_r16_vm:	SWREG_TO_R3_VM		(16);
1134sw_r17_vm:	SWREG_TO_R3_VM_V	(17);
1135sw_r18_vm:	SWREG_TO_R3_VM_V	(18);
1136sw_r19_vm:	SWREG_TO_R3_VM		(19);
1137sw_r20_vm:	SWREG_TO_R3_VM		(20);
1138sw_r21_vm:	SWREG_TO_R3_VM		(21);
1139sw_r22_vm:	SWREG_TO_R3_VM		(22);
1140sw_r23_vm:	SWREG_TO_R3_VM		(23);
1141sw_r24_vm:	SWREG_TO_R3_VM		(24);
1142sw_r25_vm:	SWREG_TO_R3_VM		(25);
1143sw_r26_vm:	SWREG_TO_R3_VM		(26);
1144sw_r27_vm:	SWREG_TO_R3_VM		(27);
1145sw_r28_vm:	SWREG_TO_R3_VM		(28);
1146sw_r29_vm:	SWREG_TO_R3_VM		(29);
1147sw_r30_vm:	SWREG_TO_R3_VM		(30);
1148sw_r31_vm:	SWREG_TO_R3_VM_V	(31);
1149#endif /* CONFIG_MMU */
1150
1151/* Temporary data structures used in the handler */
1152.section .data
1153.align 4
1154ex_tmp_data_loc_0:
1155	.byte 0
1156ex_tmp_data_loc_1:
1157	.byte 0
1158ex_tmp_data_loc_2:
1159	.byte 0
1160ex_tmp_data_loc_3:
1161	.byte 0
1162ex_reg_op:
1163	.byte 0
1164