1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/arch/m68k/mm/motorola.c 4 * 5 * Routines specific to the Motorola MMU, originally from: 6 * linux/arch/m68k/init.c 7 * which are Copyright (C) 1995 Hamish Macdonald 8 * 9 * Moved 8/20/1999 Sam Creasey 10 */ 11 12 #include <linux/module.h> 13 #include <linux/signal.h> 14 #include <linux/sched.h> 15 #include <linux/mm.h> 16 #include <linux/swap.h> 17 #include <linux/kernel.h> 18 #include <linux/string.h> 19 #include <linux/types.h> 20 #include <linux/init.h> 21 #include <linux/memblock.h> 22 #include <linux/gfp.h> 23 24 #include <asm/setup.h> 25 #include <linux/uaccess.h> 26 #include <asm/page.h> 27 #include <asm/pgalloc.h> 28 #include <asm/machdep.h> 29 #include <asm/io.h> 30 #ifdef CONFIG_ATARI 31 #include <asm/atari_stram.h> 32 #endif 33 #include <asm/sections.h> 34 35 #undef DEBUG 36 37 #ifndef mm_cachebits 38 /* 39 * Bits to add to page descriptors for "normal" caching mode. 40 * For 68020/030 this is 0. 41 * For 68040, this is _PAGE_CACHE040 (cachable, copyback) 42 */ 43 unsigned long mm_cachebits; 44 EXPORT_SYMBOL(mm_cachebits); 45 #endif 46 47 /* Prior to calling these routines, the page should have been flushed 48 * from both the cache and ATC, or the CPU might not notice that the 49 * cache setting for the page has been changed. -jskov 50 */ 51 static inline void nocache_page(void *vaddr) 52 { 53 unsigned long addr = (unsigned long)vaddr; 54 55 if (CPU_IS_040_OR_060) { 56 pte_t *ptep = virt_to_kpte(addr); 57 58 *ptep = pte_mknocache(*ptep); 59 } 60 } 61 62 static inline void cache_page(void *vaddr) 63 { 64 unsigned long addr = (unsigned long)vaddr; 65 66 if (CPU_IS_040_OR_060) { 67 pte_t *ptep = virt_to_kpte(addr); 68 69 *ptep = pte_mkcache(*ptep); 70 } 71 } 72 73 /* 74 * Motorola 680x0 user's manual recommends using uncached memory for address 75 * translation tables. 76 * 77 * Seeing how the MMU can be external on (some of) these chips, that seems like 78 * a very important recommendation to follow. Provide some helpers to combat 79 * 'variation' amongst the users of this. 80 */ 81 82 void mmu_page_ctor(void *page) 83 { 84 __flush_page_to_ram(page); 85 flush_tlb_kernel_page(page); 86 nocache_page(page); 87 } 88 89 void mmu_page_dtor(void *page) 90 { 91 cache_page(page); 92 } 93 94 /* ++andreas: {get,free}_pointer_table rewritten to use unused fields from 95 struct page instead of separately kmalloced struct. Stolen from 96 arch/sparc/mm/srmmu.c ... */ 97 98 typedef struct list_head ptable_desc; 99 100 static struct list_head ptable_list[2] = { 101 LIST_HEAD_INIT(ptable_list[0]), 102 LIST_HEAD_INIT(ptable_list[1]), 103 }; 104 105 #define PD_PTABLE(page) ((ptable_desc *)&(virt_to_page(page)->lru)) 106 #define PD_PAGE(ptable) (list_entry(ptable, struct page, lru)) 107 #define PD_MARKBITS(dp) (*(unsigned int *)&PD_PAGE(dp)->index) 108 109 static const int ptable_shift[2] = { 110 7+2, /* PGD, PMD */ 111 6+2, /* PTE */ 112 }; 113 114 #define ptable_size(type) (1U << ptable_shift[type]) 115 #define ptable_mask(type) ((1U << (PAGE_SIZE / ptable_size(type))) - 1) 116 117 void __init init_pointer_table(void *table, int type) 118 { 119 ptable_desc *dp; 120 unsigned long ptable = (unsigned long)table; 121 unsigned long page = ptable & PAGE_MASK; 122 unsigned int mask = 1U << ((ptable - page)/ptable_size(type)); 123 124 dp = PD_PTABLE(page); 125 if (!(PD_MARKBITS(dp) & mask)) { 126 PD_MARKBITS(dp) = ptable_mask(type); 127 list_add(dp, &ptable_list[type]); 128 } 129 130 PD_MARKBITS(dp) &= ~mask; 131 pr_debug("init_pointer_table: %lx, %x\n", ptable, PD_MARKBITS(dp)); 132 133 /* unreserve the page so it's possible to free that page */ 134 __ClearPageReserved(PD_PAGE(dp)); 135 init_page_count(PD_PAGE(dp)); 136 137 return; 138 } 139 140 void *get_pointer_table(int type) 141 { 142 ptable_desc *dp = ptable_list[type].next; 143 unsigned int mask = list_empty(&ptable_list[type]) ? 0 : PD_MARKBITS(dp); 144 unsigned int tmp, off; 145 146 /* 147 * For a pointer table for a user process address space, a 148 * table is taken from a page allocated for the purpose. Each 149 * page can hold 8 pointer tables. The page is remapped in 150 * virtual address space to be noncacheable. 151 */ 152 if (mask == 0) { 153 void *page; 154 ptable_desc *new; 155 156 if (!(page = (void *)get_zeroed_page(GFP_KERNEL))) 157 return NULL; 158 159 if (type == TABLE_PTE) { 160 /* 161 * m68k doesn't have SPLIT_PTE_PTLOCKS for not having 162 * SMP. 163 */ 164 pgtable_pte_page_ctor(virt_to_page(page)); 165 } 166 167 mmu_page_ctor(page); 168 169 new = PD_PTABLE(page); 170 PD_MARKBITS(new) = ptable_mask(type) - 1; 171 list_add_tail(new, dp); 172 173 return (pmd_t *)page; 174 } 175 176 for (tmp = 1, off = 0; (mask & tmp) == 0; tmp <<= 1, off += ptable_size(type)) 177 ; 178 PD_MARKBITS(dp) = mask & ~tmp; 179 if (!PD_MARKBITS(dp)) { 180 /* move to end of list */ 181 list_move_tail(dp, &ptable_list[type]); 182 } 183 return page_address(PD_PAGE(dp)) + off; 184 } 185 186 int free_pointer_table(void *table, int type) 187 { 188 ptable_desc *dp; 189 unsigned long ptable = (unsigned long)table; 190 unsigned long page = ptable & PAGE_MASK; 191 unsigned int mask = 1U << ((ptable - page)/ptable_size(type)); 192 193 dp = PD_PTABLE(page); 194 if (PD_MARKBITS (dp) & mask) 195 panic ("table already free!"); 196 197 PD_MARKBITS (dp) |= mask; 198 199 if (PD_MARKBITS(dp) == ptable_mask(type)) { 200 /* all tables in page are free, free page */ 201 list_del(dp); 202 mmu_page_dtor((void *)page); 203 if (type == TABLE_PTE) 204 pgtable_pte_page_dtor(virt_to_page(page)); 205 free_page (page); 206 return 1; 207 } else if (ptable_list[type].next != dp) { 208 /* 209 * move this descriptor to the front of the list, since 210 * it has one or more free tables. 211 */ 212 list_move(dp, &ptable_list[type]); 213 } 214 return 0; 215 } 216 217 /* size of memory already mapped in head.S */ 218 extern __initdata unsigned long m68k_init_mapped_size; 219 220 extern unsigned long availmem; 221 222 static pte_t *last_pte_table __initdata = NULL; 223 224 static pte_t * __init kernel_page_table(void) 225 { 226 pte_t *pte_table = last_pte_table; 227 228 if (PAGE_ALIGNED(last_pte_table)) { 229 pte_table = memblock_alloc_low(PAGE_SIZE, PAGE_SIZE); 230 if (!pte_table) { 231 panic("%s: Failed to allocate %lu bytes align=%lx\n", 232 __func__, PAGE_SIZE, PAGE_SIZE); 233 } 234 235 clear_page(pte_table); 236 mmu_page_ctor(pte_table); 237 238 last_pte_table = pte_table; 239 } 240 241 last_pte_table += PTRS_PER_PTE; 242 243 return pte_table; 244 } 245 246 static pmd_t *last_pmd_table __initdata = NULL; 247 248 static pmd_t * __init kernel_ptr_table(void) 249 { 250 if (!last_pmd_table) { 251 unsigned long pmd, last; 252 int i; 253 254 /* Find the last ptr table that was used in head.S and 255 * reuse the remaining space in that page for further 256 * ptr tables. 257 */ 258 last = (unsigned long)kernel_pg_dir; 259 for (i = 0; i < PTRS_PER_PGD; i++) { 260 pud_t *pud = (pud_t *)(&kernel_pg_dir[i]); 261 262 if (!pud_present(*pud)) 263 continue; 264 pmd = pgd_page_vaddr(kernel_pg_dir[i]); 265 if (pmd > last) 266 last = pmd; 267 } 268 269 last_pmd_table = (pmd_t *)last; 270 #ifdef DEBUG 271 printk("kernel_ptr_init: %p\n", last_pmd_table); 272 #endif 273 } 274 275 last_pmd_table += PTRS_PER_PMD; 276 if (PAGE_ALIGNED(last_pmd_table)) { 277 last_pmd_table = memblock_alloc_low(PAGE_SIZE, PAGE_SIZE); 278 if (!last_pmd_table) 279 panic("%s: Failed to allocate %lu bytes align=%lx\n", 280 __func__, PAGE_SIZE, PAGE_SIZE); 281 282 clear_page(last_pmd_table); 283 mmu_page_ctor(last_pmd_table); 284 } 285 286 return last_pmd_table; 287 } 288 289 static void __init map_node(int node) 290 { 291 unsigned long physaddr, virtaddr, size; 292 pgd_t *pgd_dir; 293 p4d_t *p4d_dir; 294 pud_t *pud_dir; 295 pmd_t *pmd_dir; 296 pte_t *pte_dir; 297 298 size = m68k_memory[node].size; 299 physaddr = m68k_memory[node].addr; 300 virtaddr = (unsigned long)phys_to_virt(physaddr); 301 physaddr |= m68k_supervisor_cachemode | 302 _PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_DIRTY; 303 if (CPU_IS_040_OR_060) 304 physaddr |= _PAGE_GLOBAL040; 305 306 while (size > 0) { 307 #ifdef DEBUG 308 if (!(virtaddr & (PMD_SIZE-1))) 309 printk ("\npa=%#lx va=%#lx ", physaddr & PAGE_MASK, 310 virtaddr); 311 #endif 312 pgd_dir = pgd_offset_k(virtaddr); 313 if (virtaddr && CPU_IS_020_OR_030) { 314 if (!(virtaddr & (PGDIR_SIZE-1)) && 315 size >= PGDIR_SIZE) { 316 #ifdef DEBUG 317 printk ("[very early term]"); 318 #endif 319 pgd_val(*pgd_dir) = physaddr; 320 size -= PGDIR_SIZE; 321 virtaddr += PGDIR_SIZE; 322 physaddr += PGDIR_SIZE; 323 continue; 324 } 325 } 326 p4d_dir = p4d_offset(pgd_dir, virtaddr); 327 pud_dir = pud_offset(p4d_dir, virtaddr); 328 if (!pud_present(*pud_dir)) { 329 pmd_dir = kernel_ptr_table(); 330 #ifdef DEBUG 331 printk ("[new pointer %p]", pmd_dir); 332 #endif 333 pud_set(pud_dir, pmd_dir); 334 } else 335 pmd_dir = pmd_offset(pud_dir, virtaddr); 336 337 if (CPU_IS_020_OR_030) { 338 if (virtaddr) { 339 #ifdef DEBUG 340 printk ("[early term]"); 341 #endif 342 pmd_val(*pmd_dir) = physaddr; 343 physaddr += PMD_SIZE; 344 } else { 345 int i; 346 #ifdef DEBUG 347 printk ("[zero map]"); 348 #endif 349 pte_dir = kernel_page_table(); 350 pmd_set(pmd_dir, pte_dir); 351 352 pte_val(*pte_dir++) = 0; 353 physaddr += PAGE_SIZE; 354 for (i = 1; i < PTRS_PER_PTE; physaddr += PAGE_SIZE, i++) 355 pte_val(*pte_dir++) = physaddr; 356 } 357 size -= PMD_SIZE; 358 virtaddr += PMD_SIZE; 359 } else { 360 if (!pmd_present(*pmd_dir)) { 361 #ifdef DEBUG 362 printk ("[new table]"); 363 #endif 364 pte_dir = kernel_page_table(); 365 pmd_set(pmd_dir, pte_dir); 366 } 367 pte_dir = pte_offset_kernel(pmd_dir, virtaddr); 368 369 if (virtaddr) { 370 if (!pte_present(*pte_dir)) 371 pte_val(*pte_dir) = physaddr; 372 } else 373 pte_val(*pte_dir) = 0; 374 size -= PAGE_SIZE; 375 virtaddr += PAGE_SIZE; 376 physaddr += PAGE_SIZE; 377 } 378 379 } 380 #ifdef DEBUG 381 printk("\n"); 382 #endif 383 } 384 385 /* 386 * Alternate definitions that are compile time constants, for 387 * initializing protection_map. The cachebits are fixed later. 388 */ 389 #define PAGE_NONE_C __pgprot(_PAGE_PROTNONE | _PAGE_ACCESSED) 390 #define PAGE_SHARED_C __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED) 391 #define PAGE_COPY_C __pgprot(_PAGE_PRESENT | _PAGE_RONLY | _PAGE_ACCESSED) 392 #define PAGE_READONLY_C __pgprot(_PAGE_PRESENT | _PAGE_RONLY | _PAGE_ACCESSED) 393 394 static pgprot_t protection_map[16] __ro_after_init = { 395 [VM_NONE] = PAGE_NONE_C, 396 [VM_READ] = PAGE_READONLY_C, 397 [VM_WRITE] = PAGE_COPY_C, 398 [VM_WRITE | VM_READ] = PAGE_COPY_C, 399 [VM_EXEC] = PAGE_READONLY_C, 400 [VM_EXEC | VM_READ] = PAGE_READONLY_C, 401 [VM_EXEC | VM_WRITE] = PAGE_COPY_C, 402 [VM_EXEC | VM_WRITE | VM_READ] = PAGE_COPY_C, 403 [VM_SHARED] = PAGE_NONE_C, 404 [VM_SHARED | VM_READ] = PAGE_READONLY_C, 405 [VM_SHARED | VM_WRITE] = PAGE_SHARED_C, 406 [VM_SHARED | VM_WRITE | VM_READ] = PAGE_SHARED_C, 407 [VM_SHARED | VM_EXEC] = PAGE_READONLY_C, 408 [VM_SHARED | VM_EXEC | VM_READ] = PAGE_READONLY_C, 409 [VM_SHARED | VM_EXEC | VM_WRITE] = PAGE_SHARED_C, 410 [VM_SHARED | VM_EXEC | VM_WRITE | VM_READ] = PAGE_SHARED_C 411 }; 412 DECLARE_VM_GET_PAGE_PROT 413 414 /* 415 * paging_init() continues the virtual memory environment setup which 416 * was begun by the code in arch/head.S. 417 */ 418 void __init paging_init(void) 419 { 420 unsigned long max_zone_pfn[MAX_NR_ZONES] = { 0, }; 421 unsigned long min_addr, max_addr; 422 unsigned long addr; 423 int i; 424 425 #ifdef DEBUG 426 printk ("start of paging_init (%p, %lx)\n", kernel_pg_dir, availmem); 427 #endif 428 429 /* Fix the cache mode in the page descriptors for the 680[46]0. */ 430 if (CPU_IS_040_OR_060) { 431 int i; 432 #ifndef mm_cachebits 433 mm_cachebits = _PAGE_CACHE040; 434 #endif 435 for (i = 0; i < 16; i++) 436 pgprot_val(protection_map[i]) |= _PAGE_CACHE040; 437 } 438 439 min_addr = m68k_memory[0].addr; 440 max_addr = min_addr + m68k_memory[0].size; 441 memblock_add_node(m68k_memory[0].addr, m68k_memory[0].size, 0, 442 MEMBLOCK_NONE); 443 for (i = 1; i < m68k_num_memory;) { 444 if (m68k_memory[i].addr < min_addr) { 445 printk("Ignoring memory chunk at 0x%lx:0x%lx before the first chunk\n", 446 m68k_memory[i].addr, m68k_memory[i].size); 447 printk("Fix your bootloader or use a memfile to make use of this area!\n"); 448 m68k_num_memory--; 449 memmove(m68k_memory + i, m68k_memory + i + 1, 450 (m68k_num_memory - i) * sizeof(struct m68k_mem_info)); 451 continue; 452 } 453 memblock_add_node(m68k_memory[i].addr, m68k_memory[i].size, i, 454 MEMBLOCK_NONE); 455 addr = m68k_memory[i].addr + m68k_memory[i].size; 456 if (addr > max_addr) 457 max_addr = addr; 458 i++; 459 } 460 m68k_memoffset = min_addr - PAGE_OFFSET; 461 m68k_virt_to_node_shift = fls(max_addr - min_addr - 1) - 6; 462 463 module_fixup(NULL, __start_fixup, __stop_fixup); 464 flush_icache(); 465 466 high_memory = phys_to_virt(max_addr); 467 468 min_low_pfn = availmem >> PAGE_SHIFT; 469 max_pfn = max_low_pfn = max_addr >> PAGE_SHIFT; 470 471 /* Reserve kernel text/data/bss and the memory allocated in head.S */ 472 memblock_reserve(m68k_memory[0].addr, availmem - m68k_memory[0].addr); 473 474 /* 475 * Map the physical memory available into the kernel virtual 476 * address space. Make sure memblock will not try to allocate 477 * pages beyond the memory we already mapped in head.S 478 */ 479 memblock_set_bottom_up(true); 480 481 for (i = 0; i < m68k_num_memory; i++) { 482 m68k_setup_node(i); 483 map_node(i); 484 } 485 486 flush_tlb_all(); 487 488 early_memtest(min_addr, max_addr); 489 490 /* 491 * initialize the bad page table and bad page to point 492 * to a couple of allocated pages 493 */ 494 empty_zero_page = memblock_alloc(PAGE_SIZE, PAGE_SIZE); 495 if (!empty_zero_page) 496 panic("%s: Failed to allocate %lu bytes align=0x%lx\n", 497 __func__, PAGE_SIZE, PAGE_SIZE); 498 499 /* 500 * Set up SFC/DFC registers 501 */ 502 set_fc(USER_DATA); 503 504 #ifdef DEBUG 505 printk ("before free_area_init\n"); 506 #endif 507 for (i = 0; i < m68k_num_memory; i++) 508 if (node_present_pages(i)) 509 node_set_state(i, N_NORMAL_MEMORY); 510 511 max_zone_pfn[ZONE_DMA] = memblock_end_of_DRAM(); 512 free_area_init(max_zone_pfn); 513 } 514