1/* -*- mode: asm -*- 2** 3** head.S -- This file contains the initial boot code for the 4** Linux/68k kernel. 5** 6** Copyright 1993 by Hamish Macdonald 7** 8** 68040 fixes by Michael Rausch 9** 68060 fixes by Roman Hodek 10** MMU cleanup by Randy Thelen 11** Final MMU cleanup by Roman Zippel 12** 13** Atari support by Andreas Schwab, using ideas of Robert de Vries 14** and Bjoern Brauel 15** VME Support by Richard Hirst 16** 17** 94/11/14 Andreas Schwab: put kernel at PAGESIZE 18** 94/11/18 Andreas Schwab: remove identity mapping of STRAM for Atari 19** ++ Bjoern & Roman: ATARI-68040 support for the Medusa 20** 95/11/18 Richard Hirst: Added MVME166 support 21** 96/04/26 Guenther Kelleter: fixed identity mapping for Falcon with 22** Magnum- and FX-alternate ram 23** 98/04/25 Phil Blundell: added HP300 support 24** 1998/08/30 David Kilzer: Added support for font_desc structures 25** for linux-2.1.115 26** 9/02/11 Richard Zidlicky: added Q40 support (initial vesion 99/01/01) 27** 2004/05/13 Kars de Jong: Finalised HP300 support 28** 29** This file is subject to the terms and conditions of the GNU General Public 30** License. See the file README.legal in the main directory of this archive 31** for more details. 32** 33*/ 34 35/* 36 * Linux startup code. 37 * 38 * At this point, the boot loader has: 39 * Disabled interrupts 40 * Disabled caches 41 * Put us in supervisor state. 42 * 43 * The kernel setup code takes the following steps: 44 * . Raise interrupt level 45 * . Set up initial kernel memory mapping. 46 * . This sets up a mapping of the 4M of memory the kernel is located in. 47 * . It also does a mapping of any initial machine specific areas. 48 * . Enable the MMU 49 * . Enable cache memories 50 * . Jump to kernel startup 51 * 52 * Much of the file restructuring was to accomplish: 53 * 1) Remove register dependency through-out the file. 54 * 2) Increase use of subroutines to perform functions 55 * 3) Increase readability of the code 56 * 57 * Of course, readability is a subjective issue, so it will never be 58 * argued that that goal was accomplished. It was merely a goal. 59 * A key way to help make code more readable is to give good 60 * documentation. So, the first thing you will find is exaustive 61 * write-ups on the structure of the file, and the features of the 62 * functional subroutines. 63 * 64 * General Structure: 65 * ------------------ 66 * Without a doubt the single largest chunk of head.S is spent 67 * mapping the kernel and I/O physical space into the logical range 68 * for the kernel. 69 * There are new subroutines and data structures to make MMU 70 * support cleaner and easier to understand. 71 * First, you will find a routine call "mmu_map" which maps 72 * a logical to a physical region for some length given a cache 73 * type on behalf of the caller. This routine makes writing the 74 * actual per-machine specific code very simple. 75 * A central part of the code, but not a subroutine in itself, 76 * is the mmu_init code which is broken down into mapping the kernel 77 * (the same for all machines) and mapping machine-specific I/O 78 * regions. 79 * Also, there will be a description of engaging the MMU and 80 * caches. 81 * You will notice that there is a chunk of code which 82 * can emit the entire MMU mapping of the machine. This is present 83 * only in debug modes and can be very helpful. 84 * Further, there is a new console driver in head.S that is 85 * also only engaged in debug mode. Currently, it's only supported 86 * on the Macintosh class of machines. However, it is hoped that 87 * others will plug-in support for specific machines. 88 * 89 * ###################################################################### 90 * 91 * mmu_map 92 * ------- 93 * mmu_map was written for two key reasons. First, it was clear 94 * that it was very difficult to read the previous code for mapping 95 * regions of memory. Second, the Macintosh required such extensive 96 * memory allocations that it didn't make sense to propagate the 97 * existing code any further. 98 * mmu_map requires some parameters: 99 * 100 * mmu_map (logical, physical, length, cache_type) 101 * 102 * While this essentially describes the function in the abstract, you'll 103 * find more indepth description of other parameters at the implementation site. 104 * 105 * mmu_get_root_table_entry 106 * ------------------------ 107 * mmu_get_ptr_table_entry 108 * ----------------------- 109 * mmu_get_page_table_entry 110 * ------------------------ 111 * 112 * These routines are used by other mmu routines to get a pointer into 113 * a table, if necessary a new table is allocated. These routines are working 114 * basically like pmd_alloc() and pte_alloc() in <asm/pgtable.h>. The root 115 * table needs of course only to be allocated once in mmu_get_root_table_entry, 116 * so that here also some mmu specific initialization is done. The second page 117 * at the start of the kernel (the first page is unmapped later) is used for 118 * the kernel_pg_dir. It must be at a position known at link time (as it's used 119 * to initialize the init task struct) and since it needs special cache 120 * settings, it's the easiest to use this page, the rest of the page is used 121 * for further pointer tables. 122 * mmu_get_page_table_entry allocates always a whole page for page tables, this 123 * means 1024 pages and so 4MB of memory can be mapped. It doesn't make sense 124 * to manage page tables in smaller pieces as nearly all mappings have that 125 * size. 126 * 127 * ###################################################################### 128 * 129 * 130 * ###################################################################### 131 * 132 * mmu_engage 133 * ---------- 134 * Thanks to a small helping routine enabling the mmu got quite simple 135 * and there is only one way left. mmu_engage makes a complete a new mapping 136 * that only includes the absolute necessary to be able to jump to the final 137 * postion and to restore the original mapping. 138 * As this code doesn't need a transparent translation register anymore this 139 * means all registers are free to be used by machines that needs them for 140 * other purposes. 141 * 142 * ###################################################################### 143 * 144 * mmu_print 145 * --------- 146 * This algorithm will print out the page tables of the system as 147 * appropriate for an 030 or an 040. This is useful for debugging purposes 148 * and as such is enclosed in #ifdef MMU_PRINT/#endif clauses. 149 * 150 * ###################################################################### 151 * 152 * console_init 153 * ------------ 154 * The console is also able to be turned off. The console in head.S 155 * is specifically for debugging and can be very useful. It is surrounded by 156 * #ifdef CONSOLE/#endif clauses so it doesn't have to ship in known-good 157 * kernels. It's basic algorithm is to determine the size of the screen 158 * (in height/width and bit depth) and then use that information for 159 * displaying an 8x8 font or an 8x16 (widthxheight). I prefer the 8x8 for 160 * debugging so I can see more good data. But it was trivial to add support 161 * for both fonts, so I included it. 162 * Also, the algorithm for plotting pixels is abstracted so that in 163 * theory other platforms could add support for different kinds of frame 164 * buffers. This could be very useful. 165 * 166 * console_put_penguin 167 * ------------------- 168 * An important part of any Linux bring up is the penguin and there's 169 * nothing like getting the Penguin on the screen! This algorithm will work 170 * on any machine for which there is a console_plot_pixel. 171 * 172 * console_scroll 173 * -------------- 174 * My hope is that the scroll algorithm does the right thing on the 175 * various platforms, but it wouldn't be hard to add the test conditions 176 * and new code if it doesn't. 177 * 178 * console_putc 179 * ------------- 180 * 181 * ###################################################################### 182 * 183 * Register usage has greatly simplified within head.S. Every subroutine 184 * saves and restores all registers that it modifies (except it returns a 185 * value in there of course). So the only register that needs to be initialized 186 * is the stack pointer. 187 * All other init code and data is now placed in the init section, so it will 188 * be automatically freed at the end of the kernel initialization. 189 * 190 * ###################################################################### 191 * 192 * options 193 * ------- 194 * There are many options available in a build of this file. I've 195 * taken the time to describe them here to save you the time of searching 196 * for them and trying to understand what they mean. 197 * 198 * CONFIG_xxx: These are the obvious machine configuration defines created 199 * during configuration. These are defined in include/linux/autoconf.h. 200 * 201 * CONSOLE: There is support for head.S console in this file. This 202 * console can talk to a Mac frame buffer, but could easily be extrapolated 203 * to extend it to support other platforms. 204 * 205 * TEST_MMU: This is a test harness for running on any given machine but 206 * getting an MMU dump for another class of machine. The classes of machines 207 * that can be tested are any of the makes (Atari, Amiga, Mac, VME, etc.) 208 * and any of the models (030, 040, 060, etc.). 209 * 210 * NOTE: TEST_MMU is NOT permanent! It is scheduled to be removed 211 * When head.S boots on Atari, Amiga, Macintosh, and VME 212 * machines. At that point the underlying logic will be 213 * believed to be solid enough to be trusted, and TEST_MMU 214 * can be dropped. Do note that that will clean up the 215 * head.S code significantly as large blocks of #if/#else 216 * clauses can be removed. 217 * 218 * MMU_NOCACHE_KERNEL: On the Macintosh platform there was an inquiry into 219 * determing why devices don't appear to work. A test case was to remove 220 * the cacheability of the kernel bits. 221 * 222 * MMU_PRINT: There is a routine built into head.S that can display the 223 * MMU data structures. It outputs its result through the serial_putc 224 * interface. So where ever that winds up driving data, that's where the 225 * mmu struct will appear. On the Macintosh that's typically the console. 226 * 227 * SERIAL_DEBUG: There are a series of putc() macro statements 228 * scattered through out the code to give progress of status to the 229 * person sitting at the console. This constant determines whether those 230 * are used. 231 * 232 * DEBUG: This is the standard DEBUG flag that can be set for building 233 * the kernel. It has the effect adding additional tests into 234 * the code. 235 * 236 * FONT_6x11: 237 * FONT_8x8: 238 * FONT_8x16: 239 * In theory these could be determined at run time or handed 240 * over by the booter. But, let's be real, it's a fine hard 241 * coded value. (But, you will notice the code is run-time 242 * flexible!) A pointer to the font's struct font_desc 243 * is kept locally in Lconsole_font. It is used to determine 244 * font size information dynamically. 245 * 246 * Atari constants: 247 * USE_PRINTER: Use the printer port for serial debug. 248 * USE_SCC_B: Use the SCC port A (Serial2) for serial debug. 249 * USE_SCC_A: Use the SCC port B (Modem2) for serial debug. 250 * USE_MFP: Use the ST-MFP port (Modem1) for serial debug. 251 * 252 * Macintosh constants: 253 * MAC_SERIAL_DEBUG: Turns on serial debug output for the Macintosh. 254 * MAC_USE_SCC_A: Use the SCC port A (modem) for serial debug. 255 * MAC_USE_SCC_B: Use the SCC port B (printer) for serial debug (default). 256 */ 257 258#include <linux/config.h> 259#include <linux/linkage.h> 260#include <linux/init.h> 261#include <asm/bootinfo.h> 262#include <asm/setup.h> 263#include <asm/entry.h> 264#include <asm/pgtable.h> 265#include <asm/page.h> 266#include <asm/asm-offsets.h> 267 268#ifdef CONFIG_MAC 269 270#include <asm/machw.h> 271 272/* 273 * Macintosh console support 274 */ 275 276#ifdef CONFIG_FRAMEBUFFER_CONSOLE 277#define CONSOLE 278#define CONSOLE_PENGUIN 279#endif 280 281/* 282 * Macintosh serial debug support; outputs boot info to the printer 283 * and/or modem serial ports 284 */ 285#undef MAC_SERIAL_DEBUG 286 287/* 288 * Macintosh serial debug port selection; define one or both; 289 * requires MAC_SERIAL_DEBUG to be defined 290 */ 291#define MAC_USE_SCC_A /* Macintosh modem serial port */ 292#define MAC_USE_SCC_B /* Macintosh printer serial port */ 293 294#endif /* CONFIG_MAC */ 295 296#undef MMU_PRINT 297#undef MMU_NOCACHE_KERNEL 298#define SERIAL_DEBUG 299#undef DEBUG 300 301/* 302 * For the head.S console, there are three supported fonts, 6x11, 8x16 and 8x8. 303 * The 8x8 font is harder to read but fits more on the screen. 304 */ 305#define FONT_8x8 /* default */ 306/* #define FONT_8x16 */ /* 2nd choice */ 307/* #define FONT_6x11 */ /* 3rd choice */ 308 309.globl kernel_pg_dir 310.globl availmem 311.globl m68k_pgtable_cachemode 312.globl m68k_supervisor_cachemode 313#ifdef CONFIG_MVME16x 314.globl mvme_bdid 315#endif 316#ifdef CONFIG_Q40 317.globl q40_mem_cptr 318#endif 319 320CPUTYPE_040 = 1 /* indicates an 040 */ 321CPUTYPE_060 = 2 /* indicates an 060 */ 322CPUTYPE_0460 = 3 /* if either above are set, this is set */ 323CPUTYPE_020 = 4 /* indicates an 020 */ 324 325/* Translation control register */ 326TC_ENABLE = 0x8000 327TC_PAGE8K = 0x4000 328TC_PAGE4K = 0x0000 329 330/* Transparent translation registers */ 331TTR_ENABLE = 0x8000 /* enable transparent translation */ 332TTR_ANYMODE = 0x4000 /* user and kernel mode access */ 333TTR_KERNELMODE = 0x2000 /* only kernel mode access */ 334TTR_USERMODE = 0x0000 /* only user mode access */ 335TTR_CI = 0x0400 /* inhibit cache */ 336TTR_RW = 0x0200 /* read/write mode */ 337TTR_RWM = 0x0100 /* read/write mask */ 338TTR_FCB2 = 0x0040 /* function code base bit 2 */ 339TTR_FCB1 = 0x0020 /* function code base bit 1 */ 340TTR_FCB0 = 0x0010 /* function code base bit 0 */ 341TTR_FCM2 = 0x0004 /* function code mask bit 2 */ 342TTR_FCM1 = 0x0002 /* function code mask bit 1 */ 343TTR_FCM0 = 0x0001 /* function code mask bit 0 */ 344 345/* Cache Control registers */ 346CC6_ENABLE_D = 0x80000000 /* enable data cache (680[46]0) */ 347CC6_FREEZE_D = 0x40000000 /* freeze data cache (68060) */ 348CC6_ENABLE_SB = 0x20000000 /* enable store buffer (68060) */ 349CC6_PUSH_DPI = 0x10000000 /* disable CPUSH invalidation (68060) */ 350CC6_HALF_D = 0x08000000 /* half-cache mode for data cache (68060) */ 351CC6_ENABLE_B = 0x00800000 /* enable branch cache (68060) */ 352CC6_CLRA_B = 0x00400000 /* clear all entries in branch cache (68060) */ 353CC6_CLRU_B = 0x00200000 /* clear user entries in branch cache (68060) */ 354CC6_ENABLE_I = 0x00008000 /* enable instruction cache (680[46]0) */ 355CC6_FREEZE_I = 0x00004000 /* freeze instruction cache (68060) */ 356CC6_HALF_I = 0x00002000 /* half-cache mode for instruction cache (68060) */ 357CC3_ALLOC_WRITE = 0x00002000 /* write allocate mode(68030) */ 358CC3_ENABLE_DB = 0x00001000 /* enable data burst (68030) */ 359CC3_CLR_D = 0x00000800 /* clear data cache (68030) */ 360CC3_CLRE_D = 0x00000400 /* clear entry in data cache (68030) */ 361CC3_FREEZE_D = 0x00000200 /* freeze data cache (68030) */ 362CC3_ENABLE_D = 0x00000100 /* enable data cache (68030) */ 363CC3_ENABLE_IB = 0x00000010 /* enable instruction burst (68030) */ 364CC3_CLR_I = 0x00000008 /* clear instruction cache (68030) */ 365CC3_CLRE_I = 0x00000004 /* clear entry in instruction cache (68030) */ 366CC3_FREEZE_I = 0x00000002 /* freeze instruction cache (68030) */ 367CC3_ENABLE_I = 0x00000001 /* enable instruction cache (68030) */ 368 369/* Miscellaneous definitions */ 370PAGESIZE = 4096 371PAGESHIFT = 12 372 373ROOT_TABLE_SIZE = 128 374PTR_TABLE_SIZE = 128 375PAGE_TABLE_SIZE = 64 376ROOT_INDEX_SHIFT = 25 377PTR_INDEX_SHIFT = 18 378PAGE_INDEX_SHIFT = 12 379 380#ifdef DEBUG 381/* When debugging use readable names for labels */ 382#ifdef __STDC__ 383#define L(name) .head.S.##name 384#else 385#define L(name) .head.S./**/name 386#endif 387#else 388#ifdef __STDC__ 389#define L(name) .L##name 390#else 391#define L(name) .L/**/name 392#endif 393#endif 394 395/* The __INITDATA stuff is a no-op when ftrace or kgdb are turned on */ 396#ifndef __INITDATA 397#define __INITDATA .data 398#define __FINIT .previous 399#endif 400 401/* Several macros to make the writing of subroutines easier: 402 * - func_start marks the beginning of the routine which setups the frame 403 * register and saves the registers, it also defines another macro 404 * to automatically restore the registers again. 405 * - func_return marks the end of the routine and simply calls the prepared 406 * macro to restore registers and jump back to the caller. 407 * - func_define generates another macro to automatically put arguments 408 * onto the stack call the subroutine and cleanup the stack again. 409 */ 410 411/* Within subroutines these macros can be used to access the arguments 412 * on the stack. With STACK some allocated memory on the stack can be 413 * accessed and ARG0 points to the return address (used by mmu_engage). 414 */ 415#define STACK %a6@(stackstart) 416#define ARG0 %a6@(4) 417#define ARG1 %a6@(8) 418#define ARG2 %a6@(12) 419#define ARG3 %a6@(16) 420#define ARG4 %a6@(20) 421 422.macro func_start name,saveregs,stack=0 423L(\name): 424 linkw %a6,#-\stack 425 moveml \saveregs,%sp@- 426.set stackstart,-\stack 427 428.macro func_return_\name 429 moveml %sp@+,\saveregs 430 unlk %a6 431 rts 432.endm 433.endm 434 435.macro func_return name 436 func_return_\name 437.endm 438 439.macro func_call name 440 jbsr L(\name) 441.endm 442 443.macro move_stack nr,arg1,arg2,arg3,arg4 444.if \nr 445 move_stack "(\nr-1)",\arg2,\arg3,\arg4 446 movel \arg1,%sp@- 447.endif 448.endm 449 450.macro func_define name,nr=0 451.macro \name arg1,arg2,arg3,arg4 452 move_stack \nr,\arg1,\arg2,\arg3,\arg4 453 func_call \name 454.if \nr 455 lea %sp@(\nr*4),%sp 456.endif 457.endm 458.endm 459 460func_define mmu_map,4 461func_define mmu_map_tt,4 462func_define mmu_fixup_page_mmu_cache,1 463func_define mmu_temp_map,2 464func_define mmu_engage 465func_define mmu_get_root_table_entry,1 466func_define mmu_get_ptr_table_entry,2 467func_define mmu_get_page_table_entry,2 468func_define mmu_print 469func_define get_new_page 470#if defined(CONFIG_HP300) || defined(CONFIG_APOLLO) 471func_define set_leds 472#endif 473 474.macro mmu_map_eq arg1,arg2,arg3 475 mmu_map \arg1,\arg1,\arg2,\arg3 476.endm 477 478.macro get_bi_record record 479 pea \record 480 func_call get_bi_record 481 addql #4,%sp 482.endm 483 484func_define serial_putc,1 485func_define console_putc,1 486 487func_define console_init 488func_define console_put_stats 489func_define console_put_penguin 490func_define console_plot_pixel,3 491func_define console_scroll 492 493.macro putc ch 494#if defined(CONSOLE) || defined(SERIAL_DEBUG) 495 pea \ch 496#endif 497#ifdef CONSOLE 498 func_call console_putc 499#endif 500#ifdef SERIAL_DEBUG 501 func_call serial_putc 502#endif 503#if defined(CONSOLE) || defined(SERIAL_DEBUG) 504 addql #4,%sp 505#endif 506.endm 507 508.macro dputc ch 509#ifdef DEBUG 510 putc \ch 511#endif 512.endm 513 514func_define putn,1 515 516.macro dputn nr 517#ifdef DEBUG 518 putn \nr 519#endif 520.endm 521 522.macro puts string 523#if defined(CONSOLE) || defined(SERIAL_DEBUG) 524 __INITDATA 525.Lstr\@: 526 .string "\string" 527 __FINIT 528 pea %pc@(.Lstr\@) 529 func_call puts 530 addql #4,%sp 531#endif 532.endm 533 534.macro dputs string 535#ifdef DEBUG 536 puts "\string" 537#endif 538.endm 539 540#define is_not_amiga(lab) cmpl &MACH_AMIGA,%pc@(m68k_machtype); jne lab 541#define is_not_atari(lab) cmpl &MACH_ATARI,%pc@(m68k_machtype); jne lab 542#define is_not_mac(lab) cmpl &MACH_MAC,%pc@(m68k_machtype); jne lab 543#define is_not_mvme147(lab) cmpl &MACH_MVME147,%pc@(m68k_machtype); jne lab 544#define is_not_mvme16x(lab) cmpl &MACH_MVME16x,%pc@(m68k_machtype); jne lab 545#define is_not_bvme6000(lab) cmpl &MACH_BVME6000,%pc@(m68k_machtype); jne lab 546#define is_mvme147(lab) cmpl &MACH_MVME147,%pc@(m68k_machtype); jeq lab 547#define is_mvme16x(lab) cmpl &MACH_MVME16x,%pc@(m68k_machtype); jeq lab 548#define is_bvme6000(lab) cmpl &MACH_BVME6000,%pc@(m68k_machtype); jeq lab 549#define is_not_hp300(lab) cmpl &MACH_HP300,%pc@(m68k_machtype); jne lab 550#define is_not_apollo(lab) cmpl &MACH_APOLLO,%pc@(m68k_machtype); jne lab 551#define is_not_q40(lab) cmpl &MACH_Q40,%pc@(m68k_machtype); jne lab 552#define is_not_sun3x(lab) cmpl &MACH_SUN3X,%pc@(m68k_machtype); jne lab 553 554#define hasnt_leds(lab) cmpl &MACH_HP300,%pc@(m68k_machtype); \ 555 jeq 42f; \ 556 cmpl &MACH_APOLLO,%pc@(m68k_machtype); \ 557 jne lab ;\ 558 42:\ 559 560#define is_040_or_060(lab) btst &CPUTYPE_0460,%pc@(L(cputype)+3); jne lab 561#define is_not_040_or_060(lab) btst &CPUTYPE_0460,%pc@(L(cputype)+3); jeq lab 562#define is_040(lab) btst &CPUTYPE_040,%pc@(L(cputype)+3); jne lab 563#define is_060(lab) btst &CPUTYPE_060,%pc@(L(cputype)+3); jne lab 564#define is_not_060(lab) btst &CPUTYPE_060,%pc@(L(cputype)+3); jeq lab 565#define is_020(lab) btst &CPUTYPE_020,%pc@(L(cputype)+3); jne lab 566#define is_not_020(lab) btst &CPUTYPE_020,%pc@(L(cputype)+3); jeq lab 567 568/* On the HP300 we use the on-board LEDs for debug output before 569 the console is running. Writing a 1 bit turns the corresponding LED 570 _off_ - on the 340 bit 7 is towards the back panel of the machine. */ 571.macro leds mask 572#if defined(CONFIG_HP300) || defined(CONFIG_APOLLO) 573 hasnt_leds(.Lled\@) 574 pea \mask 575 func_call set_leds 576 addql #4,%sp 577.Lled\@: 578#endif 579.endm 580 581.text 582ENTRY(_stext) 583/* 584 * Version numbers of the bootinfo interface 585 * The area from _stext to _start will later be used as kernel pointer table 586 */ 587 bras 1f /* Jump over bootinfo version numbers */ 588 589 .long BOOTINFOV_MAGIC 590 .long MACH_AMIGA, AMIGA_BOOTI_VERSION 591 .long MACH_ATARI, ATARI_BOOTI_VERSION 592 .long MACH_MVME147, MVME147_BOOTI_VERSION 593 .long MACH_MVME16x, MVME16x_BOOTI_VERSION 594 .long MACH_BVME6000, BVME6000_BOOTI_VERSION 595 .long MACH_MAC, MAC_BOOTI_VERSION 596 .long MACH_Q40, Q40_BOOTI_VERSION 597 .long MACH_HP300, HP300_BOOTI_VERSION 598 .long 0 5991: jra __start 600 601.equ kernel_pg_dir,_stext 602 603.equ .,_stext+PAGESIZE 604 605ENTRY(_start) 606 jra __start 607__INIT 608ENTRY(__start) 609/* 610 * Setup initial stack pointer 611 */ 612 lea %pc@(_stext),%sp 613 614/* 615 * Record the CPU and machine type. 616 */ 617 get_bi_record BI_MACHTYPE 618 lea %pc@(m68k_machtype),%a1 619 movel %a0@,%a1@ 620 621 get_bi_record BI_FPUTYPE 622 lea %pc@(m68k_fputype),%a1 623 movel %a0@,%a1@ 624 625 get_bi_record BI_MMUTYPE 626 lea %pc@(m68k_mmutype),%a1 627 movel %a0@,%a1@ 628 629 get_bi_record BI_CPUTYPE 630 lea %pc@(m68k_cputype),%a1 631 movel %a0@,%a1@ 632 633 leds 0x1 634 635#ifdef CONFIG_MAC 636/* 637 * For Macintosh, we need to determine the display parameters early (at least 638 * while debugging it). 639 */ 640 641 is_not_mac(L(test_notmac)) 642 643 get_bi_record BI_MAC_VADDR 644 lea %pc@(L(mac_videobase)),%a1 645 movel %a0@,%a1@ 646 647 get_bi_record BI_MAC_VDEPTH 648 lea %pc@(L(mac_videodepth)),%a1 649 movel %a0@,%a1@ 650 651 get_bi_record BI_MAC_VDIM 652 lea %pc@(L(mac_dimensions)),%a1 653 movel %a0@,%a1@ 654 655 get_bi_record BI_MAC_VROW 656 lea %pc@(L(mac_rowbytes)),%a1 657 movel %a0@,%a1@ 658 659#ifdef MAC_SERIAL_DEBUG 660 get_bi_record BI_MAC_SCCBASE 661 lea %pc@(L(mac_sccbase)),%a1 662 movel %a0@,%a1@ 663#endif /* MAC_SERIAL_DEBUG */ 664 665#if 0 666 /* 667 * Clear the screen 668 */ 669 lea %pc@(L(mac_videobase)),%a0 670 movel %a0@,%a1 671 lea %pc@(L(mac_dimensions)),%a0 672 movel %a0@,%d1 673 swap %d1 /* #rows is high bytes */ 674 andl #0xFFFF,%d1 /* rows */ 675 subl #10,%d1 676 lea %pc@(L(mac_rowbytes)),%a0 677loopy2: 678 movel %a0@,%d0 679 subql #1,%d0 680loopx2: 681 moveb #0x55, %a1@+ 682 dbra %d0,loopx2 683 dbra %d1,loopy2 684#endif 685 686L(test_notmac): 687#endif /* CONFIG_MAC */ 688 689 690/* 691 * There are ultimately two pieces of information we want for all kinds of 692 * processors CpuType and CacheBits. The CPUTYPE was passed in from booter 693 * and is converted here from a booter type definition to a separate bit 694 * number which allows for the standard is_0x0 macro tests. 695 */ 696 movel %pc@(m68k_cputype),%d0 697 /* 698 * Assume it's an 030 699 */ 700 clrl %d1 701 702 /* 703 * Test the BootInfo cputype for 060 704 */ 705 btst #CPUB_68060,%d0 706 jeq 1f 707 bset #CPUTYPE_060,%d1 708 bset #CPUTYPE_0460,%d1 709 jra 3f 7101: 711 /* 712 * Test the BootInfo cputype for 040 713 */ 714 btst #CPUB_68040,%d0 715 jeq 2f 716 bset #CPUTYPE_040,%d1 717 bset #CPUTYPE_0460,%d1 718 jra 3f 7192: 720 /* 721 * Test the BootInfo cputype for 020 722 */ 723 btst #CPUB_68020,%d0 724 jeq 3f 725 bset #CPUTYPE_020,%d1 726 jra 3f 7273: 728 /* 729 * Record the cpu type 730 */ 731 lea %pc@(L(cputype)),%a0 732 movel %d1,%a0@ 733 734 /* 735 * NOTE: 736 * 737 * Now the macros are valid: 738 * is_040_or_060 739 * is_not_040_or_060 740 * is_040 741 * is_060 742 * is_not_060 743 */ 744 745 /* 746 * Determine the cache mode for pages holding MMU tables 747 * and for supervisor mode, unused for '020 and '030 748 */ 749 clrl %d0 750 clrl %d1 751 752 is_not_040_or_060(L(save_cachetype)) 753 754 /* 755 * '040 or '060 756 * d1 := cacheable write-through 757 * NOTE: The 68040 manual strongly recommends non-cached for MMU tables, 758 * but we have been using write-through since at least 2.0.29 so I 759 * guess it is OK. 760 */ 761#ifdef CONFIG_060_WRITETHROUGH 762 /* 763 * If this is a 68060 board using drivers with cache coherency 764 * problems, then supervisor memory accesses need to be write-through 765 * also; otherwise, we want copyback. 766 */ 767 768 is_not_060(1f) 769 movel #_PAGE_CACHE040W,%d0 770 jra L(save_cachetype) 771#endif /* CONFIG_060_WRITETHROUGH */ 7721: 773 movew #_PAGE_CACHE040,%d0 774 775 movel #_PAGE_CACHE040W,%d1 776 777L(save_cachetype): 778 /* Save cache mode for supervisor mode and page tables 779 */ 780 lea %pc@(m68k_supervisor_cachemode),%a0 781 movel %d0,%a0@ 782 lea %pc@(m68k_pgtable_cachemode),%a0 783 movel %d1,%a0@ 784 785/* 786 * raise interrupt level 787 */ 788 movew #0x2700,%sr 789 790/* 791 If running on an Atari, determine the I/O base of the 792 serial port and test if we are running on a Medusa or Hades. 793 This test is necessary here, because on the Hades the serial 794 port is only accessible in the high I/O memory area. 795 796 The test whether it is a Medusa is done by writing to the byte at 797 phys. 0x0. This should result in a bus error on all other machines. 798 799 ...should, but doesn't. The Afterburner040 for the Falcon has the 800 same behaviour (0x0..0x7 are no ROM shadow). So we have to do 801 another test to distinguish Medusa and AB040. This is a 802 read attempt for 0x00ff82fe phys. that should bus error on a Falcon 803 (+AB040), but is in the range where the Medusa always asserts DTACK. 804 805 The test for the Hades is done by reading address 0xb0000000. This 806 should give a bus error on the Medusa. 807 */ 808 809#ifdef CONFIG_ATARI 810 is_not_atari(L(notypetest)) 811 812 /* get special machine type (Medusa/Hades/AB40) */ 813 moveq #0,%d3 /* default if tag doesn't exist */ 814 get_bi_record BI_ATARI_MCH_TYPE 815 tstl %d0 816 jbmi 1f 817 movel %a0@,%d3 818 lea %pc@(atari_mch_type),%a0 819 movel %d3,%a0@ 8201: 821 /* On the Hades, the iobase must be set up before opening the 822 * serial port. There are no I/O regs at 0x00ffxxxx at all. */ 823 moveq #0,%d0 824 cmpl #ATARI_MACH_HADES,%d3 825 jbne 1f 826 movel #0xff000000,%d0 /* Hades I/O base addr: 0xff000000 */ 8271: lea %pc@(L(iobase)),%a0 828 movel %d0,%a0@ 829 830L(notypetest): 831#endif 832 833#ifdef CONFIG_VME 834 is_mvme147(L(getvmetype)) 835 is_bvme6000(L(getvmetype)) 836 is_not_mvme16x(L(gvtdone)) 837 838 /* See if the loader has specified the BI_VME_TYPE tag. Recent 839 * versions of VMELILO and TFTPLILO do this. We have to do this 840 * early so we know how to handle console output. If the tag 841 * doesn't exist then we use the Bug for output on MVME16x. 842 */ 843L(getvmetype): 844 get_bi_record BI_VME_TYPE 845 tstl %d0 846 jbmi 1f 847 movel %a0@,%d3 848 lea %pc@(vme_brdtype),%a0 849 movel %d3,%a0@ 8501: 851#ifdef CONFIG_MVME16x 852 is_not_mvme16x(L(gvtdone)) 853 854 /* Need to get the BRD_ID info to differentiate between 162, 167, 855 * etc. This is available as a BI_VME_BRDINFO tag with later 856 * versions of VMELILO and TFTPLILO, otherwise we call the Bug. 857 */ 858 get_bi_record BI_VME_BRDINFO 859 tstl %d0 860 jpl 1f 861 862 /* Get pointer to board ID data from Bug */ 863 movel %d2,%sp@- 864 trap #15 865 .word 0x70 /* trap 0x70 - .BRD_ID */ 866 movel %sp@+,%a0 8671: 868 lea %pc@(mvme_bdid),%a1 869 /* Structure is 32 bytes long */ 870 movel %a0@+,%a1@+ 871 movel %a0@+,%a1@+ 872 movel %a0@+,%a1@+ 873 movel %a0@+,%a1@+ 874 movel %a0@+,%a1@+ 875 movel %a0@+,%a1@+ 876 movel %a0@+,%a1@+ 877 movel %a0@+,%a1@+ 878#endif 879 880L(gvtdone): 881 882#endif 883 884#ifdef CONFIG_HP300 885 is_not_hp300(L(nothp)) 886 887 /* Get the address of the UART for serial debugging */ 888 get_bi_record BI_HP300_UART_ADDR 889 tstl %d0 890 jbmi 1f 891 movel %a0@,%d3 892 lea %pc@(L(uartbase)),%a0 893 movel %d3,%a0@ 894 get_bi_record BI_HP300_UART_SCODE 895 tstl %d0 896 jbmi 1f 897 movel %a0@,%d3 898 lea %pc@(L(uart_scode)),%a0 899 movel %d3,%a0@ 9001: 901L(nothp): 902#endif 903 904/* 905 * Initialize serial port 906 */ 907 jbsr L(serial_init) 908 909/* 910 * Initialize console 911 */ 912#ifdef CONFIG_MAC 913 is_not_mac(L(nocon)) 914#ifdef CONSOLE 915 console_init 916#ifdef CONSOLE_PENGUIN 917 console_put_penguin 918#endif /* CONSOLE_PENGUIN */ 919 console_put_stats 920#endif /* CONSOLE */ 921L(nocon): 922#endif /* CONFIG_MAC */ 923 924 925 putc '\n' 926 putc 'A' 927 leds 0x2 928 dputn %pc@(L(cputype)) 929 dputn %pc@(m68k_supervisor_cachemode) 930 dputn %pc@(m68k_pgtable_cachemode) 931 dputc '\n' 932 933/* 934 * Save physical start address of kernel 935 */ 936 lea %pc@(L(phys_kernel_start)),%a0 937 lea %pc@(_stext),%a1 938 subl #_stext,%a1 939 addl #PAGE_OFFSET,%a1 940 movel %a1,%a0@ 941 942 putc 'B' 943 944 leds 0x4 945 946/* 947 * mmu_init 948 * 949 * This block of code does what's necessary to map in the various kinds 950 * of machines for execution of Linux. 951 * First map the first 4 MB of kernel code & data 952 */ 953 954 mmu_map #PAGE_OFFSET,%pc@(L(phys_kernel_start)),#4*1024*1024,\ 955 %pc@(m68k_supervisor_cachemode) 956 957 putc 'C' 958 959#ifdef CONFIG_AMIGA 960 961L(mmu_init_amiga): 962 963 is_not_amiga(L(mmu_init_not_amiga)) 964/* 965 * mmu_init_amiga 966 */ 967 968 putc 'D' 969 970 is_not_040_or_060(1f) 971 972 /* 973 * 040: Map the 16Meg range physical 0x0 upto logical 0x8000.0000 974 */ 975 mmu_map #0x80000000,#0,#0x01000000,#_PAGE_NOCACHE_S 976 /* 977 * Map the Zorro III I/O space with transparent translation 978 * for frame buffer memory etc. 979 */ 980 mmu_map_tt #1,#0x40000000,#0x20000000,#_PAGE_NOCACHE_S 981 982 jbra L(mmu_init_done) 983 9841: 985 /* 986 * 030: Map the 32Meg range physical 0x0 upto logical 0x8000.0000 987 */ 988 mmu_map #0x80000000,#0,#0x02000000,#_PAGE_NOCACHE030 989 mmu_map_tt #1,#0x40000000,#0x20000000,#_PAGE_NOCACHE030 990 991 jbra L(mmu_init_done) 992 993L(mmu_init_not_amiga): 994#endif 995 996#ifdef CONFIG_ATARI 997 998L(mmu_init_atari): 999 1000 is_not_atari(L(mmu_init_not_atari)) 1001 1002 putc 'E' 1003 1004/* On the Atari, we map the I/O region (phys. 0x00ffxxxx) by mapping 1005 the last 16 MB of virtual address space to the first 16 MB (i.e. 1006 0xffxxxxxx -> 0x00xxxxxx). For this, an additional pointer table is 1007 needed. I/O ranges are marked non-cachable. 1008 1009 For the Medusa it is better to map the I/O region transparently 1010 (i.e. 0xffxxxxxx -> 0xffxxxxxx), because some I/O registers are 1011 accessible only in the high area. 1012 1013 On the Hades all I/O registers are only accessible in the high 1014 area. 1015*/ 1016 1017 /* I/O base addr for non-Medusa, non-Hades: 0x00000000 */ 1018 moveq #0,%d0 1019 movel %pc@(atari_mch_type),%d3 1020 cmpl #ATARI_MACH_MEDUSA,%d3 1021 jbeq 2f 1022 cmpl #ATARI_MACH_HADES,%d3 1023 jbne 1f 10242: movel #0xff000000,%d0 /* Medusa/Hades base addr: 0xff000000 */ 10251: movel %d0,%d3 1026 1027 is_040_or_060(L(spata68040)) 1028 1029 /* Map everything non-cacheable, though not all parts really 1030 * need to disable caches (crucial only for 0xff8000..0xffffff 1031 * (standard I/O) and 0xf00000..0xf3ffff (IDE)). The remainder 1032 * isn't really used, except for sometimes peeking into the 1033 * ROMs (mirror at phys. 0x0), so caching isn't necessary for 1034 * this. */ 1035 mmu_map #0xff000000,%d3,#0x01000000,#_PAGE_NOCACHE030 1036 1037 jbra L(mmu_init_done) 1038 1039L(spata68040): 1040 1041 mmu_map #0xff000000,%d3,#0x01000000,#_PAGE_NOCACHE_S 1042 1043 jbra L(mmu_init_done) 1044 1045L(mmu_init_not_atari): 1046#endif 1047 1048#ifdef CONFIG_Q40 1049 is_not_q40(L(notq40)) 1050 /* 1051 * add transparent mapping for 0xff00 0000 - 0xffff ffff 1052 * non-cached serialized etc.. 1053 * this includes master chip, DAC, RTC and ISA ports 1054 * 0xfe000000-0xfeffffff is for screen and ROM 1055 */ 1056 1057 putc 'Q' 1058 1059 mmu_map_tt #0,#0xfe000000,#0x01000000,#_PAGE_CACHE040W 1060 mmu_map_tt #1,#0xff000000,#0x01000000,#_PAGE_NOCACHE_S 1061 1062 jbra L(mmu_init_done) 1063 1064L(notq40): 1065#endif 1066 1067#ifdef CONFIG_HP300 1068 is_not_hp300(L(nothp300)) 1069 1070 /* On the HP300, we map the ROM, INTIO and DIO regions (phys. 0x00xxxxxx) 1071 * by mapping 32MB (on 020/030) or 16 MB (on 040) from 0xf0xxxxxx -> 0x00xxxxxx). 1072 * The ROM mapping is needed because the LEDs are mapped there too. 1073 */ 1074 1075 is_040(1f) 1076 1077 /* 1078 * 030: Map the 32Meg range physical 0x0 upto logical 0xf000.0000 1079 */ 1080 mmu_map #0xf0000000,#0,#0x02000000,#_PAGE_NOCACHE030 1081 1082 jbra L(mmu_init_done) 1083 10841: 1085 /* 1086 * 040: Map the 16Meg range physical 0x0 upto logical 0xf000.0000 1087 */ 1088 mmu_map #0xf0000000,#0,#0x01000000,#_PAGE_NOCACHE_S 1089 1090 jbra L(mmu_init_done) 1091 1092L(nothp300): 1093#endif /* CONFIG_HP300 */ 1094 1095#ifdef CONFIG_MVME147 1096 1097 is_not_mvme147(L(not147)) 1098 1099 /* 1100 * On MVME147 we have already created kernel page tables for 1101 * 4MB of RAM at address 0, so now need to do a transparent 1102 * mapping of the top of memory space. Make it 0.5GByte for now, 1103 * so we can access on-board i/o areas. 1104 */ 1105 1106 mmu_map_tt #1,#0xe0000000,#0x20000000,#_PAGE_NOCACHE030 1107 1108 jbra L(mmu_init_done) 1109 1110L(not147): 1111#endif /* CONFIG_MVME147 */ 1112 1113#ifdef CONFIG_MVME16x 1114 1115 is_not_mvme16x(L(not16x)) 1116 1117 /* 1118 * On MVME16x we have already created kernel page tables for 1119 * 4MB of RAM at address 0, so now need to do a transparent 1120 * mapping of the top of memory space. Make it 0.5GByte for now. 1121 * Supervisor only access, so transparent mapping doesn't 1122 * clash with User code virtual address space. 1123 * this covers IO devices, PROM and SRAM. The PROM and SRAM 1124 * mapping is needed to allow 167Bug to run. 1125 * IO is in the range 0xfff00000 to 0xfffeffff. 1126 * PROM is 0xff800000->0xffbfffff and SRAM is 1127 * 0xffe00000->0xffe1ffff. 1128 */ 1129 1130 mmu_map_tt #1,#0xe0000000,#0x20000000,#_PAGE_NOCACHE_S 1131 1132 jbra L(mmu_init_done) 1133 1134L(not16x): 1135#endif /* CONFIG_MVME162 | CONFIG_MVME167 */ 1136 1137#ifdef CONFIG_BVME6000 1138 1139 is_not_bvme6000(L(not6000)) 1140 1141 /* 1142 * On BVME6000 we have already created kernel page tables for 1143 * 4MB of RAM at address 0, so now need to do a transparent 1144 * mapping of the top of memory space. Make it 0.5GByte for now, 1145 * so we can access on-board i/o areas. 1146 * Supervisor only access, so transparent mapping doesn't 1147 * clash with User code virtual address space. 1148 */ 1149 1150 mmu_map_tt #1,#0xe0000000,#0x20000000,#_PAGE_NOCACHE_S 1151 1152 jbra L(mmu_init_done) 1153 1154L(not6000): 1155#endif /* CONFIG_BVME6000 */ 1156 1157/* 1158 * mmu_init_mac 1159 * 1160 * The Macintosh mappings are less clear. 1161 * 1162 * Even as of this writing, it is unclear how the 1163 * Macintosh mappings will be done. However, as 1164 * the first author of this code I'm proposing the 1165 * following model: 1166 * 1167 * Map the kernel (that's already done), 1168 * Map the I/O (on most machines that's the 1169 * 0x5000.0000 ... 0x5300.0000 range, 1170 * Map the video frame buffer using as few pages 1171 * as absolutely (this requirement mostly stems from 1172 * the fact that when the frame buffer is at 1173 * 0x0000.0000 then we know there is valid RAM just 1174 * above the screen that we don't want to waste!). 1175 * 1176 * By the way, if the frame buffer is at 0x0000.0000 1177 * then the Macintosh is known as an RBV based Mac. 1178 * 1179 * By the way 2, the code currently maps in a bunch of 1180 * regions. But I'd like to cut that out. (And move most 1181 * of the mappings up into the kernel proper ... or only 1182 * map what's necessary.) 1183 */ 1184 1185#ifdef CONFIG_MAC 1186 1187L(mmu_init_mac): 1188 1189 is_not_mac(L(mmu_init_not_mac)) 1190 1191 putc 'F' 1192 1193 is_not_040_or_060(1f) 1194 1195 moveq #_PAGE_NOCACHE_S,%d3 1196 jbra 2f 11971: 1198 moveq #_PAGE_NOCACHE030,%d3 11992: 1200 /* 1201 * Mac Note: screen address of logical 0xF000.0000 -> <screen physical> 1202 * we simply map the 4MB that contains the videomem 1203 */ 1204 1205 movel #VIDEOMEMMASK,%d0 1206 andl %pc@(L(mac_videobase)),%d0 1207 1208 mmu_map #VIDEOMEMBASE,%d0,#VIDEOMEMSIZE,%d3 1209 /* ROM from 4000 0000 to 4200 0000 (only for mac_reset()) */ 1210 mmu_map_eq #0x40000000,#0x02000000,%d3 1211 /* IO devices (incl. serial port) from 5000 0000 to 5300 0000 */ 1212 mmu_map_eq #0x50000000,#0x03000000,%d3 1213 /* Nubus slot space (video at 0xF0000000, rom at 0xF0F80000) */ 1214 mmu_map_tt #1,#0xf8000000,#0x08000000,%d3 1215 1216 jbra L(mmu_init_done) 1217 1218L(mmu_init_not_mac): 1219#endif 1220 1221#ifdef CONFIG_SUN3X 1222 is_not_sun3x(L(notsun3x)) 1223 1224 /* oh, the pain.. We're gonna want the prom code after 1225 * starting the MMU, so we copy the mappings, translating 1226 * from 8k -> 4k pages as we go. 1227 */ 1228 1229 /* copy maps from 0xfee00000 to 0xff000000 */ 1230 movel #0xfee00000, %d0 1231 moveq #ROOT_INDEX_SHIFT, %d1 1232 lsrl %d1,%d0 1233 mmu_get_root_table_entry %d0 1234 1235 movel #0xfee00000, %d0 1236 moveq #PTR_INDEX_SHIFT, %d1 1237 lsrl %d1,%d0 1238 andl #PTR_TABLE_SIZE-1, %d0 1239 mmu_get_ptr_table_entry %a0,%d0 1240 1241 movel #0xfee00000, %d0 1242 moveq #PAGE_INDEX_SHIFT, %d1 1243 lsrl %d1,%d0 1244 andl #PAGE_TABLE_SIZE-1, %d0 1245 mmu_get_page_table_entry %a0,%d0 1246 1247 /* this is where the prom page table lives */ 1248 movel 0xfefe00d4, %a1 1249 movel %a1@, %a1 1250 1251 movel #((0x200000 >> 13)-1), %d1 1252 12531: 1254 movel %a1@+, %d3 1255 movel %d3,%a0@+ 1256 addl #0x1000,%d3 1257 movel %d3,%a0@+ 1258 1259 dbra %d1,1b 1260 1261 /* setup tt1 for I/O */ 1262 mmu_map_tt #1,#0x40000000,#0x40000000,#_PAGE_NOCACHE_S 1263 jbra L(mmu_init_done) 1264 1265L(notsun3x): 1266#endif 1267 1268#ifdef CONFIG_APOLLO 1269 is_not_apollo(L(notapollo)) 1270 1271 putc 'P' 1272 mmu_map #0x80000000,#0,#0x02000000,#_PAGE_NOCACHE030 1273 1274L(notapollo): 1275 jbra L(mmu_init_done) 1276#endif 1277 1278L(mmu_init_done): 1279 1280 putc 'G' 1281 leds 0x8 1282 1283/* 1284 * mmu_fixup 1285 * 1286 * On the 040 class machines, all pages that are used for the 1287 * mmu have to be fixed up. According to Motorola, pages holding mmu 1288 * tables should be non-cacheable on a '040 and write-through on a 1289 * '060. But analysis of the reasons for this, and practical 1290 * experience, showed that write-through also works on a '040. 1291 * 1292 * Allocated memory so far goes from kernel_end to memory_start that 1293 * is used for all kind of tables, for that the cache attributes 1294 * are now fixed. 1295 */ 1296L(mmu_fixup): 1297 1298 is_not_040_or_060(L(mmu_fixup_done)) 1299 1300#ifdef MMU_NOCACHE_KERNEL 1301 jbra L(mmu_fixup_done) 1302#endif 1303 1304 /* first fix the page at the start of the kernel, that 1305 * contains also kernel_pg_dir. 1306 */ 1307 movel %pc@(L(phys_kernel_start)),%d0 1308 subl #PAGE_OFFSET,%d0 1309 lea %pc@(_stext),%a0 1310 subl %d0,%a0 1311 mmu_fixup_page_mmu_cache %a0 1312 1313 movel %pc@(L(kernel_end)),%a0 1314 subl %d0,%a0 1315 movel %pc@(L(memory_start)),%a1 1316 subl %d0,%a1 1317 bra 2f 13181: 1319 mmu_fixup_page_mmu_cache %a0 1320 addw #PAGESIZE,%a0 13212: 1322 cmpl %a0,%a1 1323 jgt 1b 1324 1325L(mmu_fixup_done): 1326 1327#ifdef MMU_PRINT 1328 mmu_print 1329#endif 1330 1331/* 1332 * mmu_engage 1333 * 1334 * This chunk of code performs the gruesome task of engaging the MMU. 1335 * The reason its gruesome is because when the MMU becomes engaged it 1336 * maps logical addresses to physical addresses. The Program Counter 1337 * register is then passed through the MMU before the next instruction 1338 * is fetched (the instruction following the engage MMU instruction). 1339 * This may mean one of two things: 1340 * 1. The Program Counter falls within the logical address space of 1341 * the kernel of which there are two sub-possibilities: 1342 * A. The PC maps to the correct instruction (logical PC == physical 1343 * code location), or 1344 * B. The PC does not map through and the processor will read some 1345 * data (or instruction) which is not the logically next instr. 1346 * As you can imagine, A is good and B is bad. 1347 * Alternatively, 1348 * 2. The Program Counter does not map through the MMU. The processor 1349 * will take a Bus Error. 1350 * Clearly, 2 is bad. 1351 * It doesn't take a wiz kid to figure you want 1.A. 1352 * This code creates that possibility. 1353 * There are two possible 1.A. states (we now ignore the other above states): 1354 * A. The kernel is located at physical memory addressed the same as 1355 * the logical memory for the kernel, i.e., 0x01000. 1356 * B. The kernel is located some where else. e.g., 0x0400.0000 1357 * 1358 * Under some conditions the Macintosh can look like A or B. 1359 * [A friend and I once noted that Apple hardware engineers should be 1360 * wacked twice each day: once when they show up at work (as in, Whack!, 1361 * "This is for the screwy hardware we know you're going to design today."), 1362 * and also at the end of the day (as in, Whack! "I don't know what 1363 * you designed today, but I'm sure it wasn't good."). -- rst] 1364 * 1365 * This code works on the following premise: 1366 * If the kernel start (%d5) is within the first 16 Meg of RAM, 1367 * then create a mapping for the kernel at logical 0x8000.0000 to 1368 * the physical location of the pc. And, create a transparent 1369 * translation register for the first 16 Meg. Then, after the MMU 1370 * is engaged, the PC can be moved up into the 0x8000.0000 range 1371 * and then the transparent translation can be turned off and then 1372 * the PC can jump to the correct logical location and it will be 1373 * home (finally). This is essentially the code that the Amiga used 1374 * to use. Now, it's generalized for all processors. Which means 1375 * that a fresh (but temporary) mapping has to be created. The mapping 1376 * is made in page 0 (an as of yet unused location -- except for the 1377 * stack!). This temporary mapping will only require 1 pointer table 1378 * and a single page table (it can map 256K). 1379 * 1380 * OK, alternatively, imagine that the Program Counter is not within 1381 * the first 16 Meg. Then, just use Transparent Translation registers 1382 * to do the right thing. 1383 * 1384 * Last, if _start is already at 0x01000, then there's nothing special 1385 * to do (in other words, in a degenerate case of the first case above, 1386 * do nothing). 1387 * 1388 * Let's do it. 1389 * 1390 * 1391 */ 1392 1393 putc 'H' 1394 1395 mmu_engage 1396 1397/* 1398 * After this point no new memory is allocated and 1399 * the start of available memory is stored in availmem. 1400 * (The bootmem allocator requires now the physicall address.) 1401 */ 1402 1403 movel L(memory_start),availmem 1404 1405#ifdef CONFIG_AMIGA 1406 is_not_amiga(1f) 1407 /* fixup the Amiga custom register location before printing */ 1408 clrl L(custom) 14091: 1410#endif 1411 1412#ifdef CONFIG_ATARI 1413 is_not_atari(1f) 1414 /* fixup the Atari iobase register location before printing */ 1415 movel #0xff000000,L(iobase) 14161: 1417#endif 1418 1419#ifdef CONFIG_MAC 1420 is_not_mac(1f) 1421 movel #~VIDEOMEMMASK,%d0 1422 andl L(mac_videobase),%d0 1423 addl #VIDEOMEMBASE,%d0 1424 movel %d0,L(mac_videobase) 1425#if defined(CONSOLE) 1426 movel %pc@(L(phys_kernel_start)),%d0 1427 subl #PAGE_OFFSET,%d0 1428 subl %d0,L(console_font) 1429 subl %d0,L(console_font_data) 1430#endif 1431#ifdef MAC_SERIAL_DEBUG 1432 orl #0x50000000,L(mac_sccbase) 1433#endif 14341: 1435#endif 1436 1437#ifdef CONFIG_HP300 1438 is_not_hp300(1f) 1439 /* 1440 * Fix up the iobase register to point to the new location of the LEDs. 1441 */ 1442 movel #0xf0000000,L(iobase) 1443 1444 /* 1445 * Energise the FPU and caches. 1446 */ 1447 is_040(1f) 1448 movel #0x60,0xf05f400c 1449 jbra 2f 1450 1451 /* 1452 * 040: slightly different, apparently. 1453 */ 14541: movew #0,0xf05f400e 1455 movew #0x64,0xf05f400e 14562: 1457#endif 1458 1459#ifdef CONFIG_SUN3X 1460 is_not_sun3x(1f) 1461 1462 /* enable copro */ 1463 oriw #0x4000,0x61000000 14641: 1465#endif 1466 1467#ifdef CONFIG_APOLLO 1468 is_not_apollo(1f) 1469 1470 /* 1471 * Fix up the iobase before printing 1472 */ 1473 movel #0x80000000,L(iobase) 14741: 1475#endif 1476 1477 putc 'I' 1478 leds 0x10 1479 1480/* 1481 * Enable caches 1482 */ 1483 1484 is_not_040_or_060(L(cache_not_680460)) 1485 1486L(cache680460): 1487 .chip 68040 1488 nop 1489 cpusha %bc 1490 nop 1491 1492 is_060(L(cache68060)) 1493 1494 movel #CC6_ENABLE_D+CC6_ENABLE_I,%d0 1495 /* MMU stuff works in copyback mode now, so enable the cache */ 1496 movec %d0,%cacr 1497 jra L(cache_done) 1498 1499L(cache68060): 1500 movel #CC6_ENABLE_D+CC6_ENABLE_I+CC6_ENABLE_SB+CC6_PUSH_DPI+CC6_ENABLE_B+CC6_CLRA_B,%d0 1501 /* MMU stuff works in copyback mode now, so enable the cache */ 1502 movec %d0,%cacr 1503 /* enable superscalar dispatch in PCR */ 1504 moveq #1,%d0 1505 .chip 68060 1506 movec %d0,%pcr 1507 1508 jbra L(cache_done) 1509L(cache_not_680460): 1510L(cache68030): 1511 .chip 68030 1512 movel #CC3_ENABLE_DB+CC3_CLR_D+CC3_ENABLE_D+CC3_ENABLE_IB+CC3_CLR_I+CC3_ENABLE_I,%d0 1513 movec %d0,%cacr 1514 1515 jra L(cache_done) 1516 .chip 68k 1517L(cache_done): 1518 1519 putc 'J' 1520 1521/* 1522 * Setup initial stack pointer 1523 */ 1524 lea init_task,%curptr 1525 lea init_thread_union+THREAD_SIZE,%sp 1526 1527 putc 'K' 1528 1529 subl %a6,%a6 /* clear a6 for gdb */ 1530 1531/* 1532 * The new 64bit printf support requires an early exception initialization. 1533 */ 1534 jbsr base_trap_init 1535 1536/* jump to the kernel start */ 1537 1538 putc '\n' 1539 leds 0x55 1540 1541 jbsr start_kernel 1542 1543/* 1544 * Find a tag record in the bootinfo structure 1545 * The bootinfo structure is located right after the kernel bss 1546 * Returns: d0: size (-1 if not found) 1547 * a0: data pointer (end-of-records if not found) 1548 */ 1549func_start get_bi_record,%d1 1550 1551 movel ARG1,%d0 1552 lea %pc@(_end),%a0 15531: tstw %a0@(BIR_TAG) 1554 jeq 3f 1555 cmpw %a0@(BIR_TAG),%d0 1556 jeq 2f 1557 addw %a0@(BIR_SIZE),%a0 1558 jra 1b 15592: moveq #0,%d0 1560 movew %a0@(BIR_SIZE),%d0 1561 lea %a0@(BIR_DATA),%a0 1562 jra 4f 15633: moveq #-1,%d0 1564 lea %a0@(BIR_SIZE),%a0 15654: 1566func_return get_bi_record 1567 1568 1569/* 1570 * MMU Initialization Begins Here 1571 * 1572 * The structure of the MMU tables on the 68k machines 1573 * is thus: 1574 * Root Table 1575 * Logical addresses are translated through 1576 * a hierarchical translation mechanism where the high-order 1577 * seven bits of the logical address (LA) are used as an 1578 * index into the "root table." Each entry in the root 1579 * table has a bit which specifies if it's a valid pointer to a 1580 * pointer table. Each entry defines a 32KMeg range of memory. 1581 * If an entry is invalid then that logical range of 32M is 1582 * invalid and references to that range of memory (when the MMU 1583 * is enabled) will fault. If the entry is valid, then it does 1584 * one of two things. On 040/060 class machines, it points to 1585 * a pointer table which then describes more finely the memory 1586 * within that 32M range. On 020/030 class machines, a technique 1587 * called "early terminating descriptors" are used. This technique 1588 * allows an entire 32Meg to be described by a single entry in the 1589 * root table. Thus, this entry in the root table, contains the 1590 * physical address of the memory or I/O at the logical address 1591 * which the entry represents and it also contains the necessary 1592 * cache bits for this region. 1593 * 1594 * Pointer Tables 1595 * Per the Root Table, there will be one or more 1596 * pointer tables. Each pointer table defines a 32M range. 1597 * Not all of the 32M range need be defined. Again, the next 1598 * seven bits of the logical address are used an index into 1599 * the pointer table to point to page tables (if the pointer 1600 * is valid). There will undoubtedly be more than one 1601 * pointer table for the kernel because each pointer table 1602 * defines a range of only 32M. Valid pointer table entries 1603 * point to page tables, or are early terminating entries 1604 * themselves. 1605 * 1606 * Page Tables 1607 * Per the Pointer Tables, each page table entry points 1608 * to the physical page in memory that supports the logical 1609 * address that translates to the particular index. 1610 * 1611 * In short, the Logical Address gets translated as follows: 1612 * bits 31..26 - index into the Root Table 1613 * bits 25..18 - index into the Pointer Table 1614 * bits 17..12 - index into the Page Table 1615 * bits 11..0 - offset into a particular 4K page 1616 * 1617 * The algorithms which follows do one thing: they abstract 1618 * the MMU hardware. For example, there are three kinds of 1619 * cache settings that are relevant. Either, memory is 1620 * being mapped in which case it is either Kernel Code (or 1621 * the RamDisk) or it is MMU data. On the 030, the MMU data 1622 * option also describes the kernel. Or, I/O is being mapped 1623 * in which case it has its own kind of cache bits. There 1624 * are constants which abstract these notions from the code that 1625 * actually makes the call to map some range of memory. 1626 * 1627 * 1628 * 1629 */ 1630 1631#ifdef MMU_PRINT 1632/* 1633 * mmu_print 1634 * 1635 * This algorithm will print out the current MMU mappings. 1636 * 1637 * Input: 1638 * %a5 points to the root table. Everything else is calculated 1639 * from this. 1640 */ 1641 1642#define mmu_next_valid 0 1643#define mmu_start_logical 4 1644#define mmu_next_logical 8 1645#define mmu_start_physical 12 1646#define mmu_next_physical 16 1647 1648#define MMU_PRINT_INVALID -1 1649#define MMU_PRINT_VALID 1 1650#define MMU_PRINT_UNINITED 0 1651 1652#define putZc(z,n) jbne 1f; putc z; jbra 2f; 1: putc n; 2: 1653 1654func_start mmu_print,%a0-%a6/%d0-%d7 1655 1656 movel %pc@(L(kernel_pgdir_ptr)),%a5 1657 lea %pc@(L(mmu_print_data)),%a0 1658 movel #MMU_PRINT_UNINITED,%a0@(mmu_next_valid) 1659 1660 is_not_040_or_060(mmu_030_print) 1661 1662mmu_040_print: 1663 puts "\nMMU040\n" 1664 puts "rp:" 1665 putn %a5 1666 putc '\n' 1667#if 0 1668 /* 1669 * The following #if/#endif block is a tight algorithm for dumping the 040 1670 * MMU Map in gory detail. It really isn't that practical unless the 1671 * MMU Map algorithm appears to go awry and you need to debug it at the 1672 * entry per entry level. 1673 */ 1674 movel #ROOT_TABLE_SIZE,%d5 1675#if 0 1676 movel %a5@+,%d7 | Burn an entry to skip the kernel mappings, 1677 subql #1,%d5 | they (might) work 1678#endif 16791: tstl %d5 1680 jbeq mmu_print_done 1681 subq #1,%d5 1682 movel %a5@+,%d7 1683 btst #1,%d7 1684 jbeq 1b 1685 16862: putn %d7 1687 andil #0xFFFFFE00,%d7 1688 movel %d7,%a4 1689 movel #PTR_TABLE_SIZE,%d4 1690 putc ' ' 16913: tstl %d4 1692 jbeq 11f 1693 subq #1,%d4 1694 movel %a4@+,%d7 1695 btst #1,%d7 1696 jbeq 3b 1697 16984: putn %d7 1699 andil #0xFFFFFF00,%d7 1700 movel %d7,%a3 1701 movel #PAGE_TABLE_SIZE,%d3 17025: movel #8,%d2 17036: tstl %d3 1704 jbeq 31f 1705 subq #1,%d3 1706 movel %a3@+,%d6 1707 btst #0,%d6 1708 jbeq 6b 17097: tstl %d2 1710 jbeq 8f 1711 subq #1,%d2 1712 putc ' ' 1713 jbra 91f 17148: putc '\n' 1715 movel #8+1+8+1+1,%d2 17169: putc ' ' 1717 dbra %d2,9b 1718 movel #7,%d2 171991: putn %d6 1720 jbra 6b 1721 172231: putc '\n' 1723 movel #8+1,%d2 172432: putc ' ' 1725 dbra %d2,32b 1726 jbra 3b 1727 172811: putc '\n' 1729 jbra 1b 1730#endif /* MMU 040 Dumping code that's gory and detailed */ 1731 1732 lea %pc@(kernel_pg_dir),%a5 1733 movel %a5,%a0 /* a0 has the address of the root table ptr */ 1734 movel #0x00000000,%a4 /* logical address */ 1735 moveql #0,%d0 173640: 1737 /* Increment the logical address and preserve in d5 */ 1738 movel %a4,%d5 1739 addil #PAGESIZE<<13,%d5 1740 movel %a0@+,%d6 1741 btst #1,%d6 1742 jbne 41f 1743 jbsr mmu_print_tuple_invalidate 1744 jbra 48f 174541: 1746 movel #0,%d1 1747 andil #0xfffffe00,%d6 1748 movel %d6,%a1 174942: 1750 movel %a4,%d5 1751 addil #PAGESIZE<<6,%d5 1752 movel %a1@+,%d6 1753 btst #1,%d6 1754 jbne 43f 1755 jbsr mmu_print_tuple_invalidate 1756 jbra 47f 175743: 1758 movel #0,%d2 1759 andil #0xffffff00,%d6 1760 movel %d6,%a2 176144: 1762 movel %a4,%d5 1763 addil #PAGESIZE,%d5 1764 movel %a2@+,%d6 1765 btst #0,%d6 1766 jbne 45f 1767 jbsr mmu_print_tuple_invalidate 1768 jbra 46f 176945: 1770 moveml %d0-%d1,%sp@- 1771 movel %a4,%d0 1772 movel %d6,%d1 1773 andil #0xfffff4e0,%d1 1774 lea %pc@(mmu_040_print_flags),%a6 1775 jbsr mmu_print_tuple 1776 moveml %sp@+,%d0-%d1 177746: 1778 movel %d5,%a4 1779 addq #1,%d2 1780 cmpib #64,%d2 1781 jbne 44b 178247: 1783 movel %d5,%a4 1784 addq #1,%d1 1785 cmpib #128,%d1 1786 jbne 42b 178748: 1788 movel %d5,%a4 /* move to the next logical address */ 1789 addq #1,%d0 1790 cmpib #128,%d0 1791 jbne 40b 1792 1793 .chip 68040 1794 movec %dtt1,%d0 1795 movel %d0,%d1 1796 andiw #0x8000,%d1 /* is it valid ? */ 1797 jbeq 1f /* No, bail out */ 1798 1799 movel %d0,%d1 1800 andil #0xff000000,%d1 /* Get the address */ 1801 putn %d1 1802 puts "==" 1803 putn %d1 1804 1805 movel %d0,%d6 1806 jbsr mmu_040_print_flags_tt 18071: 1808 movec %dtt0,%d0 1809 movel %d0,%d1 1810 andiw #0x8000,%d1 /* is it valid ? */ 1811 jbeq 1f /* No, bail out */ 1812 1813 movel %d0,%d1 1814 andil #0xff000000,%d1 /* Get the address */ 1815 putn %d1 1816 puts "==" 1817 putn %d1 1818 1819 movel %d0,%d6 1820 jbsr mmu_040_print_flags_tt 18211: 1822 .chip 68k 1823 1824 jbra mmu_print_done 1825 1826mmu_040_print_flags: 1827 btstl #10,%d6 1828 putZc(' ','G') /* global bit */ 1829 btstl #7,%d6 1830 putZc(' ','S') /* supervisor bit */ 1831mmu_040_print_flags_tt: 1832 btstl #6,%d6 1833 jbne 3f 1834 putc 'C' 1835 btstl #5,%d6 1836 putZc('w','c') /* write through or copy-back */ 1837 jbra 4f 18383: 1839 putc 'N' 1840 btstl #5,%d6 1841 putZc('s',' ') /* serialized non-cacheable, or non-cacheable */ 18424: 1843 rts 1844 1845mmu_030_print_flags: 1846 btstl #6,%d6 1847 putZc('C','I') /* write through or copy-back */ 1848 rts 1849 1850mmu_030_print: 1851 puts "\nMMU030\n" 1852 puts "\nrp:" 1853 putn %a5 1854 putc '\n' 1855 movel %a5,%d0 1856 andil #0xfffffff0,%d0 1857 movel %d0,%a0 1858 movel #0x00000000,%a4 /* logical address */ 1859 movel #0,%d0 186030: 1861 movel %a4,%d5 1862 addil #PAGESIZE<<13,%d5 1863 movel %a0@+,%d6 1864 btst #1,%d6 /* is it a table ptr? */ 1865 jbne 31f /* yes */ 1866 btst #0,%d6 /* is it early terminating? */ 1867 jbeq 1f /* no */ 1868 jbsr mmu_030_print_helper 1869 jbra 38f 18701: 1871 jbsr mmu_print_tuple_invalidate 1872 jbra 38f 187331: 1874 movel #0,%d1 1875 andil #0xfffffff0,%d6 1876 movel %d6,%a1 187732: 1878 movel %a4,%d5 1879 addil #PAGESIZE<<6,%d5 1880 movel %a1@+,%d6 1881 btst #1,%d6 /* is it a table ptr? */ 1882 jbne 33f /* yes */ 1883 btst #0,%d6 /* is it a page descriptor? */ 1884 jbeq 1f /* no */ 1885 jbsr mmu_030_print_helper 1886 jbra 37f 18871: 1888 jbsr mmu_print_tuple_invalidate 1889 jbra 37f 189033: 1891 movel #0,%d2 1892 andil #0xfffffff0,%d6 1893 movel %d6,%a2 189434: 1895 movel %a4,%d5 1896 addil #PAGESIZE,%d5 1897 movel %a2@+,%d6 1898 btst #0,%d6 1899 jbne 35f 1900 jbsr mmu_print_tuple_invalidate 1901 jbra 36f 190235: 1903 jbsr mmu_030_print_helper 190436: 1905 movel %d5,%a4 1906 addq #1,%d2 1907 cmpib #64,%d2 1908 jbne 34b 190937: 1910 movel %d5,%a4 1911 addq #1,%d1 1912 cmpib #128,%d1 1913 jbne 32b 191438: 1915 movel %d5,%a4 /* move to the next logical address */ 1916 addq #1,%d0 1917 cmpib #128,%d0 1918 jbne 30b 1919 1920mmu_print_done: 1921 puts "\n\n" 1922 1923func_return mmu_print 1924 1925 1926mmu_030_print_helper: 1927 moveml %d0-%d1,%sp@- 1928 movel %a4,%d0 1929 movel %d6,%d1 1930 lea %pc@(mmu_030_print_flags),%a6 1931 jbsr mmu_print_tuple 1932 moveml %sp@+,%d0-%d1 1933 rts 1934 1935mmu_print_tuple_invalidate: 1936 moveml %a0/%d7,%sp@- 1937 1938 lea %pc@(L(mmu_print_data)),%a0 1939 tstl %a0@(mmu_next_valid) 1940 jbmi mmu_print_tuple_invalidate_exit 1941 1942 movel #MMU_PRINT_INVALID,%a0@(mmu_next_valid) 1943 1944 putn %a4 1945 1946 puts "##\n" 1947 1948mmu_print_tuple_invalidate_exit: 1949 moveml %sp@+,%a0/%d7 1950 rts 1951 1952 1953mmu_print_tuple: 1954 moveml %d0-%d7/%a0,%sp@- 1955 1956 lea %pc@(L(mmu_print_data)),%a0 1957 1958 tstl %a0@(mmu_next_valid) 1959 jble mmu_print_tuple_print 1960 1961 cmpl %a0@(mmu_next_physical),%d1 1962 jbeq mmu_print_tuple_increment 1963 1964mmu_print_tuple_print: 1965 putn %d0 1966 puts "->" 1967 putn %d1 1968 1969 movel %d1,%d6 1970 jbsr %a6@ 1971 1972mmu_print_tuple_record: 1973 movel #MMU_PRINT_VALID,%a0@(mmu_next_valid) 1974 1975 movel %d1,%a0@(mmu_next_physical) 1976 1977mmu_print_tuple_increment: 1978 movel %d5,%d7 1979 subl %a4,%d7 1980 addl %d7,%a0@(mmu_next_physical) 1981 1982mmu_print_tuple_exit: 1983 moveml %sp@+,%d0-%d7/%a0 1984 rts 1985 1986mmu_print_machine_cpu_types: 1987 puts "machine: " 1988 1989 is_not_amiga(1f) 1990 puts "amiga" 1991 jbra 9f 19921: 1993 is_not_atari(2f) 1994 puts "atari" 1995 jbra 9f 19962: 1997 is_not_mac(3f) 1998 puts "macintosh" 1999 jbra 9f 20003: puts "unknown" 20019: putc '\n' 2002 2003 puts "cputype: 0" 2004 is_not_060(1f) 2005 putc '6' 2006 jbra 9f 20071: 2008 is_not_040_or_060(2f) 2009 putc '4' 2010 jbra 9f 20112: putc '3' 20129: putc '0' 2013 putc '\n' 2014 2015 rts 2016#endif /* MMU_PRINT */ 2017 2018/* 2019 * mmu_map_tt 2020 * 2021 * This is a specific function which works on all 680x0 machines. 2022 * On 030, 040 & 060 it will attempt to use Transparent Translation 2023 * registers (tt1). 2024 * On 020 it will call the standard mmu_map which will use early 2025 * terminating descriptors. 2026 */ 2027func_start mmu_map_tt,%d0/%d1/%a0,4 2028 2029 dputs "mmu_map_tt:" 2030 dputn ARG1 2031 dputn ARG2 2032 dputn ARG3 2033 dputn ARG4 2034 dputc '\n' 2035 2036 is_020(L(do_map)) 2037 2038 /* Extract the highest bit set 2039 */ 2040 bfffo ARG3{#0,#32},%d1 2041 cmpw #8,%d1 2042 jcc L(do_map) 2043 2044 /* And get the mask 2045 */ 2046 moveq #-1,%d0 2047 lsrl %d1,%d0 2048 lsrl #1,%d0 2049 2050 /* Mask the address 2051 */ 2052 movel %d0,%d1 2053 notl %d1 2054 andl ARG2,%d1 2055 2056 /* Generate the upper 16bit of the tt register 2057 */ 2058 lsrl #8,%d0 2059 orl %d0,%d1 2060 clrw %d1 2061 2062 is_040_or_060(L(mmu_map_tt_040)) 2063 2064 /* set 030 specific bits (read/write access for supervisor mode 2065 * (highest function code set, lower two bits masked)) 2066 */ 2067 orw #TTR_ENABLE+TTR_RWM+TTR_FCB2+TTR_FCM1+TTR_FCM0,%d1 2068 movel ARG4,%d0 2069 btst #6,%d0 2070 jeq 1f 2071 orw #TTR_CI,%d1 2072 20731: lea STACK,%a0 2074 dputn %d1 2075 movel %d1,%a0@ 2076 .chip 68030 2077 tstl ARG1 2078 jne 1f 2079 pmove %a0@,%tt0 2080 jra 2f 20811: pmove %a0@,%tt1 20822: .chip 68k 2083 jra L(mmu_map_tt_done) 2084 2085 /* set 040 specific bits 2086 */ 2087L(mmu_map_tt_040): 2088 orw #TTR_ENABLE+TTR_KERNELMODE,%d1 2089 orl ARG4,%d1 2090 dputn %d1 2091 2092 .chip 68040 2093 tstl ARG1 2094 jne 1f 2095 movec %d1,%itt0 2096 movec %d1,%dtt0 2097 jra 2f 20981: movec %d1,%itt1 2099 movec %d1,%dtt1 21002: .chip 68k 2101 2102 jra L(mmu_map_tt_done) 2103 2104L(do_map): 2105 mmu_map_eq ARG2,ARG3,ARG4 2106 2107L(mmu_map_tt_done): 2108 2109func_return mmu_map_tt 2110 2111/* 2112 * mmu_map 2113 * 2114 * This routine will map a range of memory using a pointer 2115 * table and allocating the pages on the fly from the kernel. 2116 * The pointer table does not have to be already linked into 2117 * the root table, this routine will do that if necessary. 2118 * 2119 * NOTE 2120 * This routine will assert failure and use the serial_putc 2121 * routines in the case of a run-time error. For example, 2122 * if the address is already mapped. 2123 * 2124 * NOTE-2 2125 * This routine will use early terminating descriptors 2126 * where possible for the 68020+68851 and 68030 type 2127 * processors. 2128 */ 2129func_start mmu_map,%d0-%d4/%a0-%a4 2130 2131 dputs "\nmmu_map:" 2132 dputn ARG1 2133 dputn ARG2 2134 dputn ARG3 2135 dputn ARG4 2136 dputc '\n' 2137 2138 /* Get logical address and round it down to 256KB 2139 */ 2140 movel ARG1,%d0 2141 andl #-(PAGESIZE*PAGE_TABLE_SIZE),%d0 2142 movel %d0,%a3 2143 2144 /* Get the end address 2145 */ 2146 movel ARG1,%a4 2147 addl ARG3,%a4 2148 subql #1,%a4 2149 2150 /* Get physical address and round it down to 256KB 2151 */ 2152 movel ARG2,%d0 2153 andl #-(PAGESIZE*PAGE_TABLE_SIZE),%d0 2154 movel %d0,%a2 2155 2156 /* Add page attributes to the physical address 2157 */ 2158 movel ARG4,%d0 2159 orw #_PAGE_PRESENT+_PAGE_ACCESSED+_PAGE_DIRTY,%d0 2160 addw %d0,%a2 2161 2162 dputn %a2 2163 dputn %a3 2164 dputn %a4 2165 2166 is_not_040_or_060(L(mmu_map_030)) 2167 2168 addw #_PAGE_GLOBAL040,%a2 2169/* 2170 * MMU 040 & 060 Support 2171 * 2172 * The MMU usage for the 040 and 060 is different enough from 2173 * the 030 and 68851 that there is separate code. This comment 2174 * block describes the data structures and algorithms built by 2175 * this code. 2176 * 2177 * The 040 does not support early terminating descriptors, as 2178 * the 030 does. Therefore, a third level of table is needed 2179 * for the 040, and that would be the page table. In Linux, 2180 * page tables are allocated directly from the memory above the 2181 * kernel. 2182 * 2183 */ 2184 2185L(mmu_map_040): 2186 /* Calculate the offset into the root table 2187 */ 2188 movel %a3,%d0 2189 moveq #ROOT_INDEX_SHIFT,%d1 2190 lsrl %d1,%d0 2191 mmu_get_root_table_entry %d0 2192 2193 /* Calculate the offset into the pointer table 2194 */ 2195 movel %a3,%d0 2196 moveq #PTR_INDEX_SHIFT,%d1 2197 lsrl %d1,%d0 2198 andl #PTR_TABLE_SIZE-1,%d0 2199 mmu_get_ptr_table_entry %a0,%d0 2200 2201 /* Calculate the offset into the page table 2202 */ 2203 movel %a3,%d0 2204 moveq #PAGE_INDEX_SHIFT,%d1 2205 lsrl %d1,%d0 2206 andl #PAGE_TABLE_SIZE-1,%d0 2207 mmu_get_page_table_entry %a0,%d0 2208 2209 /* The page table entry must not no be busy 2210 */ 2211 tstl %a0@ 2212 jne L(mmu_map_error) 2213 2214 /* Do the mapping and advance the pointers 2215 */ 2216 movel %a2,%a0@ 22172: 2218 addw #PAGESIZE,%a2 2219 addw #PAGESIZE,%a3 2220 2221 /* Ready with mapping? 2222 */ 2223 lea %a3@(-1),%a0 2224 cmpl %a0,%a4 2225 jhi L(mmu_map_040) 2226 jra L(mmu_map_done) 2227 2228L(mmu_map_030): 2229 /* Calculate the offset into the root table 2230 */ 2231 movel %a3,%d0 2232 moveq #ROOT_INDEX_SHIFT,%d1 2233 lsrl %d1,%d0 2234 mmu_get_root_table_entry %d0 2235 2236 /* Check if logical address 32MB aligned, 2237 * so we can try to map it once 2238 */ 2239 movel %a3,%d0 2240 andl #(PTR_TABLE_SIZE*PAGE_TABLE_SIZE*PAGESIZE-1)&(-ROOT_TABLE_SIZE),%d0 2241 jne 1f 2242 2243 /* Is there enough to map for 32MB at once 2244 */ 2245 lea %a3@(PTR_TABLE_SIZE*PAGE_TABLE_SIZE*PAGESIZE-1),%a1 2246 cmpl %a1,%a4 2247 jcs 1f 2248 2249 addql #1,%a1 2250 2251 /* The root table entry must not no be busy 2252 */ 2253 tstl %a0@ 2254 jne L(mmu_map_error) 2255 2256 /* Do the mapping and advance the pointers 2257 */ 2258 dputs "early term1" 2259 dputn %a2 2260 dputn %a3 2261 dputn %a1 2262 dputc '\n' 2263 movel %a2,%a0@ 2264 2265 movel %a1,%a3 2266 lea %a2@(PTR_TABLE_SIZE*PAGE_TABLE_SIZE*PAGESIZE),%a2 2267 jra L(mmu_mapnext_030) 22681: 2269 /* Calculate the offset into the pointer table 2270 */ 2271 movel %a3,%d0 2272 moveq #PTR_INDEX_SHIFT,%d1 2273 lsrl %d1,%d0 2274 andl #PTR_TABLE_SIZE-1,%d0 2275 mmu_get_ptr_table_entry %a0,%d0 2276 2277 /* The pointer table entry must not no be busy 2278 */ 2279 tstl %a0@ 2280 jne L(mmu_map_error) 2281 2282 /* Do the mapping and advance the pointers 2283 */ 2284 dputs "early term2" 2285 dputn %a2 2286 dputn %a3 2287 dputc '\n' 2288 movel %a2,%a0@ 2289 2290 addl #PAGE_TABLE_SIZE*PAGESIZE,%a2 2291 addl #PAGE_TABLE_SIZE*PAGESIZE,%a3 2292 2293L(mmu_mapnext_030): 2294 /* Ready with mapping? 2295 */ 2296 lea %a3@(-1),%a0 2297 cmpl %a0,%a4 2298 jhi L(mmu_map_030) 2299 jra L(mmu_map_done) 2300 2301L(mmu_map_error): 2302 2303 dputs "mmu_map error:" 2304 dputn %a2 2305 dputn %a3 2306 dputc '\n' 2307 2308L(mmu_map_done): 2309 2310func_return mmu_map 2311 2312/* 2313 * mmu_fixup 2314 * 2315 * On the 040 class machines, all pages that are used for the 2316 * mmu have to be fixed up. 2317 */ 2318 2319func_start mmu_fixup_page_mmu_cache,%d0/%a0 2320 2321 dputs "mmu_fixup_page_mmu_cache" 2322 dputn ARG1 2323 2324 /* Calculate the offset into the root table 2325 */ 2326 movel ARG1,%d0 2327 moveq #ROOT_INDEX_SHIFT,%d1 2328 lsrl %d1,%d0 2329 mmu_get_root_table_entry %d0 2330 2331 /* Calculate the offset into the pointer table 2332 */ 2333 movel ARG1,%d0 2334 moveq #PTR_INDEX_SHIFT,%d1 2335 lsrl %d1,%d0 2336 andl #PTR_TABLE_SIZE-1,%d0 2337 mmu_get_ptr_table_entry %a0,%d0 2338 2339 /* Calculate the offset into the page table 2340 */ 2341 movel ARG1,%d0 2342 moveq #PAGE_INDEX_SHIFT,%d1 2343 lsrl %d1,%d0 2344 andl #PAGE_TABLE_SIZE-1,%d0 2345 mmu_get_page_table_entry %a0,%d0 2346 2347 movel %a0@,%d0 2348 andil #_CACHEMASK040,%d0 2349 orl %pc@(m68k_pgtable_cachemode),%d0 2350 movel %d0,%a0@ 2351 2352 dputc '\n' 2353 2354func_return mmu_fixup_page_mmu_cache 2355 2356/* 2357 * mmu_temp_map 2358 * 2359 * create a temporary mapping to enable the mmu, 2360 * this we don't need any transparation translation tricks. 2361 */ 2362 2363func_start mmu_temp_map,%d0/%d1/%a0/%a1 2364 2365 dputs "mmu_temp_map" 2366 dputn ARG1 2367 dputn ARG2 2368 dputc '\n' 2369 2370 lea %pc@(L(temp_mmap_mem)),%a1 2371 2372 /* Calculate the offset in the root table 2373 */ 2374 movel ARG2,%d0 2375 moveq #ROOT_INDEX_SHIFT,%d1 2376 lsrl %d1,%d0 2377 mmu_get_root_table_entry %d0 2378 2379 /* Check if the table is temporary allocated, so we have to reuse it 2380 */ 2381 movel %a0@,%d0 2382 cmpl %pc@(L(memory_start)),%d0 2383 jcc 1f 2384 2385 /* Temporary allocate a ptr table and insert it into the root table 2386 */ 2387 movel %a1@,%d0 2388 addl #PTR_TABLE_SIZE*4,%a1@ 2389 orw #_PAGE_TABLE+_PAGE_ACCESSED,%d0 2390 movel %d0,%a0@ 2391 dputs " (new)" 23921: 2393 dputn %d0 2394 /* Mask the root table entry for the ptr table 2395 */ 2396 andw #-ROOT_TABLE_SIZE,%d0 2397 movel %d0,%a0 2398 2399 /* Calculate the offset into the pointer table 2400 */ 2401 movel ARG2,%d0 2402 moveq #PTR_INDEX_SHIFT,%d1 2403 lsrl %d1,%d0 2404 andl #PTR_TABLE_SIZE-1,%d0 2405 lea %a0@(%d0*4),%a0 2406 dputn %a0 2407 2408 /* Check if a temporary page table is already allocated 2409 */ 2410 movel %a0@,%d0 2411 jne 1f 2412 2413 /* Temporary allocate a page table and insert it into the ptr table 2414 */ 2415 movel %a1@,%d0 2416 /* The 512 should be PAGE_TABLE_SIZE*4, but that violates the 2417 alignment restriction for pointer tables on the '0[46]0. */ 2418 addl #512,%a1@ 2419 orw #_PAGE_TABLE+_PAGE_ACCESSED,%d0 2420 movel %d0,%a0@ 2421 dputs " (new)" 24221: 2423 dputn %d0 2424 /* Mask the ptr table entry for the page table 2425 */ 2426 andw #-PTR_TABLE_SIZE,%d0 2427 movel %d0,%a0 2428 2429 /* Calculate the offset into the page table 2430 */ 2431 movel ARG2,%d0 2432 moveq #PAGE_INDEX_SHIFT,%d1 2433 lsrl %d1,%d0 2434 andl #PAGE_TABLE_SIZE-1,%d0 2435 lea %a0@(%d0*4),%a0 2436 dputn %a0 2437 2438 /* Insert the address into the page table 2439 */ 2440 movel ARG1,%d0 2441 andw #-PAGESIZE,%d0 2442 orw #_PAGE_PRESENT+_PAGE_ACCESSED+_PAGE_DIRTY,%d0 2443 movel %d0,%a0@ 2444 dputn %d0 2445 2446 dputc '\n' 2447 2448func_return mmu_temp_map 2449 2450func_start mmu_engage,%d0-%d2/%a0-%a3 2451 2452 moveq #ROOT_TABLE_SIZE-1,%d0 2453 /* Temporarily use a different root table. */ 2454 lea %pc@(L(kernel_pgdir_ptr)),%a0 2455 movel %a0@,%a2 2456 movel %pc@(L(memory_start)),%a1 2457 movel %a1,%a0@ 2458 movel %a2,%a0 24591: 2460 movel %a0@+,%a1@+ 2461 dbra %d0,1b 2462 2463 lea %pc@(L(temp_mmap_mem)),%a0 2464 movel %a1,%a0@ 2465 2466 movew #PAGESIZE-1,%d0 24671: 2468 clrl %a1@+ 2469 dbra %d0,1b 2470 2471 lea %pc@(1b),%a0 2472 movel #1b,%a1 2473 /* Skip temp mappings if phys == virt */ 2474 cmpl %a0,%a1 2475 jeq 1f 2476 2477 mmu_temp_map %a0,%a0 2478 mmu_temp_map %a0,%a1 2479 2480 addw #PAGESIZE,%a0 2481 addw #PAGESIZE,%a1 2482 mmu_temp_map %a0,%a0 2483 mmu_temp_map %a0,%a1 24841: 2485 movel %pc@(L(memory_start)),%a3 2486 movel %pc@(L(phys_kernel_start)),%d2 2487 2488 is_not_040_or_060(L(mmu_engage_030)) 2489 2490L(mmu_engage_040): 2491 .chip 68040 2492 nop 2493 cinva %bc 2494 nop 2495 pflusha 2496 nop 2497 movec %a3,%srp 2498 movel #TC_ENABLE+TC_PAGE4K,%d0 2499 movec %d0,%tc /* enable the MMU */ 2500 jmp 1f:l 25011: nop 2502 movec %a2,%srp 2503 nop 2504 cinva %bc 2505 nop 2506 pflusha 2507 .chip 68k 2508 jra L(mmu_engage_cleanup) 2509 2510L(mmu_engage_030_temp): 2511 .space 12 2512L(mmu_engage_030): 2513 .chip 68030 2514 lea %pc@(L(mmu_engage_030_temp)),%a0 2515 movel #0x80000002,%a0@ 2516 movel %a3,%a0@(4) 2517 movel #0x0808,%d0 2518 movec %d0,%cacr 2519 pmove %a0@,%srp 2520 pflusha 2521 /* 2522 * enable,super root enable,4096 byte pages,7 bit root index, 2523 * 7 bit pointer index, 6 bit page table index. 2524 */ 2525 movel #0x82c07760,%a0@(8) 2526 pmove %a0@(8),%tc /* enable the MMU */ 2527 jmp 1f:l 25281: movel %a2,%a0@(4) 2529 movel #0x0808,%d0 2530 movec %d0,%cacr 2531 pmove %a0@,%srp 2532 pflusha 2533 .chip 68k 2534 2535L(mmu_engage_cleanup): 2536 subl #PAGE_OFFSET,%d2 2537 subl %d2,%a2 2538 movel %a2,L(kernel_pgdir_ptr) 2539 subl %d2,%fp 2540 subl %d2,%sp 2541 subl %d2,ARG0 2542 2543func_return mmu_engage 2544 2545func_start mmu_get_root_table_entry,%d0/%a1 2546 2547#if 0 2548 dputs "mmu_get_root_table_entry:" 2549 dputn ARG1 2550 dputs " =" 2551#endif 2552 2553 movel %pc@(L(kernel_pgdir_ptr)),%a0 2554 tstl %a0 2555 jne 2f 2556 2557 dputs "\nmmu_init:" 2558 2559 /* Find the start of free memory, get_bi_record does this for us, 2560 * as the bootinfo structure is located directly behind the kernel 2561 * and and we simply search for the last entry. 2562 */ 2563 get_bi_record BI_LAST 2564 addw #PAGESIZE-1,%a0 2565 movel %a0,%d0 2566 andw #-PAGESIZE,%d0 2567 2568 dputn %d0 2569 2570 lea %pc@(L(memory_start)),%a0 2571 movel %d0,%a0@ 2572 lea %pc@(L(kernel_end)),%a0 2573 movel %d0,%a0@ 2574 2575 /* we have to return the first page at _stext since the init code 2576 * in mm/init.c simply expects kernel_pg_dir there, the rest of 2577 * page is used for further ptr tables in get_ptr_table. 2578 */ 2579 lea %pc@(_stext),%a0 2580 lea %pc@(L(mmu_cached_pointer_tables)),%a1 2581 movel %a0,%a1@ 2582 addl #ROOT_TABLE_SIZE*4,%a1@ 2583 2584 lea %pc@(L(mmu_num_pointer_tables)),%a1 2585 addql #1,%a1@ 2586 2587 /* clear the page 2588 */ 2589 movel %a0,%a1 2590 movew #PAGESIZE/4-1,%d0 25911: 2592 clrl %a1@+ 2593 dbra %d0,1b 2594 2595 lea %pc@(L(kernel_pgdir_ptr)),%a1 2596 movel %a0,%a1@ 2597 2598 dputn %a0 2599 dputc '\n' 26002: 2601 movel ARG1,%d0 2602 lea %a0@(%d0*4),%a0 2603 2604#if 0 2605 dputn %a0 2606 dputc '\n' 2607#endif 2608 2609func_return mmu_get_root_table_entry 2610 2611 2612 2613func_start mmu_get_ptr_table_entry,%d0/%a1 2614 2615#if 0 2616 dputs "mmu_get_ptr_table_entry:" 2617 dputn ARG1 2618 dputn ARG2 2619 dputs " =" 2620#endif 2621 2622 movel ARG1,%a0 2623 movel %a0@,%d0 2624 jne 2f 2625 2626 /* Keep track of the number of pointer tables we use 2627 */ 2628 dputs "\nmmu_get_new_ptr_table:" 2629 lea %pc@(L(mmu_num_pointer_tables)),%a0 2630 movel %a0@,%d0 2631 addql #1,%a0@ 2632 2633 /* See if there is a free pointer table in our cache of pointer tables 2634 */ 2635 lea %pc@(L(mmu_cached_pointer_tables)),%a1 2636 andw #7,%d0 2637 jne 1f 2638 2639 /* Get a new pointer table page from above the kernel memory 2640 */ 2641 get_new_page 2642 movel %a0,%a1@ 26431: 2644 /* There is an unused pointer table in our cache... use it 2645 */ 2646 movel %a1@,%d0 2647 addl #PTR_TABLE_SIZE*4,%a1@ 2648 2649 dputn %d0 2650 dputc '\n' 2651 2652 /* Insert the new pointer table into the root table 2653 */ 2654 movel ARG1,%a0 2655 orw #_PAGE_TABLE+_PAGE_ACCESSED,%d0 2656 movel %d0,%a0@ 26572: 2658 /* Extract the pointer table entry 2659 */ 2660 andw #-PTR_TABLE_SIZE,%d0 2661 movel %d0,%a0 2662 movel ARG2,%d0 2663 lea %a0@(%d0*4),%a0 2664 2665#if 0 2666 dputn %a0 2667 dputc '\n' 2668#endif 2669 2670func_return mmu_get_ptr_table_entry 2671 2672 2673func_start mmu_get_page_table_entry,%d0/%a1 2674 2675#if 0 2676 dputs "mmu_get_page_table_entry:" 2677 dputn ARG1 2678 dputn ARG2 2679 dputs " =" 2680#endif 2681 2682 movel ARG1,%a0 2683 movel %a0@,%d0 2684 jne 2f 2685 2686 /* If the page table entry doesn't exist, we allocate a complete new 2687 * page and use it as one continues big page table which can cover 2688 * 4MB of memory, nearly almost all mappings have that alignment. 2689 */ 2690 get_new_page 2691 addw #_PAGE_TABLE+_PAGE_ACCESSED,%a0 2692 2693 /* align pointer table entry for a page of page tables 2694 */ 2695 movel ARG1,%d0 2696 andw #-(PAGESIZE/PAGE_TABLE_SIZE),%d0 2697 movel %d0,%a1 2698 2699 /* Insert the page tables into the pointer entries 2700 */ 2701 moveq #PAGESIZE/PAGE_TABLE_SIZE/4-1,%d0 27021: 2703 movel %a0,%a1@+ 2704 lea %a0@(PAGE_TABLE_SIZE*4),%a0 2705 dbra %d0,1b 2706 2707 /* Now we can get the initialized pointer table entry 2708 */ 2709 movel ARG1,%a0 2710 movel %a0@,%d0 27112: 2712 /* Extract the page table entry 2713 */ 2714 andw #-PAGE_TABLE_SIZE,%d0 2715 movel %d0,%a0 2716 movel ARG2,%d0 2717 lea %a0@(%d0*4),%a0 2718 2719#if 0 2720 dputn %a0 2721 dputc '\n' 2722#endif 2723 2724func_return mmu_get_page_table_entry 2725 2726/* 2727 * get_new_page 2728 * 2729 * Return a new page from the memory start and clear it. 2730 */ 2731func_start get_new_page,%d0/%a1 2732 2733 dputs "\nget_new_page:" 2734 2735 /* allocate the page and adjust memory_start 2736 */ 2737 lea %pc@(L(memory_start)),%a0 2738 movel %a0@,%a1 2739 addl #PAGESIZE,%a0@ 2740 2741 /* clear the new page 2742 */ 2743 movel %a1,%a0 2744 movew #PAGESIZE/4-1,%d0 27451: 2746 clrl %a1@+ 2747 dbra %d0,1b 2748 2749 dputn %a0 2750 dputc '\n' 2751 2752func_return get_new_page 2753 2754 2755 2756/* 2757 * Debug output support 2758 * Atarians have a choice between the parallel port, the serial port 2759 * from the MFP or a serial port of the SCC 2760 */ 2761 2762#ifdef CONFIG_MAC 2763 2764L(scc_initable_mac): 2765 .byte 9,12 /* Reset */ 2766 .byte 4,0x44 /* x16, 1 stopbit, no parity */ 2767 .byte 3,0xc0 /* receiver: 8 bpc */ 2768 .byte 5,0xe2 /* transmitter: 8 bpc, assert dtr/rts */ 2769 .byte 9,0 /* no interrupts */ 2770 .byte 10,0 /* NRZ */ 2771 .byte 11,0x50 /* use baud rate generator */ 2772 .byte 12,10,13,0 /* 9600 baud */ 2773 .byte 14,1 /* Baud rate generator enable */ 2774 .byte 3,0xc1 /* enable receiver */ 2775 .byte 5,0xea /* enable transmitter */ 2776 .byte -1 2777 .even 2778#endif 2779 2780#ifdef CONFIG_ATARI 2781/* #define USE_PRINTER */ 2782/* #define USE_SCC_B */ 2783/* #define USE_SCC_A */ 2784#define USE_MFP 2785 2786#if defined(USE_SCC_A) || defined(USE_SCC_B) 2787#define USE_SCC 2788/* Initialisation table for SCC */ 2789L(scc_initable): 2790 .byte 9,12 /* Reset */ 2791 .byte 4,0x44 /* x16, 1 stopbit, no parity */ 2792 .byte 3,0xc0 /* receiver: 8 bpc */ 2793 .byte 5,0xe2 /* transmitter: 8 bpc, assert dtr/rts */ 2794 .byte 9,0 /* no interrupts */ 2795 .byte 10,0 /* NRZ */ 2796 .byte 11,0x50 /* use baud rate generator */ 2797 .byte 12,24,13,0 /* 9600 baud */ 2798 .byte 14,2,14,3 /* use master clock for BRG, enable */ 2799 .byte 3,0xc1 /* enable receiver */ 2800 .byte 5,0xea /* enable transmitter */ 2801 .byte -1 2802 .even 2803#endif 2804 2805#ifdef USE_PRINTER 2806 2807LPSG_SELECT = 0xff8800 2808LPSG_READ = 0xff8800 2809LPSG_WRITE = 0xff8802 2810LPSG_IO_A = 14 2811LPSG_IO_B = 15 2812LPSG_CONTROL = 7 2813LSTMFP_GPIP = 0xfffa01 2814LSTMFP_DDR = 0xfffa05 2815LSTMFP_IERB = 0xfffa09 2816 2817#elif defined(USE_SCC_B) 2818 2819LSCC_CTRL = 0xff8c85 2820LSCC_DATA = 0xff8c87 2821 2822#elif defined(USE_SCC_A) 2823 2824LSCC_CTRL = 0xff8c81 2825LSCC_DATA = 0xff8c83 2826 2827#elif defined(USE_MFP) 2828 2829LMFP_UCR = 0xfffa29 2830LMFP_TDCDR = 0xfffa1d 2831LMFP_TDDR = 0xfffa25 2832LMFP_TSR = 0xfffa2d 2833LMFP_UDR = 0xfffa2f 2834 2835#endif 2836#endif /* CONFIG_ATARI */ 2837 2838/* 2839 * Serial port output support. 2840 */ 2841 2842/* 2843 * Initialize serial port hardware for 9600/8/1 2844 */ 2845func_start serial_init,%d0/%d1/%a0/%a1 2846 /* 2847 * Some of the register usage that follows 2848 * CONFIG_AMIGA 2849 * a0 = pointer to boot info record 2850 * d0 = boot info offset 2851 * CONFIG_ATARI 2852 * a0 = address of SCC 2853 * a1 = Liobase address/address of scc_initable 2854 * d0 = init data for serial port 2855 * CONFIG_MAC 2856 * a0 = address of SCC 2857 * a1 = address of scc_initable_mac 2858 * d0 = init data for serial port 2859 */ 2860 2861#ifdef CONFIG_AMIGA 2862#define SERIAL_DTR 7 2863#define SERIAL_CNTRL CIABBASE+C_PRA 2864 2865 is_not_amiga(1f) 2866 lea %pc@(L(custom)),%a0 2867 movel #-ZTWOBASE,%a0@ 2868 bclr #SERIAL_DTR,SERIAL_CNTRL-ZTWOBASE 2869 get_bi_record BI_AMIGA_SERPER 2870 movew %a0@,CUSTOMBASE+C_SERPER-ZTWOBASE 2871| movew #61,CUSTOMBASE+C_SERPER-ZTWOBASE 28721: 2873#endif 2874#ifdef CONFIG_ATARI 2875 is_not_atari(4f) 2876 movel %pc@(L(iobase)),%a1 2877#if defined(USE_PRINTER) 2878 bclr #0,%a1@(LSTMFP_IERB) 2879 bclr #0,%a1@(LSTMFP_DDR) 2880 moveb #LPSG_CONTROL,%a1@(LPSG_SELECT) 2881 moveb #0xff,%a1@(LPSG_WRITE) 2882 moveb #LPSG_IO_B,%a1@(LPSG_SELECT) 2883 clrb %a1@(LPSG_WRITE) 2884 moveb #LPSG_IO_A,%a1@(LPSG_SELECT) 2885 moveb %a1@(LPSG_READ),%d0 2886 bset #5,%d0 2887 moveb %d0,%a1@(LPSG_WRITE) 2888#elif defined(USE_SCC) 2889 lea %a1@(LSCC_CTRL),%a0 2890 lea %pc@(L(scc_initable)),%a1 28912: moveb %a1@+,%d0 2892 jmi 3f 2893 moveb %d0,%a0@ 2894 moveb %a1@+,%a0@ 2895 jra 2b 28963: clrb %a0@ 2897#elif defined(USE_MFP) 2898 bclr #1,%a1@(LMFP_TSR) 2899 moveb #0x88,%a1@(LMFP_UCR) 2900 andb #0x70,%a1@(LMFP_TDCDR) 2901 moveb #2,%a1@(LMFP_TDDR) 2902 orb #1,%a1@(LMFP_TDCDR) 2903 bset #1,%a1@(LMFP_TSR) 2904#endif 2905 jra L(serial_init_done) 29064: 2907#endif 2908#ifdef CONFIG_MAC 2909 is_not_mac(L(serial_init_not_mac)) 2910#ifdef MAC_SERIAL_DEBUG 2911#if !defined(MAC_USE_SCC_A) && !defined(MAC_USE_SCC_B) 2912#define MAC_USE_SCC_B 2913#endif 2914#define mac_scc_cha_b_ctrl_offset 0x0 2915#define mac_scc_cha_a_ctrl_offset 0x2 2916#define mac_scc_cha_b_data_offset 0x4 2917#define mac_scc_cha_a_data_offset 0x6 2918 2919#ifdef MAC_USE_SCC_A 2920 /* Initialize channel A */ 2921 movel %pc@(L(mac_sccbase)),%a0 2922 lea %pc@(L(scc_initable_mac)),%a1 29235: moveb %a1@+,%d0 2924 jmi 6f 2925 moveb %d0,%a0@(mac_scc_cha_a_ctrl_offset) 2926 moveb %a1@+,%a0@(mac_scc_cha_a_ctrl_offset) 2927 jra 5b 29286: 2929#endif /* MAC_USE_SCC_A */ 2930 2931#ifdef MAC_USE_SCC_B 2932 /* Initialize channel B */ 2933#ifndef MAC_USE_SCC_A /* Load mac_sccbase only if needed */ 2934 movel %pc@(L(mac_sccbase)),%a0 2935#endif /* MAC_USE_SCC_A */ 2936 lea %pc@(L(scc_initable_mac)),%a1 29377: moveb %a1@+,%d0 2938 jmi 8f 2939 moveb %d0,%a0@(mac_scc_cha_b_ctrl_offset) 2940 moveb %a1@+,%a0@(mac_scc_cha_b_ctrl_offset) 2941 jra 7b 29428: 2943#endif /* MAC_USE_SCC_B */ 2944#endif /* MAC_SERIAL_DEBUG */ 2945 2946 jra L(serial_init_done) 2947L(serial_init_not_mac): 2948#endif /* CONFIG_MAC */ 2949 2950#ifdef CONFIG_Q40 2951 is_not_q40(2f) 2952/* debug output goes into SRAM, so we don't do it unless requested 2953 - check for '%LX$' signature in SRAM */ 2954 lea %pc@(q40_mem_cptr),%a1 2955 move.l #0xff020010,%a1@ /* must be inited - also used by debug=mem */ 2956 move.l #0xff020000,%a1 2957 cmp.b #'%',%a1@ 2958 bne 2f /*nodbg*/ 2959 addq.w #4,%a1 2960 cmp.b #'L',%a1@ 2961 bne 2f /*nodbg*/ 2962 addq.w #4,%a1 2963 cmp.b #'X',%a1@ 2964 bne 2f /*nodbg*/ 2965 addq.w #4,%a1 2966 cmp.b #'$',%a1@ 2967 bne 2f /*nodbg*/ 2968 /* signature OK */ 2969 lea %pc@(L(q40_do_debug)),%a1 2970 tas %a1@ 2971/*nodbg: q40_do_debug is 0 by default*/ 29722: 2973#endif 2974 2975#ifdef CONFIG_APOLLO 2976/* We count on the PROM initializing SIO1 */ 2977#endif 2978 2979#ifdef CONFIG_HP300 2980/* We count on the boot loader initialising the UART */ 2981#endif 2982 2983L(serial_init_done): 2984func_return serial_init 2985 2986/* 2987 * Output character on serial port. 2988 */ 2989func_start serial_putc,%d0/%d1/%a0/%a1 2990 2991 movel ARG1,%d0 2992 cmpib #'\n',%d0 2993 jbne 1f 2994 2995 /* A little safe recursion is good for the soul */ 2996 serial_putc #'\r' 29971: 2998 2999#ifdef CONFIG_AMIGA 3000 is_not_amiga(2f) 3001 andw #0x00ff,%d0 3002 oriw #0x0100,%d0 3003 movel %pc@(L(custom)),%a0 3004 movew %d0,%a0@(CUSTOMBASE+C_SERDAT) 30051: movew %a0@(CUSTOMBASE+C_SERDATR),%d0 3006 andw #0x2000,%d0 3007 jeq 1b 3008 jra L(serial_putc_done) 30092: 3010#endif 3011 3012#ifdef CONFIG_MAC 3013 is_not_mac(5f) 3014 3015#ifdef MAC_SERIAL_DEBUG 3016 3017#ifdef MAC_USE_SCC_A 3018 movel %pc@(L(mac_sccbase)),%a1 30193: btst #2,%a1@(mac_scc_cha_a_ctrl_offset) 3020 jeq 3b 3021 moveb %d0,%a1@(mac_scc_cha_a_data_offset) 3022#endif /* MAC_USE_SCC_A */ 3023 3024#ifdef MAC_USE_SCC_B 3025#ifndef MAC_USE_SCC_A /* Load mac_sccbase only if needed */ 3026 movel %pc@(L(mac_sccbase)),%a1 3027#endif /* MAC_USE_SCC_A */ 30284: btst #2,%a1@(mac_scc_cha_b_ctrl_offset) 3029 jeq 4b 3030 moveb %d0,%a1@(mac_scc_cha_b_data_offset) 3031#endif /* MAC_USE_SCC_B */ 3032 3033#endif /* MAC_SERIAL_DEBUG */ 3034 3035 jra L(serial_putc_done) 30365: 3037#endif /* CONFIG_MAC */ 3038 3039#ifdef CONFIG_ATARI 3040 is_not_atari(4f) 3041 movel %pc@(L(iobase)),%a1 3042#if defined(USE_PRINTER) 30433: btst #0,%a1@(LSTMFP_GPIP) 3044 jne 3b 3045 moveb #LPSG_IO_B,%a1@(LPSG_SELECT) 3046 moveb %d0,%a1@(LPSG_WRITE) 3047 moveb #LPSG_IO_A,%a1@(LPSG_SELECT) 3048 moveb %a1@(LPSG_READ),%d0 3049 bclr #5,%d0 3050 moveb %d0,%a1@(LPSG_WRITE) 3051 nop 3052 nop 3053 bset #5,%d0 3054 moveb %d0,%a1@(LPSG_WRITE) 3055#elif defined(USE_SCC) 30563: btst #2,%a1@(LSCC_CTRL) 3057 jeq 3b 3058 moveb %d0,%a1@(LSCC_DATA) 3059#elif defined(USE_MFP) 30603: btst #7,%a1@(LMFP_TSR) 3061 jeq 3b 3062 moveb %d0,%a1@(LMFP_UDR) 3063#endif 3064 jra L(serial_putc_done) 30654: 3066#endif /* CONFIG_ATARI */ 3067 3068#ifdef CONFIG_MVME147 3069 is_not_mvme147(2f) 30701: btst #2,M147_SCC_CTRL_A 3071 jeq 1b 3072 moveb %d0,M147_SCC_DATA_A 3073 jbra L(serial_putc_done) 30742: 3075#endif 3076 3077#ifdef CONFIG_MVME16x 3078 is_not_mvme16x(2f) 3079 /* 3080 * If the loader gave us a board type then we can use that to 3081 * select an appropriate output routine; otherwise we just use 3082 * the Bug code. If we haev to use the Bug that means the Bug 3083 * workspace has to be valid, which means the Bug has to use 3084 * the SRAM, which is non-standard. 3085 */ 3086 moveml %d0-%d7/%a2-%a6,%sp@- 3087 movel vme_brdtype,%d1 3088 jeq 1f | No tag - use the Bug 3089 cmpi #VME_TYPE_MVME162,%d1 3090 jeq 6f 3091 cmpi #VME_TYPE_MVME172,%d1 3092 jne 5f 3093 /* 162/172; it's an SCC */ 30946: btst #2,M162_SCC_CTRL_A 3095 nop 3096 nop 3097 nop 3098 jeq 6b 3099 moveb #8,M162_SCC_CTRL_A 3100 nop 3101 nop 3102 nop 3103 moveb %d0,M162_SCC_CTRL_A 3104 jra 3f 31055: 3106 /* 166/167/177; it's a CD2401 */ 3107 moveb #0,M167_CYCAR 3108 moveb M167_CYIER,%d2 3109 moveb #0x02,M167_CYIER 31107: 3111 btst #5,M167_PCSCCTICR 3112 jeq 7b 3113 moveb M167_PCTPIACKR,%d1 3114 moveb M167_CYLICR,%d1 3115 jeq 8f 3116 moveb #0x08,M167_CYTEOIR 3117 jra 7b 31188: 3119 moveb %d0,M167_CYTDR 3120 moveb #0,M167_CYTEOIR 3121 moveb %d2,M167_CYIER 3122 jra 3f 31231: 3124 moveb %d0,%sp@- 3125 trap #15 3126 .word 0x0020 /* TRAP 0x020 */ 31273: 3128 moveml %sp@+,%d0-%d7/%a2-%a6 3129 jbra L(serial_putc_done) 31302: 3131#endif /* CONFIG_MVME16x */ 3132 3133#ifdef CONFIG_BVME6000 3134 is_not_bvme6000(2f) 3135 /* 3136 * The BVME6000 machine has a serial port ... 3137 */ 31381: btst #2,BVME_SCC_CTRL_A 3139 jeq 1b 3140 moveb %d0,BVME_SCC_DATA_A 3141 jbra L(serial_putc_done) 31422: 3143#endif 3144 3145#ifdef CONFIG_SUN3X 3146 is_not_sun3x(2f) 3147 movel %d0,-(%sp) 3148 movel 0xFEFE0018,%a1 3149 jbsr (%a1) 3150 addq #4,%sp 3151 jbra L(serial_putc_done) 31522: 3153#endif 3154 3155#ifdef CONFIG_Q40 3156 is_not_q40(2f) 3157 tst.l %pc@(L(q40_do_debug)) /* only debug if requested */ 3158 beq 2f 3159 lea %pc@(q40_mem_cptr),%a1 3160 move.l %a1@,%a0 3161 move.b %d0,%a0@ 3162 addq.l #4,%a0 3163 move.l %a0,%a1@ 3164 jbra L(serial_putc_done) 31652: 3166#endif 3167 3168#ifdef CONFIG_APOLLO 3169 is_not_apollo(2f) 3170 movl %pc@(L(iobase)),%a1 3171 moveb %d0,%a1@(LTHRB0) 31721: moveb %a1@(LSRB0),%d0 3173 andb #0x4,%d0 3174 beq 1b 3175 jbra L(serial_putc_done) 31762: 3177#endif 3178 3179#ifdef CONFIG_HP300 3180 is_not_hp300(3f) 3181 movl %pc@(L(iobase)),%a1 3182 addl %pc@(L(uartbase)),%a1 3183 movel %pc@(L(uart_scode)),%d1 /* Check the scode */ 3184 jmi 3f /* Unset? Exit */ 3185 cmpi #256,%d1 /* APCI scode? */ 3186 jeq 2f 31871: moveb %a1@(DCALSR),%d1 /* Output to DCA */ 3188 andb #0x20,%d1 3189 beq 1b 3190 moveb %d0,%a1@(DCADATA) 3191 jbra L(serial_putc_done) 31922: moveb %a1@(APCILSR),%d1 /* Output to APCI */ 3193 andb #0x20,%d1 3194 beq 2b 3195 moveb %d0,%a1@(APCIDATA) 3196 jbra L(serial_putc_done) 31973: 3198#endif 3199 3200L(serial_putc_done): 3201func_return serial_putc 3202 3203/* 3204 * Output a string. 3205 */ 3206func_start puts,%d0/%a0 3207 3208 movel ARG1,%a0 3209 jra 2f 32101: 3211#ifdef CONSOLE 3212 console_putc %d0 3213#endif 3214#ifdef SERIAL_DEBUG 3215 serial_putc %d0 3216#endif 32172: moveb %a0@+,%d0 3218 jne 1b 3219 3220func_return puts 3221 3222/* 3223 * Output number in hex notation. 3224 */ 3225 3226func_start putn,%d0-%d2 3227 3228 putc ' ' 3229 3230 movel ARG1,%d0 3231 moveq #7,%d1 32321: roll #4,%d0 3233 move %d0,%d2 3234 andb #0x0f,%d2 3235 addb #'0',%d2 3236 cmpb #'9',%d2 3237 jls 2f 3238 addb #'A'-('9'+1),%d2 32392: 3240#ifdef CONSOLE 3241 console_putc %d2 3242#endif 3243#ifdef SERIAL_DEBUG 3244 serial_putc %d2 3245#endif 3246 dbra %d1,1b 3247 3248func_return putn 3249 3250#ifdef CONFIG_MAC 3251/* 3252 * mac_serial_print 3253 * 3254 * This routine takes its parameters on the stack. It then 3255 * turns around and calls the internal routine. This routine 3256 * is used until the Linux console driver initializes itself. 3257 * 3258 * The calling parameters are: 3259 * void mac_serial_print(const char *str); 3260 * 3261 * This routine does NOT understand variable arguments only 3262 * simple strings! 3263 */ 3264ENTRY(mac_serial_print) 3265 moveml %d0/%a0,%sp@- 3266#if 1 3267 move %sr,%sp@- 3268 ori #0x0700,%sr 3269#endif 3270 movel %sp@(10),%a0 /* fetch parameter */ 3271 jra 2f 32721: serial_putc %d0 32732: moveb %a0@+,%d0 3274 jne 1b 3275#if 1 3276 move %sp@+,%sr 3277#endif 3278 moveml %sp@+,%d0/%a0 3279 rts 3280#endif /* CONFIG_MAC */ 3281 3282#if defined(CONFIG_HP300) || defined(CONFIG_APOLLO) 3283func_start set_leds,%d0/%a0 3284 movel ARG1,%d0 3285#ifdef CONFIG_HP300 3286 is_not_hp300(1f) 3287 movel %pc@(L(iobase)),%a0 3288 moveb %d0,%a0@(0x1ffff) 3289 jra 2f 3290#endif 32911: 3292#ifdef CONFIG_APOLLO 3293 movel %pc@(L(iobase)),%a0 3294 lsll #8,%d0 3295 eorw #0xff00,%d0 3296 moveb %d0,%a0@(LCPUCTRL) 3297#endif 32982: 3299func_return set_leds 3300#endif 3301 3302#ifdef CONSOLE 3303/* 3304 * For continuity, see the data alignment 3305 * to which this structure is tied. 3306 */ 3307#define Lconsole_struct_cur_column 0 3308#define Lconsole_struct_cur_row 4 3309#define Lconsole_struct_num_columns 8 3310#define Lconsole_struct_num_rows 12 3311#define Lconsole_struct_left_edge 16 3312#define Lconsole_struct_penguin_putc 20 3313 3314func_start console_init,%a0-%a4/%d0-%d7 3315 /* 3316 * Some of the register usage that follows 3317 * a0 = pointer to boot_info 3318 * a1 = pointer to screen 3319 * a2 = pointer to Lconsole_globals 3320 * d3 = pixel width of screen 3321 * d4 = pixel height of screen 3322 * (d3,d4) ~= (x,y) of a point just below 3323 * and to the right of the screen 3324 * NOT on the screen! 3325 * d5 = number of bytes per scan line 3326 * d6 = number of bytes on the entire screen 3327 */ 3328 3329 lea %pc@(L(console_globals)),%a2 3330 movel %pc@(L(mac_videobase)),%a1 3331 movel %pc@(L(mac_rowbytes)),%d5 3332 movel %pc@(L(mac_dimensions)),%d3 /* -> low byte */ 3333 movel %d3,%d4 3334 swap %d4 /* -> high byte */ 3335 andl #0xffff,%d3 /* d3 = screen width in pixels */ 3336 andl #0xffff,%d4 /* d4 = screen height in pixels */ 3337 3338 movel %d5,%d6 3339| subl #20,%d6 3340 mulul %d4,%d6 /* scan line bytes x num scan lines */ 3341 divul #8,%d6 /* we'll clear 8 bytes at a time */ 3342 moveq #-1,%d0 /* Mac_black */ 3343 subq #1,%d6 3344 3345L(console_clear_loop): 3346 movel %d0,%a1@+ 3347 movel %d0,%a1@+ 3348 dbra %d6,L(console_clear_loop) 3349 3350 /* Calculate font size */ 3351 3352#if defined(FONT_8x8) && defined(CONFIG_FONT_8x8) 3353 lea %pc@(font_vga_8x8),%a0 3354#elif defined(FONT_8x16) && defined(CONFIG_FONT_8x16) 3355 lea %pc@(font_vga_8x16),%a0 3356#elif defined(FONT_6x11) && defined(CONFIG_FONT_6x11) 3357 lea %pc@(font_vga_6x11),%a0 3358#elif defined(CONFIG_FONT_8x8) /* default */ 3359 lea %pc@(font_vga_8x8),%a0 3360#else /* no compiled-in font */ 3361 lea 0,%a0 3362#endif 3363 3364 /* 3365 * At this point we make a shift in register usage 3366 * a1 = address of console_font pointer 3367 */ 3368 lea %pc@(L(console_font)),%a1 3369 movel %a0,%a1@ /* store pointer to struct fbcon_font_desc in console_font */ 3370 tstl %a0 3371 jeq 1f 3372 lea %pc@(L(console_font_data)),%a4 3373 movel %a0@(FONT_DESC_DATA),%d0 3374 subl #L(console_font),%a1 3375 addl %a1,%d0 3376 movel %d0,%a4@ 3377 3378 /* 3379 * Calculate global maxs 3380 * Note - we can use either an 3381 * 8 x 16 or 8 x 8 character font 3382 * 6 x 11 also supported 3383 */ 3384 /* ASSERT: a0 = contents of Lconsole_font */ 3385 movel %d3,%d0 /* screen width in pixels */ 3386 divul %a0@(FONT_DESC_WIDTH),%d0 /* d0 = max num chars per row */ 3387 3388 movel %d4,%d1 /* screen height in pixels */ 3389 divul %a0@(FONT_DESC_HEIGHT),%d1 /* d1 = max num rows */ 3390 3391 movel %d0,%a2@(Lconsole_struct_num_columns) 3392 movel %d1,%a2@(Lconsole_struct_num_rows) 3393 3394 /* 3395 * Clear the current row and column 3396 */ 3397 clrl %a2@(Lconsole_struct_cur_column) 3398 clrl %a2@(Lconsole_struct_cur_row) 3399 clrl %a2@(Lconsole_struct_left_edge) 3400 3401 /* 3402 * Initialization is complete 3403 */ 34041: 3405func_return console_init 3406 3407func_start console_put_stats,%a0/%d7 3408 /* 3409 * Some of the register usage that follows 3410 * a0 = pointer to boot_info 3411 * d7 = value of boot_info fields 3412 */ 3413 puts "\nMacLinux\n\n" 3414 3415#ifdef SERIAL_DEBUG 3416 puts " vidaddr:" 3417 putn %pc@(L(mac_videobase)) /* video addr. */ 3418 3419 puts "\n _stext:" 3420 lea %pc@(_stext),%a0 3421 putn %a0 3422 3423 puts "\nbootinfo:" 3424 lea %pc@(_end),%a0 3425 putn %a0 3426 3427 puts "\ncpuid:" 3428 putn %pc@(L(cputype)) 3429 putc '\n' 3430 3431#ifdef MAC_SERIAL_DEBUG 3432 putn %pc@(L(mac_sccbase)) 3433 putc '\n' 3434#endif 3435# if defined(MMU_PRINT) 3436 jbsr mmu_print_machine_cpu_types 3437# endif /* MMU_PRINT */ 3438#endif /* SERIAL_DEBUG */ 3439 3440func_return console_put_stats 3441 3442#ifdef CONSOLE_PENGUIN 3443func_start console_put_penguin,%a0-%a1/%d0-%d7 3444 /* 3445 * Get 'that_penguin' onto the screen in the upper right corner 3446 * penguin is 64 x 74 pixels, align against right edge of screen 3447 */ 3448 lea %pc@(L(mac_dimensions)),%a0 3449 movel %a0@,%d0 3450 andil #0xffff,%d0 3451 subil #64,%d0 /* snug up against the right edge */ 3452 clrl %d1 /* start at the top */ 3453 movel #73,%d7 3454 lea %pc@(L(that_penguin)),%a1 3455L(console_penguin_row): 3456 movel #31,%d6 3457L(console_penguin_pixel_pair): 3458 moveb %a1@,%d2 3459 lsrb #4,%d2 3460 console_plot_pixel %d0,%d1,%d2 3461 addq #1,%d0 3462 moveb %a1@+,%d2 3463 console_plot_pixel %d0,%d1,%d2 3464 addq #1,%d0 3465 dbra %d6,L(console_penguin_pixel_pair) 3466 3467 subil #64,%d0 3468 addq #1,%d1 3469 dbra %d7,L(console_penguin_row) 3470 3471func_return console_put_penguin 3472 3473/* include penguin bitmap */ 3474L(that_penguin): 3475#include "../mac/mac_penguin.S" 3476#endif 3477 3478 /* 3479 * Calculate source and destination addresses 3480 * output a1 = dest 3481 * a2 = source 3482 */ 3483 3484func_start console_scroll,%a0-%a4/%d0-%d7 3485 lea %pc@(L(mac_videobase)),%a0 3486 movel %a0@,%a1 3487 movel %a1,%a2 3488 lea %pc@(L(mac_rowbytes)),%a0 3489 movel %a0@,%d5 3490 movel %pc@(L(console_font)),%a0 3491 tstl %a0 3492 jeq 1f 3493 mulul %a0@(FONT_DESC_HEIGHT),%d5 /* account for # scan lines per character */ 3494 addal %d5,%a2 3495 3496 /* 3497 * Get dimensions 3498 */ 3499 lea %pc@(L(mac_dimensions)),%a0 3500 movel %a0@,%d3 3501 movel %d3,%d4 3502 swap %d4 3503 andl #0xffff,%d3 /* d3 = screen width in pixels */ 3504 andl #0xffff,%d4 /* d4 = screen height in pixels */ 3505 3506 /* 3507 * Calculate number of bytes to move 3508 */ 3509 lea %pc@(L(mac_rowbytes)),%a0 3510 movel %a0@,%d6 3511 movel %pc@(L(console_font)),%a0 3512 subl %a0@(FONT_DESC_HEIGHT),%d4 /* we're not scrolling the top row! */ 3513 mulul %d4,%d6 /* scan line bytes x num scan lines */ 3514 divul #32,%d6 /* we'll move 8 longs at a time */ 3515 subq #1,%d6 3516 3517L(console_scroll_loop): 3518 movel %a2@+,%a1@+ 3519 movel %a2@+,%a1@+ 3520 movel %a2@+,%a1@+ 3521 movel %a2@+,%a1@+ 3522 movel %a2@+,%a1@+ 3523 movel %a2@+,%a1@+ 3524 movel %a2@+,%a1@+ 3525 movel %a2@+,%a1@+ 3526 dbra %d6,L(console_scroll_loop) 3527 3528 lea %pc@(L(mac_rowbytes)),%a0 3529 movel %a0@,%d6 3530 movel %pc@(L(console_font)),%a0 3531 mulul %a0@(FONT_DESC_HEIGHT),%d6 /* scan line bytes x font height */ 3532 divul #32,%d6 /* we'll move 8 words at a time */ 3533 subq #1,%d6 3534 3535 moveq #-1,%d0 3536L(console_scroll_clear_loop): 3537 movel %d0,%a1@+ 3538 movel %d0,%a1@+ 3539 movel %d0,%a1@+ 3540 movel %d0,%a1@+ 3541 movel %d0,%a1@+ 3542 movel %d0,%a1@+ 3543 movel %d0,%a1@+ 3544 movel %d0,%a1@+ 3545 dbra %d6,L(console_scroll_clear_loop) 3546 35471: 3548func_return console_scroll 3549 3550 3551func_start console_putc,%a0/%a1/%d0-%d7 3552 3553 is_not_mac(L(console_exit)) 3554 tstl %pc@(L(console_font)) 3555 jeq L(console_exit) 3556 3557 /* Output character in d7 on console. 3558 */ 3559 movel ARG1,%d7 3560 cmpib #'\n',%d7 3561 jbne 1f 3562 3563 /* A little safe recursion is good for the soul */ 3564 console_putc #'\r' 35651: 3566 lea %pc@(L(console_globals)),%a0 3567 3568 cmpib #10,%d7 3569 jne L(console_not_lf) 3570 movel %a0@(Lconsole_struct_cur_row),%d0 3571 addil #1,%d0 3572 movel %d0,%a0@(Lconsole_struct_cur_row) 3573 movel %a0@(Lconsole_struct_num_rows),%d1 3574 cmpl %d1,%d0 3575 jcs 1f 3576 subil #1,%d0 3577 movel %d0,%a0@(Lconsole_struct_cur_row) 3578 console_scroll 35791: 3580 jra L(console_exit) 3581 3582L(console_not_lf): 3583 cmpib #13,%d7 3584 jne L(console_not_cr) 3585 clrl %a0@(Lconsole_struct_cur_column) 3586 jra L(console_exit) 3587 3588L(console_not_cr): 3589 cmpib #1,%d7 3590 jne L(console_not_home) 3591 clrl %a0@(Lconsole_struct_cur_row) 3592 clrl %a0@(Lconsole_struct_cur_column) 3593 jra L(console_exit) 3594 3595/* 3596 * At this point we know that the %d7 character is going to be 3597 * rendered on the screen. Register usage is - 3598 * a0 = pointer to console globals 3599 * a1 = font data 3600 * d0 = cursor column 3601 * d1 = cursor row to draw the character 3602 * d7 = character number 3603 */ 3604L(console_not_home): 3605 movel %a0@(Lconsole_struct_cur_column),%d0 3606 addql #1,%a0@(Lconsole_struct_cur_column) 3607 movel %a0@(Lconsole_struct_num_columns),%d1 3608 cmpl %d1,%d0 3609 jcs 1f 3610 console_putc #'\n' /* recursion is OK! */ 36111: 3612 movel %a0@(Lconsole_struct_cur_row),%d1 3613 3614 /* 3615 * At this point we make a shift in register usage 3616 * a0 = address of pointer to font data (fbcon_font_desc) 3617 */ 3618 movel %pc@(L(console_font)),%a0 3619 movel %pc@(L(console_font_data)),%a1 /* Load fbcon_font_desc.data into a1 */ 3620 andl #0x000000ff,%d7 3621 /* ASSERT: a0 = contents of Lconsole_font */ 3622 mulul %a0@(FONT_DESC_HEIGHT),%d7 /* d7 = index into font data */ 3623 addl %d7,%a1 /* a1 = points to char image */ 3624 3625 /* 3626 * At this point we make a shift in register usage 3627 * d0 = pixel coordinate, x 3628 * d1 = pixel coordinate, y 3629 * d2 = (bit 0) 1/0 for white/black (!) pixel on screen 3630 * d3 = font scan line data (8 pixels) 3631 * d6 = count down for the font's pixel width (8) 3632 * d7 = count down for the font's pixel count in height 3633 */ 3634 /* ASSERT: a0 = contents of Lconsole_font */ 3635 mulul %a0@(FONT_DESC_WIDTH),%d0 3636 mulul %a0@(FONT_DESC_HEIGHT),%d1 3637 movel %a0@(FONT_DESC_HEIGHT),%d7 /* Load fbcon_font_desc.height into d7 */ 3638 subq #1,%d7 3639L(console_read_char_scanline): 3640 moveb %a1@+,%d3 3641 3642 /* ASSERT: a0 = contents of Lconsole_font */ 3643 movel %a0@(FONT_DESC_WIDTH),%d6 /* Load fbcon_font_desc.width into d6 */ 3644 subql #1,%d6 3645 3646L(console_do_font_scanline): 3647 lslb #1,%d3 3648 scsb %d2 /* convert 1 bit into a byte */ 3649 console_plot_pixel %d0,%d1,%d2 3650 addq #1,%d0 3651 dbra %d6,L(console_do_font_scanline) 3652 3653 /* ASSERT: a0 = contents of Lconsole_font */ 3654 subl %a0@(FONT_DESC_WIDTH),%d0 3655 addq #1,%d1 3656 dbra %d7,L(console_read_char_scanline) 3657 3658L(console_exit): 3659func_return console_putc 3660 3661 /* 3662 * Input: 3663 * d0 = x coordinate 3664 * d1 = y coordinate 3665 * d2 = (bit 0) 1/0 for white/black (!) 3666 * All registers are preserved 3667 */ 3668func_start console_plot_pixel,%a0-%a1/%d0-%d4 3669 3670 movel %pc@(L(mac_videobase)),%a1 3671 movel %pc@(L(mac_videodepth)),%d3 3672 movel ARG1,%d0 3673 movel ARG2,%d1 3674 mulul %pc@(L(mac_rowbytes)),%d1 3675 movel ARG3,%d2 3676 3677 /* 3678 * Register usage: 3679 * d0 = x coord becomes byte offset into frame buffer 3680 * d1 = y coord 3681 * d2 = black or white (0/1) 3682 * d3 = video depth 3683 * d4 = temp of x (d0) for many bit depths 3684 */ 3685L(test_1bit): 3686 cmpb #1,%d3 3687 jbne L(test_2bit) 3688 movel %d0,%d4 /* we need the low order 3 bits! */ 3689 divul #8,%d0 3690 addal %d0,%a1 3691 addal %d1,%a1 3692 andb #7,%d4 3693 eorb #7,%d4 /* reverse the x-coordinate w/ screen-bit # */ 3694 andb #1,%d2 3695 jbne L(white_1) 3696 bsetb %d4,%a1@ 3697 jbra L(console_plot_pixel_exit) 3698L(white_1): 3699 bclrb %d4,%a1@ 3700 jbra L(console_plot_pixel_exit) 3701 3702L(test_2bit): 3703 cmpb #2,%d3 3704 jbne L(test_4bit) 3705 movel %d0,%d4 /* we need the low order 2 bits! */ 3706 divul #4,%d0 3707 addal %d0,%a1 3708 addal %d1,%a1 3709 andb #3,%d4 3710 eorb #3,%d4 /* reverse the x-coordinate w/ screen-bit # */ 3711 lsll #1,%d4 /* ! */ 3712 andb #1,%d2 3713 jbne L(white_2) 3714 bsetb %d4,%a1@ 3715 addq #1,%d4 3716 bsetb %d4,%a1@ 3717 jbra L(console_plot_pixel_exit) 3718L(white_2): 3719 bclrb %d4,%a1@ 3720 addq #1,%d4 3721 bclrb %d4,%a1@ 3722 jbra L(console_plot_pixel_exit) 3723 3724L(test_4bit): 3725 cmpb #4,%d3 3726 jbne L(test_8bit) 3727 movel %d0,%d4 /* we need the low order bit! */ 3728 divul #2,%d0 3729 addal %d0,%a1 3730 addal %d1,%a1 3731 andb #1,%d4 3732 eorb #1,%d4 3733 lsll #2,%d4 /* ! */ 3734 andb #1,%d2 3735 jbne L(white_4) 3736 bsetb %d4,%a1@ 3737 addq #1,%d4 3738 bsetb %d4,%a1@ 3739 addq #1,%d4 3740 bsetb %d4,%a1@ 3741 addq #1,%d4 3742 bsetb %d4,%a1@ 3743 jbra L(console_plot_pixel_exit) 3744L(white_4): 3745 bclrb %d4,%a1@ 3746 addq #1,%d4 3747 bclrb %d4,%a1@ 3748 addq #1,%d4 3749 bclrb %d4,%a1@ 3750 addq #1,%d4 3751 bclrb %d4,%a1@ 3752 jbra L(console_plot_pixel_exit) 3753 3754L(test_8bit): 3755 cmpb #8,%d3 3756 jbne L(test_16bit) 3757 addal %d0,%a1 3758 addal %d1,%a1 3759 andb #1,%d2 3760 jbne L(white_8) 3761 moveb #0xff,%a1@ 3762 jbra L(console_plot_pixel_exit) 3763L(white_8): 3764 clrb %a1@ 3765 jbra L(console_plot_pixel_exit) 3766 3767L(test_16bit): 3768 cmpb #16,%d3 3769 jbne L(console_plot_pixel_exit) 3770 addal %d0,%a1 3771 addal %d0,%a1 3772 addal %d1,%a1 3773 andb #1,%d2 3774 jbne L(white_16) 3775 clrw %a1@ 3776 jbra L(console_plot_pixel_exit) 3777L(white_16): 3778 movew #0x0fff,%a1@ 3779 jbra L(console_plot_pixel_exit) 3780 3781L(console_plot_pixel_exit): 3782func_return console_plot_pixel 3783#endif /* CONSOLE */ 3784 3785#if 0 3786/* 3787 * This is some old code lying around. I don't believe 3788 * it's used or important anymore. My guess is it contributed 3789 * to getting to this point, but it's done for now. 3790 * It was still in the 2.1.77 head.S, so it's still here. 3791 * (And still not used!) 3792 */ 3793L(showtest): 3794 moveml %a0/%d7,%sp@- 3795 puts "A=" 3796 putn %a1 3797 3798 .long 0xf0119f15 | ptestr #5,%a1@,#7,%a0 3799 3800 puts "DA=" 3801 putn %a0 3802 3803 puts "D=" 3804 putn %a0@ 3805 3806 puts "S=" 3807 lea %pc@(L(mmu)),%a0 3808 .long 0xf0106200 | pmove %psr,%a0@ 3809 clrl %d7 3810 movew %a0@,%d7 3811 putn %d7 3812 3813 putc '\n' 3814 moveml %sp@+,%a0/%d7 3815 rts 3816#endif /* 0 */ 3817 3818__INITDATA 3819 .align 4 3820 3821#if defined(CONFIG_ATARI) || defined(CONFIG_AMIGA) || \ 3822 defined(CONFIG_HP300) || defined(CONFIG_APOLLO) 3823L(custom): 3824L(iobase): 3825 .long 0 3826#endif 3827 3828#if defined(CONSOLE) 3829L(console_globals): 3830 .long 0 /* cursor column */ 3831 .long 0 /* cursor row */ 3832 .long 0 /* max num columns */ 3833 .long 0 /* max num rows */ 3834 .long 0 /* left edge */ 3835 .long 0 /* mac putc */ 3836L(console_font): 3837 .long 0 /* pointer to console font (struct font_desc) */ 3838L(console_font_data): 3839 .long 0 /* pointer to console font data */ 3840#endif /* CONSOLE */ 3841 3842#if defined(MMU_PRINT) 3843L(mmu_print_data): 3844 .long 0 /* valid flag */ 3845 .long 0 /* start logical */ 3846 .long 0 /* next logical */ 3847 .long 0 /* start physical */ 3848 .long 0 /* next physical */ 3849#endif /* MMU_PRINT */ 3850 3851L(cputype): 3852 .long 0 3853L(mmu_cached_pointer_tables): 3854 .long 0 3855L(mmu_num_pointer_tables): 3856 .long 0 3857L(phys_kernel_start): 3858 .long 0 3859L(kernel_end): 3860 .long 0 3861L(memory_start): 3862 .long 0 3863L(kernel_pgdir_ptr): 3864 .long 0 3865L(temp_mmap_mem): 3866 .long 0 3867 3868#if defined (CONFIG_MVME147) 3869M147_SCC_CTRL_A = 0xfffe3002 3870M147_SCC_DATA_A = 0xfffe3003 3871#endif 3872 3873#if defined (CONFIG_MVME16x) 3874M162_SCC_CTRL_A = 0xfff45005 3875M167_CYCAR = 0xfff450ee 3876M167_CYIER = 0xfff45011 3877M167_CYLICR = 0xfff45026 3878M167_CYTEOIR = 0xfff45085 3879M167_CYTDR = 0xfff450f8 3880M167_PCSCCTICR = 0xfff4201e 3881M167_PCTPIACKR = 0xfff42025 3882#endif 3883 3884#if defined (CONFIG_BVME6000) 3885BVME_SCC_CTRL_A = 0xffb0000b 3886BVME_SCC_DATA_A = 0xffb0000f 3887#endif 3888 3889#if defined(CONFIG_MAC) 3890L(mac_booter_data): 3891 .long 0 3892L(mac_videobase): 3893 .long 0 3894L(mac_videodepth): 3895 .long 0 3896L(mac_dimensions): 3897 .long 0 3898L(mac_rowbytes): 3899 .long 0 3900#ifdef MAC_SERIAL_DEBUG 3901L(mac_sccbase): 3902 .long 0 3903#endif /* MAC_SERIAL_DEBUG */ 3904#endif 3905 3906#if defined (CONFIG_APOLLO) 3907LSRB0 = 0x10412 3908LTHRB0 = 0x10416 3909LCPUCTRL = 0x10100 3910#endif 3911 3912#if defined(CONFIG_HP300) 3913DCADATA = 0x11 3914DCALSR = 0x1b 3915APCIDATA = 0x00 3916APCILSR = 0x14 3917L(uartbase): 3918 .long 0 3919L(uart_scode): 3920 .long -1 3921#endif 3922 3923__FINIT 3924 .data 3925 .align 4 3926 3927availmem: 3928 .long 0 3929m68k_pgtable_cachemode: 3930 .long 0 3931m68k_supervisor_cachemode: 3932 .long 0 3933#if defined(CONFIG_MVME16x) 3934mvme_bdid: 3935 .long 0,0,0,0,0,0,0,0 3936#endif 3937#if defined(CONFIG_Q40) 3938q40_mem_cptr: 3939 .long 0 3940L(q40_do_debug): 3941 .long 0 3942#endif 3943