1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Miscellaneous Mac68K-specific stuff 4 */ 5 6 #include <linux/types.h> 7 #include <linux/errno.h> 8 #include <linux/kernel.h> 9 #include <linux/delay.h> 10 #include <linux/sched.h> 11 #include <linux/time.h> 12 #include <linux/rtc.h> 13 #include <linux/mm.h> 14 15 #include <linux/adb.h> 16 #include <linux/cuda.h> 17 #include <linux/pmu.h> 18 19 #include <linux/uaccess.h> 20 #include <asm/io.h> 21 #include <asm/segment.h> 22 #include <asm/setup.h> 23 #include <asm/macintosh.h> 24 #include <asm/mac_via.h> 25 #include <asm/mac_oss.h> 26 27 #include <asm/machdep.h> 28 29 /* Offset between Unix time (1970-based) and Mac time (1904-based) */ 30 31 #define RTC_OFFSET 2082844800 32 33 static void (*rom_reset)(void); 34 35 #ifdef CONFIG_ADB_CUDA 36 static long cuda_read_time(void) 37 { 38 struct adb_request req; 39 long time; 40 41 if (cuda_request(&req, NULL, 2, CUDA_PACKET, CUDA_GET_TIME) < 0) 42 return 0; 43 while (!req.complete) 44 cuda_poll(); 45 46 time = (req.reply[3] << 24) | (req.reply[4] << 16) 47 | (req.reply[5] << 8) | req.reply[6]; 48 return time - RTC_OFFSET; 49 } 50 51 static void cuda_write_time(long data) 52 { 53 struct adb_request req; 54 data += RTC_OFFSET; 55 if (cuda_request(&req, NULL, 6, CUDA_PACKET, CUDA_SET_TIME, 56 (data >> 24) & 0xFF, (data >> 16) & 0xFF, 57 (data >> 8) & 0xFF, data & 0xFF) < 0) 58 return; 59 while (!req.complete) 60 cuda_poll(); 61 } 62 63 static __u8 cuda_read_pram(int offset) 64 { 65 struct adb_request req; 66 if (cuda_request(&req, NULL, 4, CUDA_PACKET, CUDA_GET_PRAM, 67 (offset >> 8) & 0xFF, offset & 0xFF) < 0) 68 return 0; 69 while (!req.complete) 70 cuda_poll(); 71 return req.reply[3]; 72 } 73 74 static void cuda_write_pram(int offset, __u8 data) 75 { 76 struct adb_request req; 77 if (cuda_request(&req, NULL, 5, CUDA_PACKET, CUDA_SET_PRAM, 78 (offset >> 8) & 0xFF, offset & 0xFF, data) < 0) 79 return; 80 while (!req.complete) 81 cuda_poll(); 82 } 83 #else 84 #define cuda_read_time() 0 85 #define cuda_write_time(n) 86 #define cuda_read_pram NULL 87 #define cuda_write_pram NULL 88 #endif 89 90 #ifdef CONFIG_ADB_PMU68K 91 static long pmu_read_time(void) 92 { 93 struct adb_request req; 94 long time; 95 96 if (pmu_request(&req, NULL, 1, PMU_READ_RTC) < 0) 97 return 0; 98 while (!req.complete) 99 pmu_poll(); 100 101 time = (req.reply[1] << 24) | (req.reply[2] << 16) 102 | (req.reply[3] << 8) | req.reply[4]; 103 return time - RTC_OFFSET; 104 } 105 106 static void pmu_write_time(long data) 107 { 108 struct adb_request req; 109 data += RTC_OFFSET; 110 if (pmu_request(&req, NULL, 5, PMU_SET_RTC, 111 (data >> 24) & 0xFF, (data >> 16) & 0xFF, 112 (data >> 8) & 0xFF, data & 0xFF) < 0) 113 return; 114 while (!req.complete) 115 pmu_poll(); 116 } 117 118 static __u8 pmu_read_pram(int offset) 119 { 120 struct adb_request req; 121 if (pmu_request(&req, NULL, 3, PMU_READ_NVRAM, 122 (offset >> 8) & 0xFF, offset & 0xFF) < 0) 123 return 0; 124 while (!req.complete) 125 pmu_poll(); 126 return req.reply[3]; 127 } 128 129 static void pmu_write_pram(int offset, __u8 data) 130 { 131 struct adb_request req; 132 if (pmu_request(&req, NULL, 4, PMU_WRITE_NVRAM, 133 (offset >> 8) & 0xFF, offset & 0xFF, data) < 0) 134 return; 135 while (!req.complete) 136 pmu_poll(); 137 } 138 #else 139 #define pmu_read_time() 0 140 #define pmu_write_time(n) 141 #define pmu_read_pram NULL 142 #define pmu_write_pram NULL 143 #endif 144 145 /* 146 * VIA PRAM/RTC access routines 147 * 148 * Must be called with interrupts disabled and 149 * the RTC should be enabled. 150 */ 151 152 static __u8 via_pram_readbyte(void) 153 { 154 int i,reg; 155 __u8 data; 156 157 reg = via1[vBufB] & ~VIA1B_vRTCClk; 158 159 /* Set the RTC data line to be an input. */ 160 161 via1[vDirB] &= ~VIA1B_vRTCData; 162 163 /* The bits of the byte come out in MSB order */ 164 165 data = 0; 166 for (i = 0 ; i < 8 ; i++) { 167 via1[vBufB] = reg; 168 via1[vBufB] = reg | VIA1B_vRTCClk; 169 data = (data << 1) | (via1[vBufB] & VIA1B_vRTCData); 170 } 171 172 /* Return RTC data line to output state */ 173 174 via1[vDirB] |= VIA1B_vRTCData; 175 176 return data; 177 } 178 179 static void via_pram_writebyte(__u8 data) 180 { 181 int i,reg,bit; 182 183 reg = via1[vBufB] & ~(VIA1B_vRTCClk | VIA1B_vRTCData); 184 185 /* The bits of the byte go in in MSB order */ 186 187 for (i = 0 ; i < 8 ; i++) { 188 bit = data & 0x80? 1 : 0; 189 data <<= 1; 190 via1[vBufB] = reg | bit; 191 via1[vBufB] = reg | bit | VIA1B_vRTCClk; 192 } 193 } 194 195 /* 196 * Execute a VIA PRAM/RTC command. For read commands 197 * data should point to a one-byte buffer for the 198 * resulting data. For write commands it should point 199 * to the data byte to for the command. 200 * 201 * This function disables all interrupts while running. 202 */ 203 204 static void via_pram_command(int command, __u8 *data) 205 { 206 unsigned long flags; 207 int is_read; 208 209 local_irq_save(flags); 210 211 /* Enable the RTC and make sure the strobe line is high */ 212 213 via1[vBufB] = (via1[vBufB] | VIA1B_vRTCClk) & ~VIA1B_vRTCEnb; 214 215 if (command & 0xFF00) { /* extended (two-byte) command */ 216 via_pram_writebyte((command & 0xFF00) >> 8); 217 via_pram_writebyte(command & 0xFF); 218 is_read = command & 0x8000; 219 } else { /* one-byte command */ 220 via_pram_writebyte(command); 221 is_read = command & 0x80; 222 } 223 if (is_read) { 224 *data = via_pram_readbyte(); 225 } else { 226 via_pram_writebyte(*data); 227 } 228 229 /* All done, disable the RTC */ 230 231 via1[vBufB] |= VIA1B_vRTCEnb; 232 233 local_irq_restore(flags); 234 } 235 236 static __u8 via_read_pram(int offset) 237 { 238 return 0; 239 } 240 241 static void via_write_pram(int offset, __u8 data) 242 { 243 } 244 245 /* 246 * Return the current time in seconds since January 1, 1904. 247 * 248 * This only works on machines with the VIA-based PRAM/RTC, which 249 * is basically any machine with Mac II-style ADB. 250 */ 251 252 static long via_read_time(void) 253 { 254 union { 255 __u8 cdata[4]; 256 long idata; 257 } result, last_result; 258 int count = 1; 259 260 via_pram_command(0x81, &last_result.cdata[3]); 261 via_pram_command(0x85, &last_result.cdata[2]); 262 via_pram_command(0x89, &last_result.cdata[1]); 263 via_pram_command(0x8D, &last_result.cdata[0]); 264 265 /* 266 * The NetBSD guys say to loop until you get the same reading 267 * twice in a row. 268 */ 269 270 while (1) { 271 via_pram_command(0x81, &result.cdata[3]); 272 via_pram_command(0x85, &result.cdata[2]); 273 via_pram_command(0x89, &result.cdata[1]); 274 via_pram_command(0x8D, &result.cdata[0]); 275 276 if (result.idata == last_result.idata) 277 return result.idata - RTC_OFFSET; 278 279 if (++count > 10) 280 break; 281 282 last_result.idata = result.idata; 283 } 284 285 pr_err("via_read_time: failed to read a stable value; got 0x%08lx then 0x%08lx\n", 286 last_result.idata, result.idata); 287 288 return 0; 289 } 290 291 /* 292 * Set the current time to a number of seconds since January 1, 1904. 293 * 294 * This only works on machines with the VIA-based PRAM/RTC, which 295 * is basically any machine with Mac II-style ADB. 296 */ 297 298 static void via_write_time(long time) 299 { 300 union { 301 __u8 cdata[4]; 302 long idata; 303 } data; 304 __u8 temp; 305 306 /* Clear the write protect bit */ 307 308 temp = 0x55; 309 via_pram_command(0x35, &temp); 310 311 data.idata = time + RTC_OFFSET; 312 via_pram_command(0x01, &data.cdata[3]); 313 via_pram_command(0x05, &data.cdata[2]); 314 via_pram_command(0x09, &data.cdata[1]); 315 via_pram_command(0x0D, &data.cdata[0]); 316 317 /* Set the write protect bit */ 318 319 temp = 0xD5; 320 via_pram_command(0x35, &temp); 321 } 322 323 static void via_shutdown(void) 324 { 325 if (rbv_present) { 326 via2[rBufB] &= ~0x04; 327 } else { 328 /* Direction of vDirB is output */ 329 via2[vDirB] |= 0x04; 330 /* Send a value of 0 on that line */ 331 via2[vBufB] &= ~0x04; 332 mdelay(1000); 333 } 334 } 335 336 /* 337 * FIXME: not sure how this is supposed to work exactly... 338 */ 339 340 static void oss_shutdown(void) 341 { 342 oss->rom_ctrl = OSS_POWEROFF; 343 } 344 345 #ifdef CONFIG_ADB_CUDA 346 347 static void cuda_restart(void) 348 { 349 struct adb_request req; 350 if (cuda_request(&req, NULL, 2, CUDA_PACKET, CUDA_RESET_SYSTEM) < 0) 351 return; 352 while (!req.complete) 353 cuda_poll(); 354 } 355 356 static void cuda_shutdown(void) 357 { 358 struct adb_request req; 359 if (cuda_request(&req, NULL, 2, CUDA_PACKET, CUDA_POWERDOWN) < 0) 360 return; 361 362 /* Avoid infinite polling loop when PSU is not under Cuda control */ 363 switch (macintosh_config->ident) { 364 case MAC_MODEL_C660: 365 case MAC_MODEL_Q605: 366 case MAC_MODEL_Q605_ACC: 367 case MAC_MODEL_P475: 368 case MAC_MODEL_P475F: 369 return; 370 } 371 372 while (!req.complete) 373 cuda_poll(); 374 } 375 376 #endif /* CONFIG_ADB_CUDA */ 377 378 #ifdef CONFIG_ADB_PMU68K 379 380 void pmu_restart(void) 381 { 382 struct adb_request req; 383 if (pmu_request(&req, NULL, 384 2, PMU_SET_INTR_MASK, PMU_INT_ADB|PMU_INT_TICK) < 0) 385 return; 386 while (!req.complete) 387 pmu_poll(); 388 if (pmu_request(&req, NULL, 1, PMU_RESET) < 0) 389 return; 390 while (!req.complete) 391 pmu_poll(); 392 } 393 394 void pmu_shutdown(void) 395 { 396 struct adb_request req; 397 if (pmu_request(&req, NULL, 398 2, PMU_SET_INTR_MASK, PMU_INT_ADB|PMU_INT_TICK) < 0) 399 return; 400 while (!req.complete) 401 pmu_poll(); 402 if (pmu_request(&req, NULL, 5, PMU_SHUTDOWN, 'M', 'A', 'T', 'T') < 0) 403 return; 404 while (!req.complete) 405 pmu_poll(); 406 } 407 408 #endif 409 410 /* 411 *------------------------------------------------------------------- 412 * Below this point are the generic routines; they'll dispatch to the 413 * correct routine for the hardware on which we're running. 414 *------------------------------------------------------------------- 415 */ 416 417 void mac_pram_read(int offset, __u8 *buffer, int len) 418 { 419 __u8 (*func)(int); 420 int i; 421 422 switch(macintosh_config->adb_type) { 423 case MAC_ADB_PB1: 424 case MAC_ADB_PB2: 425 func = pmu_read_pram; break; 426 case MAC_ADB_EGRET: 427 case MAC_ADB_CUDA: 428 func = cuda_read_pram; break; 429 default: 430 func = via_read_pram; 431 } 432 if (!func) 433 return; 434 for (i = 0 ; i < len ; i++) { 435 buffer[i] = (*func)(offset++); 436 } 437 } 438 439 void mac_pram_write(int offset, __u8 *buffer, int len) 440 { 441 void (*func)(int, __u8); 442 int i; 443 444 switch(macintosh_config->adb_type) { 445 case MAC_ADB_PB1: 446 case MAC_ADB_PB2: 447 func = pmu_write_pram; break; 448 case MAC_ADB_EGRET: 449 case MAC_ADB_CUDA: 450 func = cuda_write_pram; break; 451 default: 452 func = via_write_pram; 453 } 454 if (!func) 455 return; 456 for (i = 0 ; i < len ; i++) { 457 (*func)(offset++, buffer[i]); 458 } 459 } 460 461 void mac_poweroff(void) 462 { 463 if (oss_present) { 464 oss_shutdown(); 465 } else if (macintosh_config->adb_type == MAC_ADB_II) { 466 via_shutdown(); 467 #ifdef CONFIG_ADB_CUDA 468 } else if (macintosh_config->adb_type == MAC_ADB_EGRET || 469 macintosh_config->adb_type == MAC_ADB_CUDA) { 470 cuda_shutdown(); 471 #endif 472 #ifdef CONFIG_ADB_PMU68K 473 } else if (macintosh_config->adb_type == MAC_ADB_PB1 474 || macintosh_config->adb_type == MAC_ADB_PB2) { 475 pmu_shutdown(); 476 #endif 477 } 478 479 pr_crit("It is now safe to turn off your Macintosh.\n"); 480 local_irq_disable(); 481 while(1); 482 } 483 484 void mac_reset(void) 485 { 486 if (macintosh_config->adb_type == MAC_ADB_II) { 487 unsigned long flags; 488 489 /* need ROMBASE in booter */ 490 /* indeed, plus need to MAP THE ROM !! */ 491 492 if (mac_bi_data.rombase == 0) 493 mac_bi_data.rombase = 0x40800000; 494 495 /* works on some */ 496 rom_reset = (void *) (mac_bi_data.rombase + 0xa); 497 498 if (macintosh_config->ident == MAC_MODEL_SE30) { 499 /* 500 * MSch: Machines known to crash on ROM reset ... 501 */ 502 } else { 503 local_irq_save(flags); 504 505 rom_reset(); 506 507 local_irq_restore(flags); 508 } 509 #ifdef CONFIG_ADB_CUDA 510 } else if (macintosh_config->adb_type == MAC_ADB_EGRET || 511 macintosh_config->adb_type == MAC_ADB_CUDA) { 512 cuda_restart(); 513 #endif 514 #ifdef CONFIG_ADB_PMU68K 515 } else if (macintosh_config->adb_type == MAC_ADB_PB1 516 || macintosh_config->adb_type == MAC_ADB_PB2) { 517 pmu_restart(); 518 #endif 519 } else if (CPU_IS_030) { 520 521 /* 030-specific reset routine. The idea is general, but the 522 * specific registers to reset are '030-specific. Until I 523 * have a non-030 machine, I can't test anything else. 524 * -- C. Scott Ananian <cananian@alumni.princeton.edu> 525 */ 526 527 unsigned long rombase = 0x40000000; 528 529 /* make a 1-to-1 mapping, using the transparent tran. reg. */ 530 unsigned long virt = (unsigned long) mac_reset; 531 unsigned long phys = virt_to_phys(mac_reset); 532 unsigned long addr = (phys&0xFF000000)|0x8777; 533 unsigned long offset = phys-virt; 534 local_irq_disable(); /* lets not screw this up, ok? */ 535 __asm__ __volatile__(".chip 68030\n\t" 536 "pmove %0,%/tt0\n\t" 537 ".chip 68k" 538 : : "m" (addr)); 539 /* Now jump to physical address so we can disable MMU */ 540 __asm__ __volatile__( 541 ".chip 68030\n\t" 542 "lea %/pc@(1f),%/a0\n\t" 543 "addl %0,%/a0\n\t"/* fixup target address and stack ptr */ 544 "addl %0,%/sp\n\t" 545 "pflusha\n\t" 546 "jmp %/a0@\n\t" /* jump into physical memory */ 547 "0:.long 0\n\t" /* a constant zero. */ 548 /* OK. Now reset everything and jump to reset vector. */ 549 "1:\n\t" 550 "lea %/pc@(0b),%/a0\n\t" 551 "pmove %/a0@, %/tc\n\t" /* disable mmu */ 552 "pmove %/a0@, %/tt0\n\t" /* disable tt0 */ 553 "pmove %/a0@, %/tt1\n\t" /* disable tt1 */ 554 "movel #0, %/a0\n\t" 555 "movec %/a0, %/vbr\n\t" /* clear vector base register */ 556 "movec %/a0, %/cacr\n\t" /* disable caches */ 557 "movel #0x0808,%/a0\n\t" 558 "movec %/a0, %/cacr\n\t" /* flush i&d caches */ 559 "movew #0x2700,%/sr\n\t" /* set up status register */ 560 "movel %1@(0x0),%/a0\n\t"/* load interrupt stack pointer */ 561 "movec %/a0, %/isp\n\t" 562 "movel %1@(0x4),%/a0\n\t" /* load reset vector */ 563 "reset\n\t" /* reset external devices */ 564 "jmp %/a0@\n\t" /* jump to the reset vector */ 565 ".chip 68k" 566 : : "r" (offset), "a" (rombase) : "a0"); 567 } 568 569 /* should never get here */ 570 pr_crit("Restart failed. Please restart manually.\n"); 571 local_irq_disable(); 572 while(1); 573 } 574 575 /* 576 * This function translates seconds since 1970 into a proper date. 577 * 578 * Algorithm cribbed from glibc2.1, __offtime(). 579 */ 580 #define SECS_PER_MINUTE (60) 581 #define SECS_PER_HOUR (SECS_PER_MINUTE * 60) 582 #define SECS_PER_DAY (SECS_PER_HOUR * 24) 583 584 static void unmktime(unsigned long time, long offset, 585 int *yearp, int *monp, int *dayp, 586 int *hourp, int *minp, int *secp) 587 { 588 /* How many days come before each month (0-12). */ 589 static const unsigned short int __mon_yday[2][13] = 590 { 591 /* Normal years. */ 592 { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365 }, 593 /* Leap years. */ 594 { 0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335, 366 } 595 }; 596 long int days, rem, y, wday, yday; 597 const unsigned short int *ip; 598 599 days = time / SECS_PER_DAY; 600 rem = time % SECS_PER_DAY; 601 rem += offset; 602 while (rem < 0) { 603 rem += SECS_PER_DAY; 604 --days; 605 } 606 while (rem >= SECS_PER_DAY) { 607 rem -= SECS_PER_DAY; 608 ++days; 609 } 610 *hourp = rem / SECS_PER_HOUR; 611 rem %= SECS_PER_HOUR; 612 *minp = rem / SECS_PER_MINUTE; 613 *secp = rem % SECS_PER_MINUTE; 614 /* January 1, 1970 was a Thursday. */ 615 wday = (4 + days) % 7; /* Day in the week. Not currently used */ 616 if (wday < 0) wday += 7; 617 y = 1970; 618 619 #define DIV(a, b) ((a) / (b) - ((a) % (b) < 0)) 620 #define LEAPS_THRU_END_OF(y) (DIV (y, 4) - DIV (y, 100) + DIV (y, 400)) 621 #define __isleap(year) \ 622 ((year) % 4 == 0 && ((year) % 100 != 0 || (year) % 400 == 0)) 623 624 while (days < 0 || days >= (__isleap (y) ? 366 : 365)) 625 { 626 /* Guess a corrected year, assuming 365 days per year. */ 627 long int yg = y + days / 365 - (days % 365 < 0); 628 629 /* Adjust DAYS and Y to match the guessed year. */ 630 days -= ((yg - y) * 365 631 + LEAPS_THRU_END_OF (yg - 1) 632 - LEAPS_THRU_END_OF (y - 1)); 633 y = yg; 634 } 635 *yearp = y - 1900; 636 yday = days; /* day in the year. Not currently used. */ 637 ip = __mon_yday[__isleap(y)]; 638 for (y = 11; days < (long int) ip[y]; --y) 639 continue; 640 days -= ip[y]; 641 *monp = y; 642 *dayp = days + 1; /* day in the month */ 643 return; 644 } 645 646 /* 647 * Read/write the hardware clock. 648 */ 649 650 int mac_hwclk(int op, struct rtc_time *t) 651 { 652 unsigned long now; 653 654 if (!op) { /* read */ 655 switch (macintosh_config->adb_type) { 656 case MAC_ADB_II: 657 case MAC_ADB_IOP: 658 now = via_read_time(); 659 break; 660 case MAC_ADB_PB1: 661 case MAC_ADB_PB2: 662 now = pmu_read_time(); 663 break; 664 case MAC_ADB_EGRET: 665 case MAC_ADB_CUDA: 666 now = cuda_read_time(); 667 break; 668 default: 669 now = 0; 670 } 671 672 t->tm_wday = 0; 673 unmktime(now, 0, 674 &t->tm_year, &t->tm_mon, &t->tm_mday, 675 &t->tm_hour, &t->tm_min, &t->tm_sec); 676 pr_debug("%s: read %04d-%02d-%-2d %02d:%02d:%02d\n", 677 __func__, t->tm_year + 1900, t->tm_mon + 1, t->tm_mday, 678 t->tm_hour, t->tm_min, t->tm_sec); 679 } else { /* write */ 680 pr_debug("%s: tried to write %04d-%02d-%-2d %02d:%02d:%02d\n", 681 __func__, t->tm_year + 1900, t->tm_mon + 1, t->tm_mday, 682 t->tm_hour, t->tm_min, t->tm_sec); 683 684 now = mktime(t->tm_year + 1900, t->tm_mon + 1, t->tm_mday, 685 t->tm_hour, t->tm_min, t->tm_sec); 686 687 switch (macintosh_config->adb_type) { 688 case MAC_ADB_II: 689 case MAC_ADB_IOP: 690 via_write_time(now); 691 break; 692 case MAC_ADB_EGRET: 693 case MAC_ADB_CUDA: 694 cuda_write_time(now); 695 break; 696 case MAC_ADB_PB1: 697 case MAC_ADB_PB2: 698 pmu_write_time(now); 699 break; 700 } 701 } 702 return 0; 703 } 704 705 /* 706 * Set minutes/seconds in the hardware clock 707 */ 708 709 int mac_set_clock_mmss (unsigned long nowtime) 710 { 711 struct rtc_time now; 712 713 mac_hwclk(0, &now); 714 now.tm_sec = nowtime % 60; 715 now.tm_min = (nowtime / 60) % 60; 716 mac_hwclk(1, &now); 717 718 return 0; 719 } 720