xref: /linux/arch/microblaze/include/asm/pgtable.h (revision a6475c132278c1be158a13872c233aeab8a00176)
1 /*
2  * Copyright (C) 2008-2009 Michal Simek <monstr@monstr.eu>
3  * Copyright (C) 2008-2009 PetaLogix
4  * Copyright (C) 2006 Atmark Techno, Inc.
5  *
6  * This file is subject to the terms and conditions of the GNU General Public
7  * License. See the file "COPYING" in the main directory of this archive
8  * for more details.
9  */
10 
11 #ifndef _ASM_MICROBLAZE_PGTABLE_H
12 #define _ASM_MICROBLAZE_PGTABLE_H
13 
14 #include <asm/setup.h>
15 
16 #define io_remap_pfn_range(vma, vaddr, pfn, size, prot)		\
17 		remap_pfn_range(vma, vaddr, pfn, size, prot)
18 
19 #ifndef CONFIG_MMU
20 
21 #define pgd_present(pgd)	(1) /* pages are always present on non MMU */
22 #define pgd_none(pgd)		(0)
23 #define pgd_bad(pgd)		(0)
24 #define pgd_clear(pgdp)
25 #define kern_addr_valid(addr)	(1)
26 #define	pmd_offset(a, b)	((void *) 0)
27 
28 #define PAGE_NONE		__pgprot(0) /* these mean nothing to non MMU */
29 #define PAGE_SHARED		__pgprot(0) /* these mean nothing to non MMU */
30 #define PAGE_COPY		__pgprot(0) /* these mean nothing to non MMU */
31 #define PAGE_READONLY		__pgprot(0) /* these mean nothing to non MMU */
32 #define PAGE_KERNEL		__pgprot(0) /* these mean nothing to non MMU */
33 
34 #define pgprot_noncached(x)	(x)
35 
36 #define __swp_type(x)		(0)
37 #define __swp_offset(x)		(0)
38 #define __swp_entry(typ, off)	((swp_entry_t) { ((typ) | ((off) << 7)) })
39 #define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) })
40 #define __swp_entry_to_pte(x)	((pte_t) { (x).val })
41 
42 #ifndef __ASSEMBLY__
43 static inline int pte_file(pte_t pte) { return 0; }
44 #endif /* __ASSEMBLY__ */
45 
46 #define ZERO_PAGE(vaddr)	({ BUG(); NULL; })
47 
48 #define swapper_pg_dir ((pgd_t *) NULL)
49 
50 #define pgtable_cache_init()	do {} while (0)
51 
52 #define arch_enter_lazy_cpu_mode()	do {} while (0)
53 
54 #else /* CONFIG_MMU */
55 
56 #include <asm-generic/4level-fixup.h>
57 
58 #ifdef __KERNEL__
59 #ifndef __ASSEMBLY__
60 
61 #include <linux/sched.h>
62 #include <linux/threads.h>
63 #include <asm/processor.h>		/* For TASK_SIZE */
64 #include <asm/mmu.h>
65 #include <asm/page.h>
66 
67 #define FIRST_USER_ADDRESS	0
68 
69 extern unsigned long va_to_phys(unsigned long address);
70 extern pte_t *va_to_pte(unsigned long address);
71 extern unsigned long ioremap_bot, ioremap_base;
72 
73 /*
74  * The following only work if pte_present() is true.
75  * Undefined behaviour if not..
76  */
77 
78 static inline int pte_special(pte_t pte)	{ return 0; }
79 
80 static inline pte_t pte_mkspecial(pte_t pte)	{ return pte; }
81 
82 /* Start and end of the vmalloc area. */
83 /* Make sure to map the vmalloc area above the pinned kernel memory area
84    of 32Mb.  */
85 #define VMALLOC_START	(CONFIG_KERNEL_START + \
86 				max(32 * 1024 * 1024UL, memory_size))
87 #define VMALLOC_END	ioremap_bot
88 #define VMALLOC_VMADDR(x) ((unsigned long)(x))
89 
90 #endif /* __ASSEMBLY__ */
91 
92 /*
93  * Macro to mark a page protection value as "uncacheable".
94  */
95 
96 #define _PAGE_CACHE_CTL	(_PAGE_GUARDED | _PAGE_NO_CACHE | \
97 							_PAGE_WRITETHRU)
98 
99 #define pgprot_noncached(prot) \
100 			(__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
101 					_PAGE_NO_CACHE | _PAGE_GUARDED))
102 
103 #define pgprot_noncached_wc(prot) \
104 			 (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
105 							_PAGE_NO_CACHE))
106 
107 /*
108  * The MicroBlaze MMU is identical to the PPC-40x MMU, and uses a hash
109  * table containing PTEs, together with a set of 16 segment registers, to
110  * define the virtual to physical address mapping.
111  *
112  * We use the hash table as an extended TLB, i.e. a cache of currently
113  * active mappings.  We maintain a two-level page table tree, much
114  * like that used by the i386, for the sake of the Linux memory
115  * management code.  Low-level assembler code in hashtable.S
116  * (procedure hash_page) is responsible for extracting ptes from the
117  * tree and putting them into the hash table when necessary, and
118  * updating the accessed and modified bits in the page table tree.
119  */
120 
121 /*
122  * The MicroBlaze processor has a TLB architecture identical to PPC-40x. The
123  * instruction and data sides share a unified, 64-entry, semi-associative
124  * TLB which is maintained totally under software control. In addition, the
125  * instruction side has a hardware-managed, 2,4, or 8-entry, fully-associative
126  * TLB which serves as a first level to the shared TLB. These two TLBs are
127  * known as the UTLB and ITLB, respectively (see "mmu.h" for definitions).
128  */
129 
130 /*
131  * The normal case is that PTEs are 32-bits and we have a 1-page
132  * 1024-entry pgdir pointing to 1-page 1024-entry PTE pages.  -- paulus
133  *
134  */
135 
136 /* PMD_SHIFT determines the size of the area mapped by the PTE pages */
137 #define PMD_SHIFT	(PAGE_SHIFT + PTE_SHIFT)
138 #define PMD_SIZE	(1UL << PMD_SHIFT)
139 #define PMD_MASK	(~(PMD_SIZE-1))
140 
141 /* PGDIR_SHIFT determines what a top-level page table entry can map */
142 #define PGDIR_SHIFT	PMD_SHIFT
143 #define PGDIR_SIZE	(1UL << PGDIR_SHIFT)
144 #define PGDIR_MASK	(~(PGDIR_SIZE-1))
145 
146 /*
147  * entries per page directory level: our page-table tree is two-level, so
148  * we don't really have any PMD directory.
149  */
150 #define PTRS_PER_PTE	(1 << PTE_SHIFT)
151 #define PTRS_PER_PMD	1
152 #define PTRS_PER_PGD	(1 << (32 - PGDIR_SHIFT))
153 
154 #define USER_PTRS_PER_PGD	(TASK_SIZE / PGDIR_SIZE)
155 #define FIRST_USER_PGD_NR	0
156 
157 #define USER_PGD_PTRS (PAGE_OFFSET >> PGDIR_SHIFT)
158 #define KERNEL_PGD_PTRS (PTRS_PER_PGD-USER_PGD_PTRS)
159 
160 #define pte_ERROR(e) \
161 	printk(KERN_ERR "%s:%d: bad pte "PTE_FMT".\n", \
162 		__FILE__, __LINE__, pte_val(e))
163 #define pmd_ERROR(e) \
164 	printk(KERN_ERR "%s:%d: bad pmd %08lx.\n", \
165 		__FILE__, __LINE__, pmd_val(e))
166 #define pgd_ERROR(e) \
167 	printk(KERN_ERR "%s:%d: bad pgd %08lx.\n", \
168 		__FILE__, __LINE__, pgd_val(e))
169 
170 /*
171  * Bits in a linux-style PTE.  These match the bits in the
172  * (hardware-defined) PTE as closely as possible.
173  */
174 
175 /* There are several potential gotchas here.  The hardware TLBLO
176  * field looks like this:
177  *
178  * 0  1  2  3  4  ... 18 19 20 21 22 23 24 25 26 27 28 29 30 31
179  * RPN.....................  0  0 EX WR ZSEL.......  W  I  M  G
180  *
181  * Where possible we make the Linux PTE bits match up with this
182  *
183  * - bits 20 and 21 must be cleared, because we use 4k pages (4xx can
184  * support down to 1k pages), this is done in the TLBMiss exception
185  * handler.
186  * - We use only zones 0 (for kernel pages) and 1 (for user pages)
187  * of the 16 available.  Bit 24-26 of the TLB are cleared in the TLB
188  * miss handler.  Bit 27 is PAGE_USER, thus selecting the correct
189  * zone.
190  * - PRESENT *must* be in the bottom two bits because swap cache
191  * entries use the top 30 bits.  Because 4xx doesn't support SMP
192  * anyway, M is irrelevant so we borrow it for PAGE_PRESENT.  Bit 30
193  * is cleared in the TLB miss handler before the TLB entry is loaded.
194  * - All other bits of the PTE are loaded into TLBLO without
195  *  * modification, leaving us only the bits 20, 21, 24, 25, 26, 30 for
196  * software PTE bits.  We actually use use bits 21, 24, 25, and
197  * 30 respectively for the software bits: ACCESSED, DIRTY, RW, and
198  * PRESENT.
199  */
200 
201 /* Definitions for MicroBlaze. */
202 #define	_PAGE_GUARDED	0x001	/* G: page is guarded from prefetch */
203 #define _PAGE_FILE	0x001	/* when !present: nonlinear file mapping */
204 #define _PAGE_PRESENT	0x002	/* software: PTE contains a translation */
205 #define	_PAGE_NO_CACHE	0x004	/* I: caching is inhibited */
206 #define	_PAGE_WRITETHRU	0x008	/* W: caching is write-through */
207 #define	_PAGE_USER	0x010	/* matches one of the zone permission bits */
208 #define	_PAGE_RW	0x040	/* software: Writes permitted */
209 #define	_PAGE_DIRTY	0x080	/* software: dirty page */
210 #define _PAGE_HWWRITE	0x100	/* hardware: Dirty & RW, set in exception */
211 #define _PAGE_HWEXEC	0x200	/* hardware: EX permission */
212 #define _PAGE_ACCESSED	0x400	/* software: R: page referenced */
213 #define _PMD_PRESENT	PAGE_MASK
214 
215 /*
216  * Some bits are unused...
217  */
218 #ifndef _PAGE_HASHPTE
219 #define _PAGE_HASHPTE	0
220 #endif
221 #ifndef _PTE_NONE_MASK
222 #define _PTE_NONE_MASK	0
223 #endif
224 #ifndef _PAGE_SHARED
225 #define _PAGE_SHARED	0
226 #endif
227 #ifndef _PAGE_HWWRITE
228 #define _PAGE_HWWRITE	0
229 #endif
230 #ifndef _PAGE_HWEXEC
231 #define _PAGE_HWEXEC	0
232 #endif
233 #ifndef _PAGE_EXEC
234 #define _PAGE_EXEC	0
235 #endif
236 
237 #define _PAGE_CHG_MASK	(PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
238 
239 /*
240  * Note: the _PAGE_COHERENT bit automatically gets set in the hardware
241  * PTE if CONFIG_SMP is defined (hash_page does this); there is no need
242  * to have it in the Linux PTE, and in fact the bit could be reused for
243  * another purpose.  -- paulus.
244  */
245 #define _PAGE_BASE	(_PAGE_PRESENT | _PAGE_ACCESSED)
246 #define _PAGE_WRENABLE	(_PAGE_RW | _PAGE_DIRTY | _PAGE_HWWRITE)
247 
248 #define _PAGE_KERNEL \
249 	(_PAGE_BASE | _PAGE_WRENABLE | _PAGE_SHARED | _PAGE_HWEXEC)
250 
251 #define _PAGE_IO	(_PAGE_KERNEL | _PAGE_NO_CACHE | _PAGE_GUARDED)
252 
253 #define PAGE_NONE	__pgprot(_PAGE_BASE)
254 #define PAGE_READONLY	__pgprot(_PAGE_BASE | _PAGE_USER)
255 #define PAGE_READONLY_X	__pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC)
256 #define PAGE_SHARED	__pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_RW)
257 #define PAGE_SHARED_X \
258 		__pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_RW | _PAGE_EXEC)
259 #define PAGE_COPY	__pgprot(_PAGE_BASE | _PAGE_USER)
260 #define PAGE_COPY_X	__pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC)
261 
262 #define PAGE_KERNEL	__pgprot(_PAGE_KERNEL)
263 #define PAGE_KERNEL_RO	__pgprot(_PAGE_BASE | _PAGE_SHARED)
264 #define PAGE_KERNEL_CI	__pgprot(_PAGE_IO)
265 
266 /*
267  * We consider execute permission the same as read.
268  * Also, write permissions imply read permissions.
269  */
270 #define __P000	PAGE_NONE
271 #define __P001	PAGE_READONLY_X
272 #define __P010	PAGE_COPY
273 #define __P011	PAGE_COPY_X
274 #define __P100	PAGE_READONLY
275 #define __P101	PAGE_READONLY_X
276 #define __P110	PAGE_COPY
277 #define __P111	PAGE_COPY_X
278 
279 #define __S000	PAGE_NONE
280 #define __S001	PAGE_READONLY_X
281 #define __S010	PAGE_SHARED
282 #define __S011	PAGE_SHARED_X
283 #define __S100	PAGE_READONLY
284 #define __S101	PAGE_READONLY_X
285 #define __S110	PAGE_SHARED
286 #define __S111	PAGE_SHARED_X
287 
288 #ifndef __ASSEMBLY__
289 /*
290  * ZERO_PAGE is a global shared page that is always zero: used
291  * for zero-mapped memory areas etc..
292  */
293 extern unsigned long empty_zero_page[1024];
294 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
295 
296 #endif /* __ASSEMBLY__ */
297 
298 #define pte_none(pte)		((pte_val(pte) & ~_PTE_NONE_MASK) == 0)
299 #define pte_present(pte)	(pte_val(pte) & _PAGE_PRESENT)
300 #define pte_clear(mm, addr, ptep) \
301 	do { set_pte_at((mm), (addr), (ptep), __pte(0)); } while (0)
302 
303 #define pmd_none(pmd)		(!pmd_val(pmd))
304 #define	pmd_bad(pmd)		((pmd_val(pmd) & _PMD_PRESENT) == 0)
305 #define	pmd_present(pmd)	((pmd_val(pmd) & _PMD_PRESENT) != 0)
306 #define	pmd_clear(pmdp)		do { pmd_val(*(pmdp)) = 0; } while (0)
307 
308 #define pte_page(x)		(mem_map + (unsigned long) \
309 				((pte_val(x) - memory_start) >> PAGE_SHIFT))
310 #define PFN_SHIFT_OFFSET	(PAGE_SHIFT)
311 
312 #define pte_pfn(x)		(pte_val(x) >> PFN_SHIFT_OFFSET)
313 
314 #define pfn_pte(pfn, prot) \
315 	__pte(((pte_basic_t)(pfn) << PFN_SHIFT_OFFSET) | pgprot_val(prot))
316 
317 #ifndef __ASSEMBLY__
318 /*
319  * The "pgd_xxx()" functions here are trivial for a folded two-level
320  * setup: the pgd is never bad, and a pmd always exists (as it's folded
321  * into the pgd entry)
322  */
323 static inline int pgd_none(pgd_t pgd)		{ return 0; }
324 static inline int pgd_bad(pgd_t pgd)		{ return 0; }
325 static inline int pgd_present(pgd_t pgd)	{ return 1; }
326 #define pgd_clear(xp)				do { } while (0)
327 #define pgd_page(pgd) \
328 	((unsigned long) __va(pgd_val(pgd) & PAGE_MASK))
329 
330 /*
331  * The following only work if pte_present() is true.
332  * Undefined behaviour if not..
333  */
334 static inline int pte_read(pte_t pte)  { return pte_val(pte) & _PAGE_USER; }
335 static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_RW; }
336 static inline int pte_exec(pte_t pte)  { return pte_val(pte) & _PAGE_EXEC; }
337 static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; }
338 static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; }
339 static inline int pte_file(pte_t pte)  { return pte_val(pte) & _PAGE_FILE; }
340 
341 static inline void pte_uncache(pte_t pte) { pte_val(pte) |= _PAGE_NO_CACHE; }
342 static inline void pte_cache(pte_t pte)   { pte_val(pte) &= ~_PAGE_NO_CACHE; }
343 
344 static inline pte_t pte_rdprotect(pte_t pte) \
345 		{ pte_val(pte) &= ~_PAGE_USER; return pte; }
346 static inline pte_t pte_wrprotect(pte_t pte) \
347 	{ pte_val(pte) &= ~(_PAGE_RW | _PAGE_HWWRITE); return pte; }
348 static inline pte_t pte_exprotect(pte_t pte) \
349 	{ pte_val(pte) &= ~_PAGE_EXEC; return pte; }
350 static inline pte_t pte_mkclean(pte_t pte) \
351 	{ pte_val(pte) &= ~(_PAGE_DIRTY | _PAGE_HWWRITE); return pte; }
352 static inline pte_t pte_mkold(pte_t pte) \
353 	{ pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
354 
355 static inline pte_t pte_mkread(pte_t pte) \
356 	{ pte_val(pte) |= _PAGE_USER; return pte; }
357 static inline pte_t pte_mkexec(pte_t pte) \
358 	{ pte_val(pte) |= _PAGE_USER | _PAGE_EXEC; return pte; }
359 static inline pte_t pte_mkwrite(pte_t pte) \
360 	{ pte_val(pte) |= _PAGE_RW; return pte; }
361 static inline pte_t pte_mkdirty(pte_t pte) \
362 	{ pte_val(pte) |= _PAGE_DIRTY; return pte; }
363 static inline pte_t pte_mkyoung(pte_t pte) \
364 	{ pte_val(pte) |= _PAGE_ACCESSED; return pte; }
365 
366 /*
367  * Conversion functions: convert a page and protection to a page entry,
368  * and a page entry and page directory to the page they refer to.
369  */
370 
371 static inline pte_t mk_pte_phys(phys_addr_t physpage, pgprot_t pgprot)
372 {
373 	pte_t pte;
374 	pte_val(pte) = physpage | pgprot_val(pgprot);
375 	return pte;
376 }
377 
378 #define mk_pte(page, pgprot) \
379 ({									   \
380 	pte_t pte;							   \
381 	pte_val(pte) = (((page - mem_map) << PAGE_SHIFT) + memory_start) |  \
382 			pgprot_val(pgprot);				   \
383 	pte;								   \
384 })
385 
386 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
387 {
388 	pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot);
389 	return pte;
390 }
391 
392 /*
393  * Atomic PTE updates.
394  *
395  * pte_update clears and sets bit atomically, and returns
396  * the old pte value.
397  * The ((unsigned long)(p+1) - 4) hack is to get to the least-significant
398  * 32 bits of the PTE regardless of whether PTEs are 32 or 64 bits.
399  */
400 static inline unsigned long pte_update(pte_t *p, unsigned long clr,
401 				unsigned long set)
402 {
403 	unsigned long old, tmp, msr;
404 
405 	__asm__ __volatile__("\
406 	msrclr	%2, 0x2\n\
407 	nop\n\
408 	lw	%0, %4, r0\n\
409 	andn	%1, %0, %5\n\
410 	or	%1, %1, %6\n\
411 	sw	%1, %4, r0\n\
412 	mts     rmsr, %2\n\
413 	nop"
414 	: "=&r" (old), "=&r" (tmp), "=&r" (msr), "=m" (*p)
415 	: "r" ((unsigned long)(p+1) - 4), "r" (clr), "r" (set), "m" (*p)
416 	: "cc");
417 
418 	return old;
419 }
420 
421 /*
422  * set_pte stores a linux PTE into the linux page table.
423  */
424 static inline void set_pte(struct mm_struct *mm, unsigned long addr,
425 		pte_t *ptep, pte_t pte)
426 {
427 	*ptep = pte;
428 }
429 
430 static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
431 		pte_t *ptep, pte_t pte)
432 {
433 	*ptep = pte;
434 }
435 
436 static inline int ptep_test_and_clear_young(struct mm_struct *mm,
437 		unsigned long addr, pte_t *ptep)
438 {
439 	return (pte_update(ptep, _PAGE_ACCESSED, 0) & _PAGE_ACCESSED) != 0;
440 }
441 
442 static inline int ptep_test_and_clear_dirty(struct mm_struct *mm,
443 		unsigned long addr, pte_t *ptep)
444 {
445 	return (pte_update(ptep, \
446 		(_PAGE_DIRTY | _PAGE_HWWRITE), 0) & _PAGE_DIRTY) != 0;
447 }
448 
449 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
450 		unsigned long addr, pte_t *ptep)
451 {
452 	return __pte(pte_update(ptep, ~_PAGE_HASHPTE, 0));
453 }
454 
455 /*static inline void ptep_set_wrprotect(struct mm_struct *mm,
456 		unsigned long addr, pte_t *ptep)
457 {
458 	pte_update(ptep, (_PAGE_RW | _PAGE_HWWRITE), 0);
459 }*/
460 
461 static inline void ptep_mkdirty(struct mm_struct *mm,
462 		unsigned long addr, pte_t *ptep)
463 {
464 	pte_update(ptep, 0, _PAGE_DIRTY);
465 }
466 
467 /*#define pte_same(A,B)	(((pte_val(A) ^ pte_val(B)) & ~_PAGE_HASHPTE) == 0)*/
468 
469 /* Convert pmd entry to page */
470 /* our pmd entry is an effective address of pte table*/
471 /* returns effective address of the pmd entry*/
472 #define pmd_page_kernel(pmd)	((unsigned long) (pmd_val(pmd) & PAGE_MASK))
473 
474 /* returns struct *page of the pmd entry*/
475 #define pmd_page(pmd)	(pfn_to_page(__pa(pmd_val(pmd)) >> PAGE_SHIFT))
476 
477 /* to find an entry in a kernel page-table-directory */
478 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
479 
480 /* to find an entry in a page-table-directory */
481 #define pgd_index(address)	 ((address) >> PGDIR_SHIFT)
482 #define pgd_offset(mm, address)	 ((mm)->pgd + pgd_index(address))
483 
484 /* Find an entry in the second-level page table.. */
485 static inline pmd_t *pmd_offset(pgd_t *dir, unsigned long address)
486 {
487 	return (pmd_t *) dir;
488 }
489 
490 /* Find an entry in the third-level page table.. */
491 #define pte_index(address)		\
492 	(((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
493 #define pte_offset_kernel(dir, addr)	\
494 	((pte_t *) pmd_page_kernel(*(dir)) + pte_index(addr))
495 #define pte_offset_map(dir, addr)		\
496 	((pte_t *) kmap_atomic(pmd_page(*(dir)), KM_PTE0) + pte_index(addr))
497 #define pte_offset_map_nested(dir, addr)	\
498 	((pte_t *) kmap_atomic(pmd_page(*(dir)), KM_PTE1) + pte_index(addr))
499 
500 #define pte_unmap(pte)		kunmap_atomic(pte, KM_PTE0)
501 #define pte_unmap_nested(pte)	kunmap_atomic(pte, KM_PTE1)
502 
503 /* Encode and decode a nonlinear file mapping entry */
504 #define PTE_FILE_MAX_BITS	29
505 #define pte_to_pgoff(pte)	(pte_val(pte) >> 3)
506 #define pgoff_to_pte(off)	((pte_t) { ((off) << 3) | _PAGE_FILE })
507 
508 extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
509 
510 /*
511  * When flushing the tlb entry for a page, we also need to flush the hash
512  * table entry.  flush_hash_page is assembler (for speed) in hashtable.S.
513  */
514 extern int flush_hash_page(unsigned context, unsigned long va, pte_t *ptep);
515 
516 /* Add an HPTE to the hash table */
517 extern void add_hash_page(unsigned context, unsigned long va, pte_t *ptep);
518 
519 /*
520  * Encode and decode a swap entry.
521  * Note that the bits we use in a PTE for representing a swap entry
522  * must not include the _PAGE_PRESENT bit, or the _PAGE_HASHPTE bit
523  * (if used).  -- paulus
524  */
525 #define __swp_type(entry)		((entry).val & 0x3f)
526 #define __swp_offset(entry)	((entry).val >> 6)
527 #define __swp_entry(type, offset) \
528 		((swp_entry_t) { (type) | ((offset) << 6) })
529 #define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) >> 2 })
530 #define __swp_entry_to_pte(x)	((pte_t) { (x).val << 2 })
531 
532 
533 /* CONFIG_APUS */
534 /* For virtual address to physical address conversion */
535 extern void cache_clear(__u32 addr, int length);
536 extern void cache_push(__u32 addr, int length);
537 extern int mm_end_of_chunk(unsigned long addr, int len);
538 extern unsigned long iopa(unsigned long addr);
539 /* extern unsigned long mm_ptov(unsigned long addr) \
540 	__attribute__ ((const)); TBD */
541 
542 /* Values for nocacheflag and cmode */
543 /* These are not used by the APUS kernel_map, but prevents
544  * compilation errors.
545  */
546 #define	IOMAP_FULL_CACHING	0
547 #define	IOMAP_NOCACHE_SER	1
548 #define	IOMAP_NOCACHE_NONSER	2
549 #define	IOMAP_NO_COPYBACK	3
550 
551 /*
552  * Map some physical address range into the kernel address space.
553  */
554 extern unsigned long kernel_map(unsigned long paddr, unsigned long size,
555 				int nocacheflag, unsigned long *memavailp);
556 
557 /*
558  * Set cache mode of (kernel space) address range.
559  */
560 extern void kernel_set_cachemode(unsigned long address, unsigned long size,
561 				unsigned int cmode);
562 
563 /* Needs to be defined here and not in linux/mm.h, as it is arch dependent */
564 #define kern_addr_valid(addr)	(1)
565 
566 #define io_remap_page_range remap_page_range
567 
568 /*
569  * No page table caches to initialise
570  */
571 #define pgtable_cache_init()	do { } while (0)
572 
573 void do_page_fault(struct pt_regs *regs, unsigned long address,
574 		   unsigned long error_code);
575 
576 void __init io_block_mapping(unsigned long virt, phys_addr_t phys,
577 			     unsigned int size, int flags);
578 
579 void __init adjust_total_lowmem(void);
580 void mapin_ram(void);
581 int map_page(unsigned long va, phys_addr_t pa, int flags);
582 
583 extern int mem_init_done;
584 extern unsigned long ioremap_base;
585 extern unsigned long ioremap_bot;
586 
587 asmlinkage void __init mmu_init(void);
588 
589 void __init *early_get_page(void);
590 
591 void *consistent_alloc(int gfp, size_t size, dma_addr_t *dma_handle);
592 void consistent_free(void *vaddr);
593 void consistent_sync(void *vaddr, size_t size, int direction);
594 void consistent_sync_page(struct page *page, unsigned long offset,
595 	size_t size, int direction);
596 #endif /* __ASSEMBLY__ */
597 #endif /* __KERNEL__ */
598 
599 #endif /* CONFIG_MMU */
600 
601 #ifndef __ASSEMBLY__
602 #include <asm-generic/pgtable.h>
603 
604 void setup_memory(void);
605 #endif /* __ASSEMBLY__ */
606 
607 #endif /* _ASM_MICROBLAZE_PGTABLE_H */
608