1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* multi_arith.h: multi-precision integer arithmetic functions, needed 3 to do extended-precision floating point. 4 5 (c) 1998 David Huggins-Daines. 6 7 Somewhat based on arch/alpha/math-emu/ieee-math.c, which is (c) 8 David Mosberger-Tang. 9 10 */ 11 12 /* Note: 13 14 These are not general multi-precision math routines. Rather, they 15 implement the subset of integer arithmetic that we need in order to 16 multiply, divide, and normalize 128-bit unsigned mantissae. */ 17 18 #ifndef _MULTI_ARITH_H 19 #define _MULTI_ARITH_H 20 21 #include "fp_emu.h" 22 23 static inline void fp_denormalize(struct fp_ext *reg, unsigned int cnt) 24 { 25 reg->exp += cnt; 26 27 switch (cnt) { 28 case 0 ... 8: 29 reg->lowmant = reg->mant.m32[1] << (8 - cnt); 30 reg->mant.m32[1] = (reg->mant.m32[1] >> cnt) | 31 (reg->mant.m32[0] << (32 - cnt)); 32 reg->mant.m32[0] = reg->mant.m32[0] >> cnt; 33 break; 34 case 9 ... 32: 35 reg->lowmant = reg->mant.m32[1] >> (cnt - 8); 36 if (reg->mant.m32[1] << (40 - cnt)) 37 reg->lowmant |= 1; 38 reg->mant.m32[1] = (reg->mant.m32[1] >> cnt) | 39 (reg->mant.m32[0] << (32 - cnt)); 40 reg->mant.m32[0] = reg->mant.m32[0] >> cnt; 41 break; 42 case 33 ... 39: 43 asm volatile ("bfextu %1{%2,#8},%0" : "=d" (reg->lowmant) 44 : "m" (reg->mant.m32[0]), "d" (64 - cnt)); 45 if (reg->mant.m32[1] << (40 - cnt)) 46 reg->lowmant |= 1; 47 reg->mant.m32[1] = reg->mant.m32[0] >> (cnt - 32); 48 reg->mant.m32[0] = 0; 49 break; 50 case 40 ... 71: 51 reg->lowmant = reg->mant.m32[0] >> (cnt - 40); 52 if ((reg->mant.m32[0] << (72 - cnt)) || reg->mant.m32[1]) 53 reg->lowmant |= 1; 54 reg->mant.m32[1] = reg->mant.m32[0] >> (cnt - 32); 55 reg->mant.m32[0] = 0; 56 break; 57 default: 58 reg->lowmant = reg->mant.m32[0] || reg->mant.m32[1]; 59 reg->mant.m32[0] = 0; 60 reg->mant.m32[1] = 0; 61 break; 62 } 63 } 64 65 static inline int fp_overnormalize(struct fp_ext *reg) 66 { 67 int shift; 68 69 if (reg->mant.m32[0]) { 70 asm ("bfffo %1{#0,#32},%0" : "=d" (shift) : "dm" (reg->mant.m32[0])); 71 reg->mant.m32[0] = (reg->mant.m32[0] << shift) | (reg->mant.m32[1] >> (32 - shift)); 72 reg->mant.m32[1] = (reg->mant.m32[1] << shift); 73 } else { 74 asm ("bfffo %1{#0,#32},%0" : "=d" (shift) : "dm" (reg->mant.m32[1])); 75 reg->mant.m32[0] = (reg->mant.m32[1] << shift); 76 reg->mant.m32[1] = 0; 77 shift += 32; 78 } 79 80 return shift; 81 } 82 83 static inline int fp_addmant(struct fp_ext *dest, struct fp_ext *src) 84 { 85 int carry; 86 87 /* we assume here, gcc only insert move and a clr instr */ 88 asm volatile ("add.b %1,%0" : "=d,g" (dest->lowmant) 89 : "g,d" (src->lowmant), "0,0" (dest->lowmant)); 90 asm volatile ("addx.l %1,%0" : "=d" (dest->mant.m32[1]) 91 : "d" (src->mant.m32[1]), "0" (dest->mant.m32[1])); 92 asm volatile ("addx.l %1,%0" : "=d" (dest->mant.m32[0]) 93 : "d" (src->mant.m32[0]), "0" (dest->mant.m32[0])); 94 asm volatile ("addx.l %0,%0" : "=d" (carry) : "0" (0)); 95 96 return carry; 97 } 98 99 static inline int fp_addcarry(struct fp_ext *reg) 100 { 101 if (++reg->exp == 0x7fff) { 102 if (reg->mant.m64) 103 fp_set_sr(FPSR_EXC_INEX2); 104 reg->mant.m64 = 0; 105 fp_set_sr(FPSR_EXC_OVFL); 106 return 0; 107 } 108 reg->lowmant = (reg->mant.m32[1] << 7) | (reg->lowmant ? 1 : 0); 109 reg->mant.m32[1] = (reg->mant.m32[1] >> 1) | 110 (reg->mant.m32[0] << 31); 111 reg->mant.m32[0] = (reg->mant.m32[0] >> 1) | 0x80000000; 112 113 return 1; 114 } 115 116 static inline void fp_submant(struct fp_ext *dest, struct fp_ext *src1, 117 struct fp_ext *src2) 118 { 119 /* we assume here, gcc only insert move and a clr instr */ 120 asm volatile ("sub.b %1,%0" : "=d,g" (dest->lowmant) 121 : "g,d" (src2->lowmant), "0,0" (src1->lowmant)); 122 asm volatile ("subx.l %1,%0" : "=d" (dest->mant.m32[1]) 123 : "d" (src2->mant.m32[1]), "0" (src1->mant.m32[1])); 124 asm volatile ("subx.l %1,%0" : "=d" (dest->mant.m32[0]) 125 : "d" (src2->mant.m32[0]), "0" (src1->mant.m32[0])); 126 } 127 128 #define fp_mul64(desth, destl, src1, src2) ({ \ 129 asm ("mulu.l %2,%1:%0" : "=d" (destl), "=d" (desth) \ 130 : "dm" (src1), "0" (src2)); \ 131 }) 132 #define fp_div64(quot, rem, srch, srcl, div) \ 133 asm ("divu.l %2,%1:%0" : "=d" (quot), "=d" (rem) \ 134 : "dm" (div), "1" (srch), "0" (srcl)) 135 #define fp_add64(dest1, dest2, src1, src2) ({ \ 136 asm ("add.l %1,%0" : "=d,dm" (dest2) \ 137 : "dm,d" (src2), "0,0" (dest2)); \ 138 asm ("addx.l %1,%0" : "=d" (dest1) \ 139 : "d" (src1), "0" (dest1)); \ 140 }) 141 #define fp_addx96(dest, src) ({ \ 142 /* we assume here, gcc only insert move and a clr instr */ \ 143 asm volatile ("add.l %1,%0" : "=d,g" (dest->m32[2]) \ 144 : "g,d" (temp.m32[1]), "0,0" (dest->m32[2])); \ 145 asm volatile ("addx.l %1,%0" : "=d" (dest->m32[1]) \ 146 : "d" (temp.m32[0]), "0" (dest->m32[1])); \ 147 asm volatile ("addx.l %1,%0" : "=d" (dest->m32[0]) \ 148 : "d" (0), "0" (dest->m32[0])); \ 149 }) 150 #define fp_sub64(dest, src) ({ \ 151 asm ("sub.l %1,%0" : "=d,dm" (dest.m32[1]) \ 152 : "dm,d" (src.m32[1]), "0,0" (dest.m32[1])); \ 153 asm ("subx.l %1,%0" : "=d" (dest.m32[0]) \ 154 : "d" (src.m32[0]), "0" (dest.m32[0])); \ 155 }) 156 #define fp_sub96c(dest, srch, srcm, srcl) ({ \ 157 char carry; \ 158 asm ("sub.l %1,%0" : "=d,dm" (dest.m32[2]) \ 159 : "dm,d" (srcl), "0,0" (dest.m32[2])); \ 160 asm ("subx.l %1,%0" : "=d" (dest.m32[1]) \ 161 : "d" (srcm), "0" (dest.m32[1])); \ 162 asm ("subx.l %2,%1; scs %0" : "=d" (carry), "=d" (dest.m32[0]) \ 163 : "d" (srch), "1" (dest.m32[0])); \ 164 carry; \ 165 }) 166 167 static inline void fp_multiplymant(union fp_mant128 *dest, struct fp_ext *src1, 168 struct fp_ext *src2) 169 { 170 union fp_mant64 temp; 171 172 fp_mul64(dest->m32[0], dest->m32[1], src1->mant.m32[0], src2->mant.m32[0]); 173 fp_mul64(dest->m32[2], dest->m32[3], src1->mant.m32[1], src2->mant.m32[1]); 174 175 fp_mul64(temp.m32[0], temp.m32[1], src1->mant.m32[0], src2->mant.m32[1]); 176 fp_addx96(dest, temp); 177 178 fp_mul64(temp.m32[0], temp.m32[1], src1->mant.m32[1], src2->mant.m32[0]); 179 fp_addx96(dest, temp); 180 } 181 182 static inline void fp_dividemant(union fp_mant128 *dest, struct fp_ext *src, 183 struct fp_ext *div) 184 { 185 union fp_mant128 tmp; 186 union fp_mant64 tmp64; 187 unsigned long *mantp = dest->m32; 188 unsigned long fix, rem, first, dummy; 189 int i; 190 191 /* the algorithm below requires dest to be smaller than div, 192 but both have the high bit set */ 193 if (src->mant.m64 >= div->mant.m64) { 194 fp_sub64(src->mant, div->mant); 195 *mantp = 1; 196 } else 197 *mantp = 0; 198 mantp++; 199 200 /* basic idea behind this algorithm: we can't divide two 64bit numbers 201 (AB/CD) directly, but we can calculate AB/C0, but this means this 202 quotient is off by C0/CD, so we have to multiply the first result 203 to fix the result, after that we have nearly the correct result 204 and only a few corrections are needed. */ 205 206 /* C0/CD can be precalculated, but it's an 64bit division again, but 207 we can make it a bit easier, by dividing first through C so we get 208 10/1D and now only a single shift and the value fits into 32bit. */ 209 fix = 0x80000000; 210 dummy = div->mant.m32[1] / div->mant.m32[0] + 1; 211 dummy = (dummy >> 1) | fix; 212 fp_div64(fix, dummy, fix, 0, dummy); 213 fix--; 214 215 for (i = 0; i < 3; i++, mantp++) { 216 if (src->mant.m32[0] == div->mant.m32[0]) { 217 fp_div64(first, rem, 0, src->mant.m32[1], div->mant.m32[0]); 218 219 fp_mul64(*mantp, dummy, first, fix); 220 *mantp += fix; 221 } else { 222 fp_div64(first, rem, src->mant.m32[0], src->mant.m32[1], div->mant.m32[0]); 223 224 fp_mul64(*mantp, dummy, first, fix); 225 } 226 227 fp_mul64(tmp.m32[0], tmp.m32[1], div->mant.m32[0], first - *mantp); 228 fp_add64(tmp.m32[0], tmp.m32[1], 0, rem); 229 tmp.m32[2] = 0; 230 231 fp_mul64(tmp64.m32[0], tmp64.m32[1], *mantp, div->mant.m32[1]); 232 fp_sub96c(tmp, 0, tmp64.m32[0], tmp64.m32[1]); 233 234 src->mant.m32[0] = tmp.m32[1]; 235 src->mant.m32[1] = tmp.m32[2]; 236 237 while (!fp_sub96c(tmp, 0, div->mant.m32[0], div->mant.m32[1])) { 238 src->mant.m32[0] = tmp.m32[1]; 239 src->mant.m32[1] = tmp.m32[2]; 240 *mantp += 1; 241 } 242 } 243 } 244 245 static inline void fp_putmant128(struct fp_ext *dest, union fp_mant128 *src, 246 int shift) 247 { 248 unsigned long tmp; 249 250 switch (shift) { 251 case 0: 252 dest->mant.m64 = src->m64[0]; 253 dest->lowmant = src->m32[2] >> 24; 254 if (src->m32[3] || (src->m32[2] << 8)) 255 dest->lowmant |= 1; 256 break; 257 case 1: 258 asm volatile ("lsl.l #1,%0" 259 : "=d" (tmp) : "0" (src->m32[2])); 260 asm volatile ("roxl.l #1,%0" 261 : "=d" (dest->mant.m32[1]) : "0" (src->m32[1])); 262 asm volatile ("roxl.l #1,%0" 263 : "=d" (dest->mant.m32[0]) : "0" (src->m32[0])); 264 dest->lowmant = tmp >> 24; 265 if (src->m32[3] || (tmp << 8)) 266 dest->lowmant |= 1; 267 break; 268 case 31: 269 asm volatile ("lsr.l #1,%1; roxr.l #1,%0" 270 : "=d" (dest->mant.m32[0]) 271 : "d" (src->m32[0]), "0" (src->m32[1])); 272 asm volatile ("roxr.l #1,%0" 273 : "=d" (dest->mant.m32[1]) : "0" (src->m32[2])); 274 asm volatile ("roxr.l #1,%0" 275 : "=d" (tmp) : "0" (src->m32[3])); 276 dest->lowmant = tmp >> 24; 277 if (src->m32[3] << 7) 278 dest->lowmant |= 1; 279 break; 280 case 32: 281 dest->mant.m32[0] = src->m32[1]; 282 dest->mant.m32[1] = src->m32[2]; 283 dest->lowmant = src->m32[3] >> 24; 284 if (src->m32[3] << 8) 285 dest->lowmant |= 1; 286 break; 287 } 288 } 289 290 #endif /* _MULTI_ARITH_H */ 291