xref: /linux/arch/m68k/sun3/mmu_emu.c (revision ca55b2fef3a9373fcfc30f82fd26bc7fccbda732)
1 /*
2 ** Tablewalk MMU emulator
3 **
4 ** by Toshiyasu Morita
5 **
6 ** Started 1/16/98 @ 2:22 am
7 */
8 
9 #include <linux/init.h>
10 #include <linux/mman.h>
11 #include <linux/mm.h>
12 #include <linux/kernel.h>
13 #include <linux/ptrace.h>
14 #include <linux/delay.h>
15 #include <linux/bootmem.h>
16 #include <linux/bitops.h>
17 #include <linux/module.h>
18 
19 #include <asm/setup.h>
20 #include <asm/traps.h>
21 #include <asm/uaccess.h>
22 #include <asm/page.h>
23 #include <asm/pgtable.h>
24 #include <asm/sun3mmu.h>
25 #include <asm/segment.h>
26 #include <asm/oplib.h>
27 #include <asm/mmu_context.h>
28 #include <asm/dvma.h>
29 
30 
31 #undef DEBUG_MMU_EMU
32 #define DEBUG_PROM_MAPS
33 
34 /*
35 ** Defines
36 */
37 
38 #define CONTEXTS_NUM		8
39 #define SEGMAPS_PER_CONTEXT_NUM 2048
40 #define PAGES_PER_SEGMENT	16
41 #define PMEGS_NUM		256
42 #define PMEG_MASK		0xFF
43 
44 /*
45 ** Globals
46 */
47 
48 unsigned long m68k_vmalloc_end;
49 EXPORT_SYMBOL(m68k_vmalloc_end);
50 
51 unsigned long pmeg_vaddr[PMEGS_NUM];
52 unsigned char pmeg_alloc[PMEGS_NUM];
53 unsigned char pmeg_ctx[PMEGS_NUM];
54 
55 /* pointers to the mm structs for each task in each
56    context. 0xffffffff is a marker for kernel context */
57 static struct mm_struct *ctx_alloc[CONTEXTS_NUM] = {
58     [0] = (struct mm_struct *)0xffffffff
59 };
60 
61 /* has this context been mmdrop'd? */
62 static unsigned char ctx_avail = CONTEXTS_NUM-1;
63 
64 /* array of pages to be marked off for the rom when we do mem_init later */
65 /* 256 pages lets the rom take up to 2mb of physical ram..  I really
66    hope it never wants mote than that. */
67 unsigned long rom_pages[256];
68 
69 /* Print a PTE value in symbolic form. For debugging. */
70 void print_pte (pte_t pte)
71 {
72 #if 0
73 	/* Verbose version. */
74 	unsigned long val = pte_val (pte);
75 	printk (" pte=%lx [addr=%lx",
76 		val, (val & SUN3_PAGE_PGNUM_MASK) << PAGE_SHIFT);
77 	if (val & SUN3_PAGE_VALID)	printk (" valid");
78 	if (val & SUN3_PAGE_WRITEABLE)	printk (" write");
79 	if (val & SUN3_PAGE_SYSTEM)	printk (" sys");
80 	if (val & SUN3_PAGE_NOCACHE)	printk (" nocache");
81 	if (val & SUN3_PAGE_ACCESSED)	printk (" accessed");
82 	if (val & SUN3_PAGE_MODIFIED)	printk (" modified");
83 	switch (val & SUN3_PAGE_TYPE_MASK) {
84 		case SUN3_PAGE_TYPE_MEMORY: printk (" memory"); break;
85 		case SUN3_PAGE_TYPE_IO:     printk (" io");     break;
86 		case SUN3_PAGE_TYPE_VME16:  printk (" vme16");  break;
87 		case SUN3_PAGE_TYPE_VME32:  printk (" vme32");  break;
88 	}
89 	printk ("]\n");
90 #else
91 	/* Terse version. More likely to fit on a line. */
92 	unsigned long val = pte_val (pte);
93 	char flags[7], *type;
94 
95 	flags[0] = (val & SUN3_PAGE_VALID)     ? 'v' : '-';
96 	flags[1] = (val & SUN3_PAGE_WRITEABLE) ? 'w' : '-';
97 	flags[2] = (val & SUN3_PAGE_SYSTEM)    ? 's' : '-';
98 	flags[3] = (val & SUN3_PAGE_NOCACHE)   ? 'x' : '-';
99 	flags[4] = (val & SUN3_PAGE_ACCESSED)  ? 'a' : '-';
100 	flags[5] = (val & SUN3_PAGE_MODIFIED)  ? 'm' : '-';
101 	flags[6] = '\0';
102 
103 	switch (val & SUN3_PAGE_TYPE_MASK) {
104 		case SUN3_PAGE_TYPE_MEMORY: type = "memory"; break;
105 		case SUN3_PAGE_TYPE_IO:     type = "io"    ; break;
106 		case SUN3_PAGE_TYPE_VME16:  type = "vme16" ; break;
107 		case SUN3_PAGE_TYPE_VME32:  type = "vme32" ; break;
108 		default: type = "unknown?"; break;
109 	}
110 
111 	printk (" pte=%08lx [%07lx %s %s]\n",
112 		val, (val & SUN3_PAGE_PGNUM_MASK) << PAGE_SHIFT, flags, type);
113 #endif
114 }
115 
116 /* Print the PTE value for a given virtual address. For debugging. */
117 void print_pte_vaddr (unsigned long vaddr)
118 {
119 	printk (" vaddr=%lx [%02lx]", vaddr, sun3_get_segmap (vaddr));
120 	print_pte (__pte (sun3_get_pte (vaddr)));
121 }
122 
123 /*
124  * Initialise the MMU emulator.
125  */
126 void __init mmu_emu_init(unsigned long bootmem_end)
127 {
128 	unsigned long seg, num;
129 	int i,j;
130 
131 	memset(rom_pages, 0, sizeof(rom_pages));
132 	memset(pmeg_vaddr, 0, sizeof(pmeg_vaddr));
133 	memset(pmeg_alloc, 0, sizeof(pmeg_alloc));
134 	memset(pmeg_ctx, 0, sizeof(pmeg_ctx));
135 
136 	/* pmeg align the end of bootmem, adding another pmeg,
137 	 * later bootmem allocations will likely need it */
138 	bootmem_end = (bootmem_end + (2 * SUN3_PMEG_SIZE)) & ~SUN3_PMEG_MASK;
139 
140 	/* mark all of the pmegs used thus far as reserved */
141 	for (i=0; i < __pa(bootmem_end) / SUN3_PMEG_SIZE ; ++i)
142 		pmeg_alloc[i] = 2;
143 
144 
145 	/* I'm thinking that most of the top pmeg's are going to be
146 	   used for something, and we probably shouldn't risk it */
147 	for(num = 0xf0; num <= 0xff; num++)
148 		pmeg_alloc[num] = 2;
149 
150 	/* liberate all existing mappings in the rest of kernel space */
151 	for(seg = bootmem_end; seg < 0x0f800000; seg += SUN3_PMEG_SIZE) {
152 		i = sun3_get_segmap(seg);
153 
154 		if(!pmeg_alloc[i]) {
155 #ifdef DEBUG_MMU_EMU
156 			printk("freed: ");
157 			print_pte_vaddr (seg);
158 #endif
159 			sun3_put_segmap(seg, SUN3_INVALID_PMEG);
160 		}
161 	}
162 
163 	j = 0;
164 	for (num=0, seg=0x0F800000; seg<0x10000000; seg+=16*PAGE_SIZE) {
165 		if (sun3_get_segmap (seg) != SUN3_INVALID_PMEG) {
166 #ifdef DEBUG_PROM_MAPS
167 			for(i = 0; i < 16; i++) {
168 				printk ("mapped:");
169 				print_pte_vaddr (seg + (i*PAGE_SIZE));
170 				break;
171 			}
172 #endif
173 			// the lowest mapping here is the end of our
174 			// vmalloc region
175 			if (!m68k_vmalloc_end)
176 				m68k_vmalloc_end = seg;
177 
178 			// mark the segmap alloc'd, and reserve any
179 			// of the first 0xbff pages the hardware is
180 			// already using...  does any sun3 support > 24mb?
181 			pmeg_alloc[sun3_get_segmap(seg)] = 2;
182 		}
183 	}
184 
185 	dvma_init();
186 
187 
188 	/* blank everything below the kernel, and we've got the base
189 	   mapping to start all the contexts off with... */
190 	for(seg = 0; seg < PAGE_OFFSET; seg += SUN3_PMEG_SIZE)
191 		sun3_put_segmap(seg, SUN3_INVALID_PMEG);
192 
193 	set_fs(MAKE_MM_SEG(3));
194 	for(seg = 0; seg < 0x10000000; seg += SUN3_PMEG_SIZE) {
195 		i = sun3_get_segmap(seg);
196 		for(j = 1; j < CONTEXTS_NUM; j++)
197 			(*(romvec->pv_setctxt))(j, (void *)seg, i);
198 	}
199 	set_fs(KERNEL_DS);
200 
201 }
202 
203 /* erase the mappings for a dead context.  Uses the pg_dir for hints
204    as the pmeg tables proved somewhat unreliable, and unmapping all of
205    TASK_SIZE was much slower and no more stable. */
206 /* todo: find a better way to keep track of the pmegs used by a
207    context for when they're cleared */
208 void clear_context(unsigned long context)
209 {
210      unsigned char oldctx;
211      unsigned long i;
212 
213      if(context) {
214 	     if(!ctx_alloc[context])
215 		     panic("clear_context: context not allocated\n");
216 
217 	     ctx_alloc[context]->context = SUN3_INVALID_CONTEXT;
218 	     ctx_alloc[context] = (struct mm_struct *)0;
219 	     ctx_avail++;
220      }
221 
222      oldctx = sun3_get_context();
223 
224      sun3_put_context(context);
225 
226      for(i = 0; i < SUN3_INVALID_PMEG; i++) {
227 	     if((pmeg_ctx[i] == context) && (pmeg_alloc[i] == 1)) {
228 		     sun3_put_segmap(pmeg_vaddr[i], SUN3_INVALID_PMEG);
229 		     pmeg_ctx[i] = 0;
230 		     pmeg_alloc[i] = 0;
231 		     pmeg_vaddr[i] = 0;
232 	     }
233      }
234 
235      sun3_put_context(oldctx);
236 }
237 
238 /* gets an empty context.  if full, kills the next context listed to
239    die first */
240 /* This context invalidation scheme is, well, totally arbitrary, I'm
241    sure it could be much more intelligent...  but it gets the job done
242    for now without much overhead in making it's decision. */
243 /* todo: come up with optimized scheme for flushing contexts */
244 unsigned long get_free_context(struct mm_struct *mm)
245 {
246 	unsigned long new = 1;
247 	static unsigned char next_to_die = 1;
248 
249 	if(!ctx_avail) {
250 		/* kill someone to get our context */
251 		new = next_to_die;
252 		clear_context(new);
253 		next_to_die = (next_to_die + 1) & 0x7;
254 		if(!next_to_die)
255 			next_to_die++;
256 	} else {
257 		while(new < CONTEXTS_NUM) {
258 			if(ctx_alloc[new])
259 				new++;
260 			else
261 				break;
262 		}
263 		// check to make sure one was really free...
264 		if(new == CONTEXTS_NUM)
265 			panic("get_free_context: failed to find free context");
266 	}
267 
268 	ctx_alloc[new] = mm;
269 	ctx_avail--;
270 
271 	return new;
272 }
273 
274 /*
275  * Dynamically select a `spare' PMEG and use it to map virtual `vaddr' in
276  * `context'. Maintain internal PMEG management structures. This doesn't
277  * actually map the physical address, but does clear the old mappings.
278  */
279 //todo: better allocation scheme? but is extra complexity worthwhile?
280 //todo: only clear old entries if necessary? how to tell?
281 
282 inline void mmu_emu_map_pmeg (int context, int vaddr)
283 {
284 	static unsigned char curr_pmeg = 128;
285 	int i;
286 
287 	/* Round address to PMEG boundary. */
288 	vaddr &= ~SUN3_PMEG_MASK;
289 
290 	/* Find a spare one. */
291 	while (pmeg_alloc[curr_pmeg] == 2)
292 		++curr_pmeg;
293 
294 
295 #ifdef DEBUG_MMU_EMU
296 printk("mmu_emu_map_pmeg: pmeg %x to context %d vaddr %x\n",
297        curr_pmeg, context, vaddr);
298 #endif
299 
300 	/* Invalidate old mapping for the pmeg, if any */
301 	if (pmeg_alloc[curr_pmeg] == 1) {
302 		sun3_put_context(pmeg_ctx[curr_pmeg]);
303 		sun3_put_segmap (pmeg_vaddr[curr_pmeg], SUN3_INVALID_PMEG);
304 		sun3_put_context(context);
305 	}
306 
307 	/* Update PMEG management structures. */
308 	// don't take pmeg's away from the kernel...
309 	if(vaddr >= PAGE_OFFSET) {
310 		/* map kernel pmegs into all contexts */
311 		unsigned char i;
312 
313 		for(i = 0; i < CONTEXTS_NUM; i++) {
314 			sun3_put_context(i);
315 			sun3_put_segmap (vaddr, curr_pmeg);
316 		}
317 		sun3_put_context(context);
318 		pmeg_alloc[curr_pmeg] = 2;
319 		pmeg_ctx[curr_pmeg] = 0;
320 
321 	}
322 	else {
323 		pmeg_alloc[curr_pmeg] = 1;
324 		pmeg_ctx[curr_pmeg] = context;
325 		sun3_put_segmap (vaddr, curr_pmeg);
326 
327 	}
328 	pmeg_vaddr[curr_pmeg] = vaddr;
329 
330 	/* Set hardware mapping and clear the old PTE entries. */
331 	for (i=0; i<SUN3_PMEG_SIZE; i+=SUN3_PTE_SIZE)
332 		sun3_put_pte (vaddr + i, SUN3_PAGE_SYSTEM);
333 
334 	/* Consider a different one next time. */
335 	++curr_pmeg;
336 }
337 
338 /*
339  * Handle a pagefault at virtual address `vaddr'; check if there should be a
340  * page there (specifically, whether the software pagetables indicate that
341  * there is). This is necessary due to the limited size of the second-level
342  * Sun3 hardware pagetables (256 groups of 16 pages). If there should be a
343  * mapping present, we select a `spare' PMEG and use it to create a mapping.
344  * `read_flag' is nonzero for a read fault; zero for a write. Returns nonzero
345  * if we successfully handled the fault.
346  */
347 //todo: should we bump minor pagefault counter? if so, here or in caller?
348 //todo: possibly inline this into bus_error030 in <asm/buserror.h> ?
349 
350 // kernel_fault is set when a kernel page couldn't be demand mapped,
351 // and forces another try using the kernel page table.  basically a
352 // hack so that vmalloc would work correctly.
353 
354 int mmu_emu_handle_fault (unsigned long vaddr, int read_flag, int kernel_fault)
355 {
356 	unsigned long segment, offset;
357 	unsigned char context;
358 	pte_t *pte;
359 	pgd_t * crp;
360 
361 	if(current->mm == NULL) {
362 		crp = swapper_pg_dir;
363 		context = 0;
364 	} else {
365 		context = current->mm->context;
366 		if(kernel_fault)
367 			crp = swapper_pg_dir;
368 		else
369 			crp = current->mm->pgd;
370 	}
371 
372 #ifdef DEBUG_MMU_EMU
373 	printk ("mmu_emu_handle_fault: vaddr=%lx type=%s crp=%p\n",
374 		vaddr, read_flag ? "read" : "write", crp);
375 #endif
376 
377 	segment = (vaddr >> SUN3_PMEG_SIZE_BITS) & 0x7FF;
378 	offset  = (vaddr >> SUN3_PTE_SIZE_BITS) & 0xF;
379 
380 #ifdef DEBUG_MMU_EMU
381 	printk ("mmu_emu_handle_fault: segment=%lx offset=%lx\n", segment, offset);
382 #endif
383 
384 	pte = (pte_t *) pgd_val (*(crp + segment));
385 
386 //todo: next line should check for valid pmd properly.
387 	if (!pte) {
388 //                printk ("mmu_emu_handle_fault: invalid pmd\n");
389                 return 0;
390         }
391 
392 	pte = (pte_t *) __va ((unsigned long)(pte + offset));
393 
394 	/* Make sure this is a valid page */
395 	if (!(pte_val (*pte) & SUN3_PAGE_VALID))
396 		return 0;
397 
398 	/* Make sure there's a pmeg allocated for the page */
399 	if (sun3_get_segmap (vaddr&~SUN3_PMEG_MASK) == SUN3_INVALID_PMEG)
400 		mmu_emu_map_pmeg (context, vaddr);
401 
402 	/* Write the pte value to hardware MMU */
403 	sun3_put_pte (vaddr&PAGE_MASK, pte_val (*pte));
404 
405 	/* Update software copy of the pte value */
406 // I'm not sure this is necessary. If this is required, we ought to simply
407 // copy this out when we reuse the PMEG or at some other convenient time.
408 // Doing it here is fairly meaningless, anyway, as we only know about the
409 // first access to a given page. --m
410 	if (!read_flag) {
411 		if (pte_val (*pte) & SUN3_PAGE_WRITEABLE)
412 			pte_val (*pte) |= (SUN3_PAGE_ACCESSED
413 					   | SUN3_PAGE_MODIFIED);
414 		else
415 			return 0;	/* Write-protect error. */
416 	} else
417 		pte_val (*pte) |= SUN3_PAGE_ACCESSED;
418 
419 #ifdef DEBUG_MMU_EMU
420 	printk ("seg:%d crp:%p ->", get_fs().seg, crp);
421 	print_pte_vaddr (vaddr);
422 	printk ("\n");
423 #endif
424 
425 	return 1;
426 }
427