1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* multi_arith.h: multi-precision integer arithmetic functions, needed 3 to do extended-precision floating point. 4 5 (c) 1998 David Huggins-Daines. 6 7 Somewhat based on arch/alpha/math-emu/ieee-math.c, which is (c) 8 David Mosberger-Tang. 9 10 */ 11 12 /* Note: 13 14 These are not general multi-precision math routines. Rather, they 15 implement the subset of integer arithmetic that we need in order to 16 multiply, divide, and normalize 128-bit unsigned mantissae. */ 17 18 #ifndef MULTI_ARITH_H 19 #define MULTI_ARITH_H 20 21 static inline void fp_denormalize(struct fp_ext *reg, unsigned int cnt) 22 { 23 reg->exp += cnt; 24 25 switch (cnt) { 26 case 0 ... 8: 27 reg->lowmant = reg->mant.m32[1] << (8 - cnt); 28 reg->mant.m32[1] = (reg->mant.m32[1] >> cnt) | 29 (reg->mant.m32[0] << (32 - cnt)); 30 reg->mant.m32[0] = reg->mant.m32[0] >> cnt; 31 break; 32 case 9 ... 32: 33 reg->lowmant = reg->mant.m32[1] >> (cnt - 8); 34 if (reg->mant.m32[1] << (40 - cnt)) 35 reg->lowmant |= 1; 36 reg->mant.m32[1] = (reg->mant.m32[1] >> cnt) | 37 (reg->mant.m32[0] << (32 - cnt)); 38 reg->mant.m32[0] = reg->mant.m32[0] >> cnt; 39 break; 40 case 33 ... 39: 41 asm volatile ("bfextu %1{%2,#8},%0" : "=d" (reg->lowmant) 42 : "m" (reg->mant.m32[0]), "d" (64 - cnt)); 43 if (reg->mant.m32[1] << (40 - cnt)) 44 reg->lowmant |= 1; 45 reg->mant.m32[1] = reg->mant.m32[0] >> (cnt - 32); 46 reg->mant.m32[0] = 0; 47 break; 48 case 40 ... 71: 49 reg->lowmant = reg->mant.m32[0] >> (cnt - 40); 50 if ((reg->mant.m32[0] << (72 - cnt)) || reg->mant.m32[1]) 51 reg->lowmant |= 1; 52 reg->mant.m32[1] = reg->mant.m32[0] >> (cnt - 32); 53 reg->mant.m32[0] = 0; 54 break; 55 default: 56 reg->lowmant = reg->mant.m32[0] || reg->mant.m32[1]; 57 reg->mant.m32[0] = 0; 58 reg->mant.m32[1] = 0; 59 break; 60 } 61 } 62 63 static inline int fp_overnormalize(struct fp_ext *reg) 64 { 65 int shift; 66 67 if (reg->mant.m32[0]) { 68 asm ("bfffo %1{#0,#32},%0" : "=d" (shift) : "dm" (reg->mant.m32[0])); 69 reg->mant.m32[0] = (reg->mant.m32[0] << shift) | (reg->mant.m32[1] >> (32 - shift)); 70 reg->mant.m32[1] = (reg->mant.m32[1] << shift); 71 } else { 72 asm ("bfffo %1{#0,#32},%0" : "=d" (shift) : "dm" (reg->mant.m32[1])); 73 reg->mant.m32[0] = (reg->mant.m32[1] << shift); 74 reg->mant.m32[1] = 0; 75 shift += 32; 76 } 77 78 return shift; 79 } 80 81 static inline int fp_addmant(struct fp_ext *dest, struct fp_ext *src) 82 { 83 int carry; 84 85 /* we assume here, gcc only insert move and a clr instr */ 86 asm volatile ("add.b %1,%0" : "=d,g" (dest->lowmant) 87 : "g,d" (src->lowmant), "0,0" (dest->lowmant)); 88 asm volatile ("addx.l %1,%0" : "=d" (dest->mant.m32[1]) 89 : "d" (src->mant.m32[1]), "0" (dest->mant.m32[1])); 90 asm volatile ("addx.l %1,%0" : "=d" (dest->mant.m32[0]) 91 : "d" (src->mant.m32[0]), "0" (dest->mant.m32[0])); 92 asm volatile ("addx.l %0,%0" : "=d" (carry) : "0" (0)); 93 94 return carry; 95 } 96 97 static inline int fp_addcarry(struct fp_ext *reg) 98 { 99 if (++reg->exp == 0x7fff) { 100 if (reg->mant.m64) 101 fp_set_sr(FPSR_EXC_INEX2); 102 reg->mant.m64 = 0; 103 fp_set_sr(FPSR_EXC_OVFL); 104 return 0; 105 } 106 reg->lowmant = (reg->mant.m32[1] << 7) | (reg->lowmant ? 1 : 0); 107 reg->mant.m32[1] = (reg->mant.m32[1] >> 1) | 108 (reg->mant.m32[0] << 31); 109 reg->mant.m32[0] = (reg->mant.m32[0] >> 1) | 0x80000000; 110 111 return 1; 112 } 113 114 static inline void fp_submant(struct fp_ext *dest, struct fp_ext *src1, 115 struct fp_ext *src2) 116 { 117 /* we assume here, gcc only insert move and a clr instr */ 118 asm volatile ("sub.b %1,%0" : "=d,g" (dest->lowmant) 119 : "g,d" (src2->lowmant), "0,0" (src1->lowmant)); 120 asm volatile ("subx.l %1,%0" : "=d" (dest->mant.m32[1]) 121 : "d" (src2->mant.m32[1]), "0" (src1->mant.m32[1])); 122 asm volatile ("subx.l %1,%0" : "=d" (dest->mant.m32[0]) 123 : "d" (src2->mant.m32[0]), "0" (src1->mant.m32[0])); 124 } 125 126 #define fp_mul64(desth, destl, src1, src2) ({ \ 127 asm ("mulu.l %2,%1:%0" : "=d" (destl), "=d" (desth) \ 128 : "dm" (src1), "0" (src2)); \ 129 }) 130 #define fp_div64(quot, rem, srch, srcl, div) \ 131 asm ("divu.l %2,%1:%0" : "=d" (quot), "=d" (rem) \ 132 : "dm" (div), "1" (srch), "0" (srcl)) 133 #define fp_add64(dest1, dest2, src1, src2) ({ \ 134 asm ("add.l %1,%0" : "=d,dm" (dest2) \ 135 : "dm,d" (src2), "0,0" (dest2)); \ 136 asm ("addx.l %1,%0" : "=d" (dest1) \ 137 : "d" (src1), "0" (dest1)); \ 138 }) 139 #define fp_addx96(dest, src) ({ \ 140 /* we assume here, gcc only insert move and a clr instr */ \ 141 asm volatile ("add.l %1,%0" : "=d,g" (dest->m32[2]) \ 142 : "g,d" (temp.m32[1]), "0,0" (dest->m32[2])); \ 143 asm volatile ("addx.l %1,%0" : "=d" (dest->m32[1]) \ 144 : "d" (temp.m32[0]), "0" (dest->m32[1])); \ 145 asm volatile ("addx.l %1,%0" : "=d" (dest->m32[0]) \ 146 : "d" (0), "0" (dest->m32[0])); \ 147 }) 148 #define fp_sub64(dest, src) ({ \ 149 asm ("sub.l %1,%0" : "=d,dm" (dest.m32[1]) \ 150 : "dm,d" (src.m32[1]), "0,0" (dest.m32[1])); \ 151 asm ("subx.l %1,%0" : "=d" (dest.m32[0]) \ 152 : "d" (src.m32[0]), "0" (dest.m32[0])); \ 153 }) 154 #define fp_sub96c(dest, srch, srcm, srcl) ({ \ 155 char carry; \ 156 asm ("sub.l %1,%0" : "=d,dm" (dest.m32[2]) \ 157 : "dm,d" (srcl), "0,0" (dest.m32[2])); \ 158 asm ("subx.l %1,%0" : "=d" (dest.m32[1]) \ 159 : "d" (srcm), "0" (dest.m32[1])); \ 160 asm ("subx.l %2,%1; scs %0" : "=d" (carry), "=d" (dest.m32[0]) \ 161 : "d" (srch), "1" (dest.m32[0])); \ 162 carry; \ 163 }) 164 165 static inline void fp_multiplymant(union fp_mant128 *dest, struct fp_ext *src1, 166 struct fp_ext *src2) 167 { 168 union fp_mant64 temp; 169 170 fp_mul64(dest->m32[0], dest->m32[1], src1->mant.m32[0], src2->mant.m32[0]); 171 fp_mul64(dest->m32[2], dest->m32[3], src1->mant.m32[1], src2->mant.m32[1]); 172 173 fp_mul64(temp.m32[0], temp.m32[1], src1->mant.m32[0], src2->mant.m32[1]); 174 fp_addx96(dest, temp); 175 176 fp_mul64(temp.m32[0], temp.m32[1], src1->mant.m32[1], src2->mant.m32[0]); 177 fp_addx96(dest, temp); 178 } 179 180 static inline void fp_dividemant(union fp_mant128 *dest, struct fp_ext *src, 181 struct fp_ext *div) 182 { 183 union fp_mant128 tmp; 184 union fp_mant64 tmp64; 185 unsigned long *mantp = dest->m32; 186 unsigned long fix, rem, first, dummy; 187 int i; 188 189 /* the algorithm below requires dest to be smaller than div, 190 but both have the high bit set */ 191 if (src->mant.m64 >= div->mant.m64) { 192 fp_sub64(src->mant, div->mant); 193 *mantp = 1; 194 } else 195 *mantp = 0; 196 mantp++; 197 198 /* basic idea behind this algorithm: we can't divide two 64bit numbers 199 (AB/CD) directly, but we can calculate AB/C0, but this means this 200 quotient is off by C0/CD, so we have to multiply the first result 201 to fix the result, after that we have nearly the correct result 202 and only a few corrections are needed. */ 203 204 /* C0/CD can be precalculated, but it's an 64bit division again, but 205 we can make it a bit easier, by dividing first through C so we get 206 10/1D and now only a single shift and the value fits into 32bit. */ 207 fix = 0x80000000; 208 dummy = div->mant.m32[1] / div->mant.m32[0] + 1; 209 dummy = (dummy >> 1) | fix; 210 fp_div64(fix, dummy, fix, 0, dummy); 211 fix--; 212 213 for (i = 0; i < 3; i++, mantp++) { 214 if (src->mant.m32[0] == div->mant.m32[0]) { 215 fp_div64(first, rem, 0, src->mant.m32[1], div->mant.m32[0]); 216 217 fp_mul64(*mantp, dummy, first, fix); 218 *mantp += fix; 219 } else { 220 fp_div64(first, rem, src->mant.m32[0], src->mant.m32[1], div->mant.m32[0]); 221 222 fp_mul64(*mantp, dummy, first, fix); 223 } 224 225 fp_mul64(tmp.m32[0], tmp.m32[1], div->mant.m32[0], first - *mantp); 226 fp_add64(tmp.m32[0], tmp.m32[1], 0, rem); 227 tmp.m32[2] = 0; 228 229 fp_mul64(tmp64.m32[0], tmp64.m32[1], *mantp, div->mant.m32[1]); 230 fp_sub96c(tmp, 0, tmp64.m32[0], tmp64.m32[1]); 231 232 src->mant.m32[0] = tmp.m32[1]; 233 src->mant.m32[1] = tmp.m32[2]; 234 235 while (!fp_sub96c(tmp, 0, div->mant.m32[0], div->mant.m32[1])) { 236 src->mant.m32[0] = tmp.m32[1]; 237 src->mant.m32[1] = tmp.m32[2]; 238 *mantp += 1; 239 } 240 } 241 } 242 243 static inline void fp_putmant128(struct fp_ext *dest, union fp_mant128 *src, 244 int shift) 245 { 246 unsigned long tmp; 247 248 switch (shift) { 249 case 0: 250 dest->mant.m64 = src->m64[0]; 251 dest->lowmant = src->m32[2] >> 24; 252 if (src->m32[3] || (src->m32[2] << 8)) 253 dest->lowmant |= 1; 254 break; 255 case 1: 256 asm volatile ("lsl.l #1,%0" 257 : "=d" (tmp) : "0" (src->m32[2])); 258 asm volatile ("roxl.l #1,%0" 259 : "=d" (dest->mant.m32[1]) : "0" (src->m32[1])); 260 asm volatile ("roxl.l #1,%0" 261 : "=d" (dest->mant.m32[0]) : "0" (src->m32[0])); 262 dest->lowmant = tmp >> 24; 263 if (src->m32[3] || (tmp << 8)) 264 dest->lowmant |= 1; 265 break; 266 case 31: 267 asm volatile ("lsr.l #1,%1; roxr.l #1,%0" 268 : "=d" (dest->mant.m32[0]) 269 : "d" (src->m32[0]), "0" (src->m32[1])); 270 asm volatile ("roxr.l #1,%0" 271 : "=d" (dest->mant.m32[1]) : "0" (src->m32[2])); 272 asm volatile ("roxr.l #1,%0" 273 : "=d" (tmp) : "0" (src->m32[3])); 274 dest->lowmant = tmp >> 24; 275 if (src->m32[3] << 7) 276 dest->lowmant |= 1; 277 break; 278 case 32: 279 dest->mant.m32[0] = src->m32[1]; 280 dest->mant.m32[1] = src->m32[2]; 281 dest->lowmant = src->m32[3] >> 24; 282 if (src->m32[3] << 8) 283 dest->lowmant |= 1; 284 break; 285 } 286 } 287 288 #endif /* MULTI_ARITH_H */ 289