xref: /linux/arch/m68k/kernel/head.S (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1/* SPDX-License-Identifier: GPL-2.0-or-later
2** -*- mode: asm -*-
3**
4** head.S -- This file contains the initial boot code for the
5**	     Linux/68k kernel.
6**
7** Copyright 1993 by Hamish Macdonald
8**
9** 68040 fixes by Michael Rausch
10** 68060 fixes by Roman Hodek
11** MMU cleanup by Randy Thelen
12** Final MMU cleanup by Roman Zippel
13**
14** Atari support by Andreas Schwab, using ideas of Robert de Vries
15** and Bjoern Brauel
16** VME Support by Richard Hirst
17**
18** 94/11/14 Andreas Schwab: put kernel at PAGESIZE
19** 94/11/18 Andreas Schwab: remove identity mapping of STRAM for Atari
20** ++ Bjoern & Roman: ATARI-68040 support for the Medusa
21** 95/11/18 Richard Hirst: Added MVME166 support
22** 96/04/26 Guenther Kelleter: fixed identity mapping for Falcon with
23**			      Magnum- and FX-alternate ram
24** 98/04/25 Phil Blundell: added HP300 support
25** 1998/08/30 David Kilzer: Added support for font_desc structures
26**            for linux-2.1.115
27** 1999/02/11  Richard Zidlicky: added Q40 support (initial version 99/01/01)
28** 2004/05/13 Kars de Jong: Finalised HP300 support
29*/
30
31/*
32 * Linux startup code.
33 *
34 * At this point, the boot loader has:
35 * Disabled interrupts
36 * Disabled caches
37 * Put us in supervisor state.
38 *
39 * The kernel setup code takes the following steps:
40 * .  Raise interrupt level
41 * .  Set up initial kernel memory mapping.
42 *    .  This sets up a mapping of the 4M of memory the kernel is located in.
43 *    .  It also does a mapping of any initial machine specific areas.
44 * .  Enable the MMU
45 * .  Enable cache memories
46 * .  Jump to kernel startup
47 *
48 * Much of the file restructuring was to accomplish:
49 * 1) Remove register dependency through-out the file.
50 * 2) Increase use of subroutines to perform functions
51 * 3) Increase readability of the code
52 *
53 * Of course, readability is a subjective issue, so it will never be
54 * argued that that goal was accomplished.  It was merely a goal.
55 * A key way to help make code more readable is to give good
56 * documentation.  So, the first thing you will find is exhaustive
57 * write-ups on the structure of the file, and the features of the
58 * functional subroutines.
59 *
60 * General Structure:
61 * ------------------
62 *	Without a doubt the single largest chunk of head.S is spent
63 * mapping the kernel and I/O physical space into the logical range
64 * for the kernel.
65 *	There are new subroutines and data structures to make MMU
66 * support cleaner and easier to understand.
67 *	First, you will find a routine call "mmu_map" which maps
68 * a logical to a physical region for some length given a cache
69 * type on behalf of the caller.  This routine makes writing the
70 * actual per-machine specific code very simple.
71 *	A central part of the code, but not a subroutine in itself,
72 * is the mmu_init code which is broken down into mapping the kernel
73 * (the same for all machines) and mapping machine-specific I/O
74 * regions.
75 *	Also, there will be a description of engaging the MMU and
76 * caches.
77 *	You will notice that there is a chunk of code which
78 * can emit the entire MMU mapping of the machine.  This is present
79 * only in debug modes and can be very helpful.
80 *	Further, there is a new console driver in head.S that is
81 * also only engaged in debug mode.  Currently, it's only supported
82 * on the Macintosh class of machines.  However, it is hoped that
83 * others will plug-in support for specific machines.
84 *
85 * ######################################################################
86 *
87 * mmu_map
88 * -------
89 *	mmu_map was written for two key reasons.  First, it was clear
90 * that it was very difficult to read the previous code for mapping
91 * regions of memory.  Second, the Macintosh required such extensive
92 * memory allocations that it didn't make sense to propagate the
93 * existing code any further.
94 *	mmu_map requires some parameters:
95 *
96 *	mmu_map (logical, physical, length, cache_type)
97 *
98 *	While this essentially describes the function in the abstract, you'll
99 * find more indepth description of other parameters at the implementation site.
100 *
101 * mmu_get_root_table_entry
102 * ------------------------
103 * mmu_get_ptr_table_entry
104 * -----------------------
105 * mmu_get_page_table_entry
106 * ------------------------
107 *
108 *	These routines are used by other mmu routines to get a pointer into
109 * a table, if necessary a new table is allocated. These routines are working
110 * basically like pmd_alloc() and pte_alloc() in <asm/pgtable.h>. The root
111 * table needs of course only to be allocated once in mmu_get_root_table_entry,
112 * so that here also some mmu specific initialization is done. The second page
113 * at the start of the kernel (the first page is unmapped later) is used for
114 * the kernel_pg_dir. It must be at a position known at link time (as it's used
115 * to initialize the init task struct) and since it needs special cache
116 * settings, it's the easiest to use this page, the rest of the page is used
117 * for further pointer tables.
118 * mmu_get_page_table_entry allocates always a whole page for page tables, this
119 * means 1024 pages and so 4MB of memory can be mapped. It doesn't make sense
120 * to manage page tables in smaller pieces as nearly all mappings have that
121 * size.
122 *
123 * ######################################################################
124 *
125 *
126 * ######################################################################
127 *
128 * mmu_engage
129 * ----------
130 *	Thanks to a small helping routine enabling the mmu got quite simple
131 * and there is only one way left. mmu_engage makes a complete a new mapping
132 * that only includes the absolute necessary to be able to jump to the final
133 * position and to restore the original mapping.
134 * As this code doesn't need a transparent translation register anymore this
135 * means all registers are free to be used by machines that needs them for
136 * other purposes.
137 *
138 * ######################################################################
139 *
140 * mmu_print
141 * ---------
142 *	This algorithm will print out the page tables of the system as
143 * appropriate for an 030 or an 040.  This is useful for debugging purposes
144 * and as such is enclosed in #ifdef MMU_PRINT/#endif clauses.
145 *
146 * ######################################################################
147 *
148 * console_init
149 * ------------
150 *	The console is also able to be turned off.  The console in head.S
151 * is specifically for debugging and can be very useful.  It is surrounded by
152 * #ifdef / #endif clauses so it doesn't have to ship in known-good
153 * kernels.  It's basic algorithm is to determine the size of the screen
154 * (in height/width and bit depth) and then use that information for
155 * displaying an 8x8 font or an 8x16 (widthxheight).  I prefer the 8x8 for
156 * debugging so I can see more good data.  But it was trivial to add support
157 * for both fonts, so I included it.
158 *	Also, the algorithm for plotting pixels is abstracted so that in
159 * theory other platforms could add support for different kinds of frame
160 * buffers.  This could be very useful.
161 *
162 * console_put_penguin
163 * -------------------
164 *	An important part of any Linux bring up is the penguin and there's
165 * nothing like getting the Penguin on the screen!  This algorithm will work
166 * on any machine for which there is a console_plot_pixel.
167 *
168 * console_scroll
169 * --------------
170 *	My hope is that the scroll algorithm does the right thing on the
171 * various platforms, but it wouldn't be hard to add the test conditions
172 * and new code if it doesn't.
173 *
174 * console_putc
175 * -------------
176 *
177 * ######################################################################
178 *
179 *	Register usage has greatly simplified within head.S. Every subroutine
180 * saves and restores all registers that it modifies (except it returns a
181 * value in there of course). So the only register that needs to be initialized
182 * is the stack pointer.
183 * All other init code and data is now placed in the init section, so it will
184 * be automatically freed at the end of the kernel initialization.
185 *
186 * ######################################################################
187 *
188 * options
189 * -------
190 *	There are many options available in a build of this file.  I've
191 * taken the time to describe them here to save you the time of searching
192 * for them and trying to understand what they mean.
193 *
194 * CONFIG_xxx:	These are the obvious machine configuration defines created
195 * during configuration.  These are defined in autoconf.h.
196 *
197 * CONSOLE_DEBUG:  Only supports a Mac frame buffer but could easily be
198 * extended to support other platforms.
199 *
200 * TEST_MMU:	This is a test harness for running on any given machine but
201 * getting an MMU dump for another class of machine.  The classes of machines
202 * that can be tested are any of the makes (Atari, Amiga, Mac, VME, etc.)
203 * and any of the models (030, 040, 060, etc.).
204 *
205 *	NOTE:	TEST_MMU is NOT permanent!  It is scheduled to be removed
206 *		When head.S boots on Atari, Amiga, Macintosh, and VME
207 *		machines.  At that point the underlying logic will be
208 *		believed to be solid enough to be trusted, and TEST_MMU
209 *		can be dropped.  Do note that that will clean up the
210 *		head.S code significantly as large blocks of #if/#else
211 *		clauses can be removed.
212 *
213 * MMU_NOCACHE_KERNEL:	On the Macintosh platform there was an inquiry into
214 * determing why devices don't appear to work.  A test case was to remove
215 * the cacheability of the kernel bits.
216 *
217 * MMU_PRINT:	There is a routine built into head.S that can display the
218 * MMU data structures.  It outputs its result through the serial_putc
219 * interface.  So where ever that winds up driving data, that's where the
220 * mmu struct will appear.
221 *
222 * SERIAL_DEBUG:	There are a series of putc() macro statements
223 * scattered through out the code to give progress of status to the
224 * person sitting at the console.  This constant determines whether those
225 * are used.
226 *
227 * DEBUG:	This is the standard DEBUG flag that can be set for building
228 *		the kernel.  It has the effect adding additional tests into
229 *		the code.
230 *
231 * FONT_6x11:
232 * FONT_8x8:
233 * FONT_8x16:
234 *		In theory these could be determined at run time or handed
235 *		over by the booter.  But, let's be real, it's a fine hard
236 *		coded value.  (But, you will notice the code is run-time
237 *		flexible!)  A pointer to the font's struct font_desc
238 *		is kept locally in Lconsole_font.  It is used to determine
239 *		font size information dynamically.
240 *
241 * Atari constants:
242 * USE_PRINTER:	Use the printer port for serial debug.
243 * USE_SCC_B:	Use the SCC port A (Serial2) for serial debug.
244 * USE_SCC_A:	Use the SCC port B (Modem2) for serial debug.
245 * USE_MFP:	Use the ST-MFP port (Modem1) for serial debug.
246 *
247 * Macintosh constants:
248 * MAC_USE_SCC_A: Use SCC port A (modem) for serial debug.
249 * MAC_USE_SCC_B: Use SCC port B (printer) for serial debug.
250 */
251
252#include <linux/linkage.h>
253#include <linux/init.h>
254#include <linux/pgtable.h>
255#include <asm/bootinfo.h>
256#include <asm/bootinfo-amiga.h>
257#include <asm/bootinfo-atari.h>
258#include <asm/bootinfo-hp300.h>
259#include <asm/bootinfo-mac.h>
260#include <asm/bootinfo-q40.h>
261#include <asm/bootinfo-virt.h>
262#include <asm/bootinfo-vme.h>
263#include <asm/setup.h>
264#include <asm/entry.h>
265#include <asm/page.h>
266#include <asm/asm-offsets.h>
267#ifdef CONFIG_MAC
268#  include <asm/machw.h>
269#endif
270
271#ifdef CONFIG_EARLY_PRINTK
272#  define SERIAL_DEBUG
273#  if defined(CONFIG_MAC) && defined(CONFIG_FONT_SUPPORT)
274#    define CONSOLE_DEBUG
275#  endif
276#endif
277
278#undef MMU_PRINT
279#undef MMU_NOCACHE_KERNEL
280#undef DEBUG
281
282/*
283 * For the head.S console, there are three supported fonts, 6x11, 8x16 and 8x8.
284 * The 8x8 font is harder to read but fits more on the screen.
285 */
286#define FONT_8x8	/* default */
287/* #define FONT_8x16 */	/* 2nd choice */
288/* #define FONT_6x11 */	/* 3rd choice */
289
290.globl kernel_pg_dir
291.globl availmem
292.globl m68k_init_mapped_size
293.globl m68k_pgtable_cachemode
294.globl m68k_supervisor_cachemode
295#ifdef CONFIG_MVME16x
296.globl mvme_bdid
297#endif
298#ifdef CONFIG_Q40
299.globl q40_mem_cptr
300#endif
301
302CPUTYPE_040	= 1	/* indicates an 040 */
303CPUTYPE_060	= 2	/* indicates an 060 */
304CPUTYPE_0460	= 3	/* if either above are set, this is set */
305CPUTYPE_020	= 4	/* indicates an 020 */
306
307/* Translation control register */
308TC_ENABLE = 0x8000
309TC_PAGE8K = 0x4000
310TC_PAGE4K = 0x0000
311
312/* Transparent translation registers */
313TTR_ENABLE	= 0x8000	/* enable transparent translation */
314TTR_ANYMODE	= 0x4000	/* user and kernel mode access */
315TTR_KERNELMODE	= 0x2000	/* only kernel mode access */
316TTR_USERMODE	= 0x0000	/* only user mode access */
317TTR_CI		= 0x0400	/* inhibit cache */
318TTR_RW		= 0x0200	/* read/write mode */
319TTR_RWM		= 0x0100	/* read/write mask */
320TTR_FCB2	= 0x0040	/* function code base bit 2 */
321TTR_FCB1	= 0x0020	/* function code base bit 1 */
322TTR_FCB0	= 0x0010	/* function code base bit 0 */
323TTR_FCM2	= 0x0004	/* function code mask bit 2 */
324TTR_FCM1	= 0x0002	/* function code mask bit 1 */
325TTR_FCM0	= 0x0001	/* function code mask bit 0 */
326
327/* Cache Control registers */
328CC6_ENABLE_D	= 0x80000000	/* enable data cache (680[46]0) */
329CC6_FREEZE_D	= 0x40000000	/* freeze data cache (68060) */
330CC6_ENABLE_SB	= 0x20000000	/* enable store buffer (68060) */
331CC6_PUSH_DPI	= 0x10000000	/* disable CPUSH invalidation (68060) */
332CC6_HALF_D	= 0x08000000	/* half-cache mode for data cache (68060) */
333CC6_ENABLE_B	= 0x00800000	/* enable branch cache (68060) */
334CC6_CLRA_B	= 0x00400000	/* clear all entries in branch cache (68060) */
335CC6_CLRU_B	= 0x00200000	/* clear user entries in branch cache (68060) */
336CC6_ENABLE_I	= 0x00008000	/* enable instruction cache (680[46]0) */
337CC6_FREEZE_I	= 0x00004000	/* freeze instruction cache (68060) */
338CC6_HALF_I	= 0x00002000	/* half-cache mode for instruction cache (68060) */
339CC3_ALLOC_WRITE	= 0x00002000	/* write allocate mode(68030) */
340CC3_ENABLE_DB	= 0x00001000	/* enable data burst (68030) */
341CC3_CLR_D	= 0x00000800	/* clear data cache (68030) */
342CC3_CLRE_D	= 0x00000400	/* clear entry in data cache (68030) */
343CC3_FREEZE_D	= 0x00000200	/* freeze data cache (68030) */
344CC3_ENABLE_D	= 0x00000100	/* enable data cache (68030) */
345CC3_ENABLE_IB	= 0x00000010	/* enable instruction burst (68030) */
346CC3_CLR_I	= 0x00000008	/* clear instruction cache (68030) */
347CC3_CLRE_I	= 0x00000004	/* clear entry in instruction cache (68030) */
348CC3_FREEZE_I	= 0x00000002	/* freeze instruction cache (68030) */
349CC3_ENABLE_I	= 0x00000001	/* enable instruction cache (68030) */
350
351/* Miscellaneous definitions */
352PAGESIZE	= 4096
353PAGESHIFT	= 12
354
355ROOT_TABLE_SIZE	= 128
356PTR_TABLE_SIZE	= 128
357PAGE_TABLE_SIZE	= 64
358ROOT_INDEX_SHIFT = 25
359PTR_INDEX_SHIFT  = 18
360PAGE_INDEX_SHIFT = 12
361
362#ifdef DEBUG
363/* When debugging use readable names for labels */
364#ifdef __STDC__
365#define L(name) .head.S.##name
366#else
367#define L(name) .head.S./**/name
368#endif
369#else
370#ifdef __STDC__
371#define L(name) .L##name
372#else
373#define L(name) .L/**/name
374#endif
375#endif
376
377/* The __INITDATA stuff is a no-op when ftrace or kgdb are turned on */
378#ifndef __INITDATA
379#define __INITDATA	.data
380#define __FINIT		.previous
381#endif
382
383/* Several macros to make the writing of subroutines easier:
384 * - func_start marks the beginning of the routine which setups the frame
385 *   register and saves the registers, it also defines another macro
386 *   to automatically restore the registers again.
387 * - func_return marks the end of the routine and simply calls the prepared
388 *   macro to restore registers and jump back to the caller.
389 * - func_define generates another macro to automatically put arguments
390 *   onto the stack call the subroutine and cleanup the stack again.
391 */
392
393/* Within subroutines these macros can be used to access the arguments
394 * on the stack. With STACK some allocated memory on the stack can be
395 * accessed and ARG0 points to the return address (used by mmu_engage).
396 */
397#define	STACK	%a6@(stackstart)
398#define ARG0	%a6@(4)
399#define ARG1	%a6@(8)
400#define ARG2	%a6@(12)
401#define ARG3	%a6@(16)
402#define ARG4	%a6@(20)
403
404.macro	func_start	name,saveregs,stack=0
405L(\name):
406	linkw	%a6,#-\stack
407	moveml	\saveregs,%sp@-
408.set	stackstart,-\stack
409
410.macro	func_return_\name
411	moveml	%sp@+,\saveregs
412	unlk	%a6
413	rts
414.endm
415.endm
416
417.macro	func_return	name
418	func_return_\name
419.endm
420
421.macro	func_call	name
422	jbsr	L(\name)
423.endm
424
425.macro	move_stack	nr,arg1,arg2,arg3,arg4
426.if	\nr
427	move_stack	"(\nr-1)",\arg2,\arg3,\arg4
428	movel	\arg1,%sp@-
429.endif
430.endm
431
432.macro	func_define	name,nr=0
433.macro	\name	arg1,arg2,arg3,arg4
434	move_stack	\nr,\arg1,\arg2,\arg3,\arg4
435	func_call	\name
436.if	\nr
437	lea	%sp@(\nr*4),%sp
438.endif
439.endm
440.endm
441
442func_define	mmu_map,4
443func_define	mmu_map_tt,4
444func_define	mmu_fixup_page_mmu_cache,1
445func_define	mmu_temp_map,2
446func_define	mmu_engage
447func_define	mmu_get_root_table_entry,1
448func_define	mmu_get_ptr_table_entry,2
449func_define	mmu_get_page_table_entry,2
450func_define	mmu_print
451func_define	get_new_page
452#if defined(CONFIG_HP300) || defined(CONFIG_APOLLO)
453func_define	set_leds
454#endif
455
456.macro	mmu_map_eq	arg1,arg2,arg3
457	mmu_map	\arg1,\arg1,\arg2,\arg3
458.endm
459
460.macro	get_bi_record	record
461	pea	\record
462	func_call	get_bi_record
463	addql	#4,%sp
464.endm
465
466func_define	serial_putc,1
467func_define	console_putc,1
468
469func_define	console_init
470func_define	console_put_penguin
471func_define	console_plot_pixel,3
472func_define	console_scroll
473
474.macro	putc	ch
475#if defined(CONSOLE_DEBUG) || defined(SERIAL_DEBUG)
476	pea	\ch
477#endif
478#ifdef CONSOLE_DEBUG
479	func_call	console_putc
480#endif
481#ifdef SERIAL_DEBUG
482	func_call	serial_putc
483#endif
484#if defined(CONSOLE_DEBUG) || defined(SERIAL_DEBUG)
485	addql	#4,%sp
486#endif
487.endm
488
489.macro	dputc	ch
490#ifdef DEBUG
491	putc	\ch
492#endif
493.endm
494
495func_define	putn,1
496
497.macro	dputn	nr
498#ifdef DEBUG
499	putn	\nr
500#endif
501.endm
502
503.macro	puts		string
504#if defined(CONSOLE_DEBUG) || defined(SERIAL_DEBUG)
505	__INITDATA
506.Lstr\@:
507	.string	"\string"
508	__FINIT
509	pea	%pc@(.Lstr\@)
510	func_call	puts
511	addql	#4,%sp
512#endif
513.endm
514
515.macro	dputs	string
516#ifdef DEBUG
517	puts	"\string"
518#endif
519.endm
520
521#define is_not_amiga(lab) cmpl &MACH_AMIGA,%pc@(m68k_machtype); jne lab
522#define is_not_atari(lab) cmpl &MACH_ATARI,%pc@(m68k_machtype); jne lab
523#define is_not_mac(lab) cmpl &MACH_MAC,%pc@(m68k_machtype); jne lab
524#define is_not_mvme147(lab) cmpl &MACH_MVME147,%pc@(m68k_machtype); jne lab
525#define is_not_mvme16x(lab) cmpl &MACH_MVME16x,%pc@(m68k_machtype); jne lab
526#define is_not_bvme6000(lab) cmpl &MACH_BVME6000,%pc@(m68k_machtype); jne lab
527#define is_mvme147(lab) cmpl &MACH_MVME147,%pc@(m68k_machtype); jeq lab
528#define is_mvme16x(lab) cmpl &MACH_MVME16x,%pc@(m68k_machtype); jeq lab
529#define is_bvme6000(lab) cmpl &MACH_BVME6000,%pc@(m68k_machtype); jeq lab
530#define is_not_hp300(lab) cmpl &MACH_HP300,%pc@(m68k_machtype); jne lab
531#define is_not_apollo(lab) cmpl &MACH_APOLLO,%pc@(m68k_machtype); jne lab
532#define is_not_q40(lab) cmpl &MACH_Q40,%pc@(m68k_machtype); jne lab
533#define is_not_sun3x(lab) cmpl &MACH_SUN3X,%pc@(m68k_machtype); jne lab
534#define is_not_virt(lab) cmpl &MACH_VIRT,%pc@(m68k_machtype); jne lab
535
536#define hasnt_leds(lab) cmpl &MACH_HP300,%pc@(m68k_machtype); \
537			jeq 42f; \
538			cmpl &MACH_APOLLO,%pc@(m68k_machtype); \
539			jne lab ;\
540		42:\
541
542#define is_040_or_060(lab)	btst &CPUTYPE_0460,%pc@(L(cputype)+3); jne lab
543#define is_not_040_or_060(lab)	btst &CPUTYPE_0460,%pc@(L(cputype)+3); jeq lab
544#define is_040(lab)		btst &CPUTYPE_040,%pc@(L(cputype)+3); jne lab
545#define is_060(lab)		btst &CPUTYPE_060,%pc@(L(cputype)+3); jne lab
546#define is_not_060(lab)		btst &CPUTYPE_060,%pc@(L(cputype)+3); jeq lab
547#define is_020(lab)		btst &CPUTYPE_020,%pc@(L(cputype)+3); jne lab
548#define is_not_020(lab)		btst &CPUTYPE_020,%pc@(L(cputype)+3); jeq lab
549
550/* On the HP300 we use the on-board LEDs for debug output before
551   the console is running.  Writing a 1 bit turns the corresponding LED
552   _off_ - on the 340 bit 7 is towards the back panel of the machine.  */
553.macro	leds	mask
554#if defined(CONFIG_HP300) || defined(CONFIG_APOLLO)
555	hasnt_leds(.Lled\@)
556	pea	\mask
557	func_call	set_leds
558	addql	#4,%sp
559.Lled\@:
560#endif
561.endm
562
563__HEAD
564ENTRY(_stext)
565/*
566 * Version numbers of the bootinfo interface
567 * The area from _stext to _start will later be used as kernel pointer table
568 */
569	bras	1f	/* Jump over bootinfo version numbers */
570
571	.long	BOOTINFOV_MAGIC
572	.long	MACH_AMIGA, AMIGA_BOOTI_VERSION
573	.long	MACH_ATARI, ATARI_BOOTI_VERSION
574	.long	MACH_MVME147, MVME147_BOOTI_VERSION
575	.long	MACH_MVME16x, MVME16x_BOOTI_VERSION
576	.long	MACH_BVME6000, BVME6000_BOOTI_VERSION
577	.long	MACH_MAC, MAC_BOOTI_VERSION
578	.long	MACH_Q40, Q40_BOOTI_VERSION
579	.long	MACH_HP300, HP300_BOOTI_VERSION
580	.long	0
5811:	jra	__start
582
583.equ	kernel_pg_dir,_stext
584
585.equ	.,_stext+PAGESIZE
586
587ENTRY(_start)
588	jra	__start
589__INIT
590ENTRY(__start)
591/*
592 * Setup initial stack pointer
593 */
594	lea	%pc@(_stext),%sp
595
596/*
597 * Record the CPU and machine type.
598 */
599	get_bi_record	BI_MACHTYPE
600	lea	%pc@(m68k_machtype),%a1
601	movel	%a0@,%a1@
602
603	get_bi_record	BI_FPUTYPE
604	lea	%pc@(m68k_fputype),%a1
605	movel	%a0@,%a1@
606
607	get_bi_record	BI_MMUTYPE
608	lea	%pc@(m68k_mmutype),%a1
609	movel	%a0@,%a1@
610
611	get_bi_record	BI_CPUTYPE
612	lea	%pc@(m68k_cputype),%a1
613	movel	%a0@,%a1@
614
615	leds	0x1
616
617#ifdef CONFIG_MAC
618/*
619 * For Macintosh, we need to determine the display parameters early (at least
620 * while debugging it).
621 */
622
623	is_not_mac(L(test_notmac))
624
625	get_bi_record	BI_MAC_VADDR
626	lea	%pc@(L(mac_videobase)),%a1
627	movel	%a0@,%a1@
628
629	get_bi_record	BI_MAC_VDEPTH
630	lea	%pc@(L(mac_videodepth)),%a1
631	movel	%a0@,%a1@
632
633	get_bi_record	BI_MAC_VDIM
634	lea	%pc@(L(mac_dimensions)),%a1
635	movel	%a0@,%a1@
636
637	get_bi_record	BI_MAC_VROW
638	lea	%pc@(L(mac_rowbytes)),%a1
639	movel	%a0@,%a1@
640
641	get_bi_record	BI_MAC_SCCBASE
642	lea	%pc@(L(mac_sccbase)),%a1
643	movel	%a0@,%a1@
644
645L(test_notmac):
646#endif /* CONFIG_MAC */
647
648#ifdef CONFIG_VIRT
649	is_not_virt(L(test_notvirt))
650
651	get_bi_record BI_VIRT_GF_TTY_BASE
652	lea	%pc@(L(virt_gf_tty_base)),%a1
653	movel	%a0@,%a1@
654L(test_notvirt):
655#endif /* CONFIG_VIRT */
656
657/*
658 * There are ultimately two pieces of information we want for all kinds of
659 * processors CpuType and CacheBits.  The CPUTYPE was passed in from booter
660 * and is converted here from a booter type definition to a separate bit
661 * number which allows for the standard is_0x0 macro tests.
662 */
663	movel	%pc@(m68k_cputype),%d0
664	/*
665	 * Assume it's an 030
666	 */
667	clrl	%d1
668
669	/*
670	 * Test the BootInfo cputype for 060
671	 */
672	btst	#CPUB_68060,%d0
673	jeq	1f
674	bset	#CPUTYPE_060,%d1
675	bset	#CPUTYPE_0460,%d1
676	jra	3f
6771:
678	/*
679	 * Test the BootInfo cputype for 040
680	 */
681	btst	#CPUB_68040,%d0
682	jeq	2f
683	bset	#CPUTYPE_040,%d1
684	bset	#CPUTYPE_0460,%d1
685	jra	3f
6862:
687	/*
688	 * Test the BootInfo cputype for 020
689	 */
690	btst	#CPUB_68020,%d0
691	jeq	3f
692	bset	#CPUTYPE_020,%d1
693	jra	3f
6943:
695	/*
696	 * Record the cpu type
697	 */
698	lea	%pc@(L(cputype)),%a0
699	movel	%d1,%a0@
700
701	/*
702	 * NOTE:
703	 *
704	 * Now the macros are valid:
705	 *	is_040_or_060
706	 *	is_not_040_or_060
707	 *	is_040
708	 *	is_060
709	 *	is_not_060
710	 */
711
712	/*
713	 * Determine the cache mode for pages holding MMU tables
714	 * and for supervisor mode, unused for '020 and '030
715	 */
716	clrl	%d0
717	clrl	%d1
718
719	is_not_040_or_060(L(save_cachetype))
720
721	/*
722	 * '040 or '060
723	 * d1 := cacheable write-through
724	 * NOTE: The 68040 manual strongly recommends non-cached for MMU tables,
725	 * but we have been using write-through since at least 2.0.29 so I
726	 * guess it is OK.
727	 */
728#ifdef CONFIG_060_WRITETHROUGH
729	/*
730	 * If this is a 68060 board using drivers with cache coherency
731	 * problems, then supervisor memory accesses need to be write-through
732	 * also; otherwise, we want copyback.
733	 */
734
735	is_not_060(1f)
736	movel	#_PAGE_CACHE040W,%d0
737	jra	L(save_cachetype)
738#endif /* CONFIG_060_WRITETHROUGH */
7391:
740	movew	#_PAGE_CACHE040,%d0
741
742	movel	#_PAGE_CACHE040W,%d1
743
744L(save_cachetype):
745	/* Save cache mode for supervisor mode and page tables
746	 */
747	lea	%pc@(m68k_supervisor_cachemode),%a0
748	movel	%d0,%a0@
749	lea	%pc@(m68k_pgtable_cachemode),%a0
750	movel	%d1,%a0@
751
752/*
753 * raise interrupt level
754 */
755	movew	#0x2700,%sr
756
757/*
758   If running on an Atari, determine the I/O base of the
759   serial port and test if we are running on a Medusa or Hades.
760   This test is necessary here, because on the Hades the serial
761   port is only accessible in the high I/O memory area.
762
763   The test whether it is a Medusa is done by writing to the byte at
764   phys. 0x0. This should result in a bus error on all other machines.
765
766   ...should, but doesn't. The Afterburner040 for the Falcon has the
767   same behaviour (0x0..0x7 are no ROM shadow). So we have to do
768   another test to distinguish Medusa and AB040. This is a
769   read attempt for 0x00ff82fe phys. that should bus error on a Falcon
770   (+AB040), but is in the range where the Medusa always asserts DTACK.
771
772   The test for the Hades is done by reading address 0xb0000000. This
773   should give a bus error on the Medusa.
774 */
775
776#ifdef CONFIG_ATARI
777	is_not_atari(L(notypetest))
778
779	/* get special machine type (Medusa/Hades/AB40) */
780	moveq	#0,%d3 /* default if tag doesn't exist */
781	get_bi_record	BI_ATARI_MCH_TYPE
782	tstl	%d0
783	jbmi	1f
784	movel	%a0@,%d3
785	lea	%pc@(atari_mch_type),%a0
786	movel	%d3,%a0@
7871:
788	/* On the Hades, the iobase must be set up before opening the
789	 * serial port. There are no I/O regs at 0x00ffxxxx at all. */
790	moveq	#0,%d0
791	cmpl	#ATARI_MACH_HADES,%d3
792	jbne	1f
793	movel	#0xff000000,%d0		/* Hades I/O base addr: 0xff000000 */
7941:	lea     %pc@(L(iobase)),%a0
795	movel   %d0,%a0@
796
797L(notypetest):
798#endif
799
800#ifdef CONFIG_VME
801	is_mvme147(L(getvmetype))
802	is_bvme6000(L(getvmetype))
803	is_not_mvme16x(L(gvtdone))
804
805	/* See if the loader has specified the BI_VME_TYPE tag.  Recent
806	 * versions of VMELILO and TFTPLILO do this.  We have to do this
807	 * early so we know how to handle console output.  If the tag
808	 * doesn't exist then we use the Bug for output on MVME16x.
809	 */
810L(getvmetype):
811	get_bi_record	BI_VME_TYPE
812	tstl	%d0
813	jbmi	1f
814	movel	%a0@,%d3
815	lea	%pc@(vme_brdtype),%a0
816	movel	%d3,%a0@
8171:
818#ifdef CONFIG_MVME16x
819	is_not_mvme16x(L(gvtdone))
820
821	/* Need to get the BRD_ID info to differentiate between 162, 167,
822	 * etc.  This is available as a BI_VME_BRDINFO tag with later
823	 * versions of VMELILO and TFTPLILO, otherwise we call the Bug.
824	 */
825	get_bi_record	BI_VME_BRDINFO
826	tstl	%d0
827	jpl	1f
828
829	/* Get pointer to board ID data from Bug */
830	movel	%d2,%sp@-
831	trap	#15
832	.word	0x70		/* trap 0x70 - .BRD_ID */
833	movel	%sp@+,%a0
8341:
835	lea	%pc@(mvme_bdid),%a1
836	/* Structure is 32 bytes long */
837	movel	%a0@+,%a1@+
838	movel	%a0@+,%a1@+
839	movel	%a0@+,%a1@+
840	movel	%a0@+,%a1@+
841	movel	%a0@+,%a1@+
842	movel	%a0@+,%a1@+
843	movel	%a0@+,%a1@+
844	movel	%a0@+,%a1@+
845#endif
846
847L(gvtdone):
848
849#endif
850
851#ifdef CONFIG_HP300
852	is_not_hp300(L(nothp))
853
854	/* Get the address of the UART for serial debugging */
855	get_bi_record	BI_HP300_UART_ADDR
856	tstl	%d0
857	jbmi	1f
858	movel	%a0@,%d3
859	lea	%pc@(L(uartbase)),%a0
860	movel	%d3,%a0@
861	get_bi_record	BI_HP300_UART_SCODE
862	tstl	%d0
863	jbmi	1f
864	movel	%a0@,%d3
865	lea	%pc@(L(uart_scode)),%a0
866	movel	%d3,%a0@
8671:
868L(nothp):
869#endif
870
871/*
872 * Initialize serial port
873 */
874	jbsr	L(serial_init)
875
876/*
877 * Initialize console
878 */
879#ifdef CONFIG_MAC
880	is_not_mac(L(nocon))
881#  ifdef CONSOLE_DEBUG
882	console_init
883#    ifdef CONFIG_LOGO
884	console_put_penguin
885#    endif /* CONFIG_LOGO */
886#  endif /* CONSOLE_DEBUG */
887L(nocon):
888#endif /* CONFIG_MAC */
889
890
891	putc	'\n'
892	putc	'A'
893	leds	0x2
894	dputn	%pc@(L(cputype))
895	dputn	%pc@(m68k_supervisor_cachemode)
896	dputn	%pc@(m68k_pgtable_cachemode)
897	dputc	'\n'
898
899/*
900 * Save physical start address of kernel
901 */
902	lea	%pc@(L(phys_kernel_start)),%a0
903	lea	%pc@(_stext),%a1
904	subl	#_stext,%a1
905	addl	#PAGE_OFFSET,%a1
906	movel	%a1,%a0@
907
908	putc	'B'
909
910	leds	0x4
911
912/*
913 *	mmu_init
914 *
915 *	This block of code does what's necessary to map in the various kinds
916 *	of machines for execution of Linux.
917 *	First map the first 4, 8, or 16 MB of kernel code & data
918 */
919
920	get_bi_record BI_MEMCHUNK
921	movel	%a0@(4),%d0
922	movel	#16*1024*1024,%d1
923	cmpl	%d0,%d1
924	jls	1f
925	lsrl	#1,%d1
926	cmpl	%d0,%d1
927	jls	1f
928	lsrl	#1,%d1
9291:
930	lea	%pc@(m68k_init_mapped_size),%a0
931	movel	%d1,%a0@
932	mmu_map	#PAGE_OFFSET,%pc@(L(phys_kernel_start)),%d1,\
933		%pc@(m68k_supervisor_cachemode)
934
935	putc	'C'
936
937#ifdef CONFIG_AMIGA
938
939L(mmu_init_amiga):
940
941	is_not_amiga(L(mmu_init_not_amiga))
942/*
943 * mmu_init_amiga
944 */
945
946	putc	'D'
947
948	is_not_040_or_060(1f)
949
950	/*
951	 * 040: Map the 16Meg range physical 0x0 up to logical 0x8000.0000
952	 */
953	mmu_map		#0x80000000,#0,#0x01000000,#_PAGE_NOCACHE_S
954	/*
955	 * Map the Zorro III I/O space with transparent translation
956	 * for frame buffer memory etc.
957	 */
958	mmu_map_tt	#1,#0x40000000,#0x20000000,#_PAGE_NOCACHE_S
959
960	jbra	L(mmu_init_done)
961
9621:
963	/*
964	 * 030:	Map the 32Meg range physical 0x0 up to logical 0x8000.0000
965	 */
966	mmu_map		#0x80000000,#0,#0x02000000,#_PAGE_NOCACHE030
967	mmu_map_tt	#1,#0x40000000,#0x20000000,#_PAGE_NOCACHE030
968
969	jbra	L(mmu_init_done)
970
971L(mmu_init_not_amiga):
972#endif
973
974#ifdef CONFIG_ATARI
975
976L(mmu_init_atari):
977
978	is_not_atari(L(mmu_init_not_atari))
979
980	putc	'E'
981
982/* On the Atari, we map the I/O region (phys. 0x00ffxxxx) by mapping
983   the last 16 MB of virtual address space to the first 16 MB (i.e.
984   0xffxxxxxx -> 0x00xxxxxx). For this, an additional pointer table is
985   needed. I/O ranges are marked non-cachable.
986
987   For the Medusa it is better to map the I/O region transparently
988   (i.e. 0xffxxxxxx -> 0xffxxxxxx), because some I/O registers are
989   accessible only in the high area.
990
991   On the Hades all I/O registers are only accessible in the high
992   area.
993*/
994
995	/* I/O base addr for non-Medusa, non-Hades: 0x00000000 */
996	moveq	#0,%d0
997	movel	%pc@(atari_mch_type),%d3
998	cmpl	#ATARI_MACH_MEDUSA,%d3
999	jbeq	2f
1000	cmpl	#ATARI_MACH_HADES,%d3
1001	jbne	1f
10022:	movel	#0xff000000,%d0 /* Medusa/Hades base addr: 0xff000000 */
10031:	movel	%d0,%d3
1004
1005	is_040_or_060(L(spata68040))
1006
1007	/* Map everything non-cacheable, though not all parts really
1008	 * need to disable caches (crucial only for 0xff8000..0xffffff
1009	 * (standard I/O) and 0xf00000..0xf3ffff (IDE)). The remainder
1010	 * isn't really used, except for sometimes peeking into the
1011	 * ROMs (mirror at phys. 0x0), so caching isn't necessary for
1012	 * this. */
1013	mmu_map	#0xff000000,%d3,#0x01000000,#_PAGE_NOCACHE030
1014
1015	jbra	L(mmu_init_done)
1016
1017L(spata68040):
1018
1019	mmu_map	#0xff000000,%d3,#0x01000000,#_PAGE_NOCACHE_S
1020
1021	jbra	L(mmu_init_done)
1022
1023L(mmu_init_not_atari):
1024#endif
1025
1026#ifdef CONFIG_Q40
1027	is_not_q40(L(notq40))
1028	/*
1029	 * add transparent mapping for 0xff00 0000 - 0xffff ffff
1030	 * non-cached serialized etc..
1031	 * this includes master chip, DAC, RTC and ISA ports
1032	 * 0xfe000000-0xfeffffff is for screen and ROM
1033	 */
1034
1035	putc    'Q'
1036
1037	mmu_map_tt	#0,#0xfe000000,#0x01000000,#_PAGE_CACHE040W
1038	mmu_map_tt	#1,#0xff000000,#0x01000000,#_PAGE_NOCACHE_S
1039
1040	jbra	L(mmu_init_done)
1041
1042L(notq40):
1043#endif
1044
1045#ifdef CONFIG_HP300
1046	is_not_hp300(L(nothp300))
1047
1048	/* On the HP300, we map the ROM, INTIO and DIO regions (phys. 0x00xxxxxx)
1049	 * by mapping 32MB (on 020/030) or 16 MB (on 040) from 0xf0xxxxxx -> 0x00xxxxxx).
1050	 * The ROM mapping is needed because the LEDs are mapped there too.
1051	 */
1052
1053	is_040(1f)
1054
1055	/*
1056	 * 030: Map the 32Meg range physical 0x0 up to logical 0xf000.0000
1057	 */
1058	mmu_map	#0xf0000000,#0,#0x02000000,#_PAGE_NOCACHE030
1059
1060	jbra	L(mmu_init_done)
1061
10621:
1063	/*
1064	 * 040: Map the 16Meg range physical 0x0 up to logical 0xf000.0000
1065	 */
1066	mmu_map #0xf0000000,#0,#0x01000000,#_PAGE_NOCACHE_S
1067
1068	jbra	L(mmu_init_done)
1069
1070L(nothp300):
1071#endif /* CONFIG_HP300 */
1072
1073#ifdef CONFIG_MVME147
1074
1075	is_not_mvme147(L(not147))
1076
1077	/*
1078	 * On MVME147 we have already created kernel page tables for
1079	 * 4MB of RAM at address 0, so now need to do a transparent
1080	 * mapping of the top of memory space.  Make it 0.5GByte for now,
1081	 * so we can access on-board i/o areas.
1082	 */
1083
1084	mmu_map_tt	#1,#0xe0000000,#0x20000000,#_PAGE_NOCACHE030
1085
1086	jbra	L(mmu_init_done)
1087
1088L(not147):
1089#endif /* CONFIG_MVME147 */
1090
1091#ifdef CONFIG_MVME16x
1092
1093	is_not_mvme16x(L(not16x))
1094
1095	/*
1096	 * On MVME16x we have already created kernel page tables for
1097	 * 4MB of RAM at address 0, so now need to do a transparent
1098	 * mapping of the top of memory space.  Make it 0.5GByte for now.
1099	 * Supervisor only access, so transparent mapping doesn't
1100	 * clash with User code virtual address space.
1101	 * this covers IO devices, PROM and SRAM.  The PROM and SRAM
1102	 * mapping is needed to allow 167Bug to run.
1103	 * IO is in the range 0xfff00000 to 0xfffeffff.
1104	 * PROM is 0xff800000->0xffbfffff and SRAM is
1105	 * 0xffe00000->0xffe1ffff.
1106	 */
1107
1108	mmu_map_tt	#1,#0xe0000000,#0x20000000,#_PAGE_NOCACHE_S
1109
1110	jbra	L(mmu_init_done)
1111
1112L(not16x):
1113#endif	/* CONFIG_MVME162 | CONFIG_MVME167 */
1114
1115#ifdef CONFIG_BVME6000
1116
1117	is_not_bvme6000(L(not6000))
1118
1119	/*
1120	 * On BVME6000 we have already created kernel page tables for
1121	 * 4MB of RAM at address 0, so now need to do a transparent
1122	 * mapping of the top of memory space.  Make it 0.5GByte for now,
1123	 * so we can access on-board i/o areas.
1124	 * Supervisor only access, so transparent mapping doesn't
1125	 * clash with User code virtual address space.
1126	 */
1127
1128	mmu_map_tt	#1,#0xe0000000,#0x20000000,#_PAGE_NOCACHE_S
1129
1130	jbra	L(mmu_init_done)
1131
1132L(not6000):
1133#endif /* CONFIG_BVME6000 */
1134
1135/*
1136 * mmu_init_mac
1137 *
1138 * The Macintosh mappings are less clear.
1139 *
1140 * Even as of this writing, it is unclear how the
1141 * Macintosh mappings will be done.  However, as
1142 * the first author of this code I'm proposing the
1143 * following model:
1144 *
1145 * Map the kernel (that's already done),
1146 * Map the I/O (on most machines that's the
1147 * 0x5000.0000 ... 0x5300.0000 range,
1148 * Map the video frame buffer using as few pages
1149 * as absolutely (this requirement mostly stems from
1150 * the fact that when the frame buffer is at
1151 * 0x0000.0000 then we know there is valid RAM just
1152 * above the screen that we don't want to waste!).
1153 *
1154 * By the way, if the frame buffer is at 0x0000.0000
1155 * then the Macintosh is known as an RBV based Mac.
1156 *
1157 * By the way 2, the code currently maps in a bunch of
1158 * regions.  But I'd like to cut that out.  (And move most
1159 * of the mappings up into the kernel proper ... or only
1160 * map what's necessary.)
1161 */
1162
1163#ifdef CONFIG_MAC
1164
1165L(mmu_init_mac):
1166
1167	is_not_mac(L(mmu_init_not_mac))
1168
1169	putc	'F'
1170
1171	is_not_040_or_060(1f)
1172
1173	moveq	#_PAGE_NOCACHE_S,%d3
1174	jbra	2f
11751:
1176	moveq	#_PAGE_NOCACHE030,%d3
11772:
1178	/*
1179	 * Mac Note: screen address of logical 0xF000.0000 -> <screen physical>
1180	 *	     we simply map the 4MB that contains the videomem
1181	 */
1182
1183	movel	#VIDEOMEMMASK,%d0
1184	andl	%pc@(L(mac_videobase)),%d0
1185
1186	mmu_map		#VIDEOMEMBASE,%d0,#VIDEOMEMSIZE,%d3
1187	/* ROM from 4000 0000 to 4200 0000 (only for mac_reset()) */
1188	mmu_map_eq	#0x40000000,#0x02000000,%d3
1189	/* IO devices (incl. serial port) from 5000 0000 to 5300 0000 */
1190	mmu_map_eq	#0x50000000,#0x03000000,%d3
1191	/* Nubus slot space (video at 0xF0000000, rom at 0xF0F80000) */
1192	mmu_map_tt	#1,#0xf8000000,#0x08000000,%d3
1193
1194	jbra	L(mmu_init_done)
1195
1196L(mmu_init_not_mac):
1197#endif
1198
1199#ifdef CONFIG_SUN3X
1200	is_not_sun3x(L(notsun3x))
1201
1202	/* oh, the pain..  We're gonna want the prom code after
1203	 * starting the MMU, so we copy the mappings, translating
1204	 * from 8k -> 4k pages as we go.
1205	 */
1206
1207	/* copy maps from 0xfee00000 to 0xff000000 */
1208	movel	#0xfee00000, %d0
1209	moveq	#ROOT_INDEX_SHIFT, %d1
1210	lsrl	%d1,%d0
1211	mmu_get_root_table_entry	%d0
1212
1213	movel	#0xfee00000, %d0
1214	moveq	#PTR_INDEX_SHIFT, %d1
1215	lsrl	%d1,%d0
1216	andl	#PTR_TABLE_SIZE-1, %d0
1217	mmu_get_ptr_table_entry		%a0,%d0
1218
1219	movel	#0xfee00000, %d0
1220	moveq	#PAGE_INDEX_SHIFT, %d1
1221	lsrl	%d1,%d0
1222	andl	#PAGE_TABLE_SIZE-1, %d0
1223	mmu_get_page_table_entry	%a0,%d0
1224
1225	/* this is where the prom page table lives */
1226	movel	0xfefe00d4, %a1
1227	movel	%a1@, %a1
1228
1229	movel	#((0x200000 >> 13)-1), %d1
1230
12311:
1232	movel	%a1@+, %d3
1233	movel	%d3,%a0@+
1234	addl	#0x1000,%d3
1235	movel	%d3,%a0@+
1236
1237	dbra	%d1,1b
1238
1239	/* setup tt1 for I/O */
1240	mmu_map_tt	#1,#0x40000000,#0x40000000,#_PAGE_NOCACHE_S
1241	jbra	L(mmu_init_done)
1242
1243L(notsun3x):
1244#endif
1245
1246#ifdef CONFIG_VIRT
1247	is_not_virt(L(novirt))
1248	mmu_map_tt	#1,#0xFF000000,#0x01000000,#_PAGE_NOCACHE_S
1249	jbra    L(mmu_init_done)
1250L(novirt):
1251#endif
1252
1253#ifdef CONFIG_APOLLO
1254	is_not_apollo(L(notapollo))
1255
1256	putc	'P'
1257	mmu_map         #0x80000000,#0,#0x02000000,#_PAGE_NOCACHE030
1258
1259L(notapollo):
1260	jbra	L(mmu_init_done)
1261#endif
1262
1263L(mmu_init_done):
1264
1265	putc	'G'
1266	leds	0x8
1267
1268/*
1269 * mmu_fixup
1270 *
1271 * On the 040 class machines, all pages that are used for the
1272 * mmu have to be fixed up. According to Motorola, pages holding mmu
1273 * tables should be non-cacheable on a '040 and write-through on a
1274 * '060. But analysis of the reasons for this, and practical
1275 * experience, showed that write-through also works on a '040.
1276 *
1277 * Allocated memory so far goes from kernel_end to memory_start that
1278 * is used for all kind of tables, for that the cache attributes
1279 * are now fixed.
1280 */
1281L(mmu_fixup):
1282
1283	is_not_040_or_060(L(mmu_fixup_done))
1284
1285#ifdef MMU_NOCACHE_KERNEL
1286	jbra	L(mmu_fixup_done)
1287#endif
1288
1289	/* first fix the page at the start of the kernel, that
1290	 * contains also kernel_pg_dir.
1291	 */
1292	movel	%pc@(L(phys_kernel_start)),%d0
1293	subl	#PAGE_OFFSET,%d0
1294	lea	%pc@(_stext),%a0
1295	subl	%d0,%a0
1296	mmu_fixup_page_mmu_cache	%a0
1297
1298	movel	%pc@(L(kernel_end)),%a0
1299	subl	%d0,%a0
1300	movel	%pc@(L(memory_start)),%a1
1301	subl	%d0,%a1
1302	bra	2f
13031:
1304	mmu_fixup_page_mmu_cache	%a0
1305	addw	#PAGESIZE,%a0
13062:
1307	cmpl	%a0,%a1
1308	jgt	1b
1309
1310L(mmu_fixup_done):
1311
1312#ifdef MMU_PRINT
1313	mmu_print
1314#endif
1315
1316/*
1317 * mmu_engage
1318 *
1319 * This chunk of code performs the gruesome task of engaging the MMU.
1320 * The reason it's gruesome is because when the MMU becomes engaged it
1321 * maps logical addresses to physical addresses.  The Program Counter
1322 * register is then passed through the MMU before the next instruction
1323 * is fetched (the instruction following the engage MMU instruction).
1324 * This may mean one of two things:
1325 * 1. The Program Counter falls within the logical address space of
1326 *    the kernel of which there are two sub-possibilities:
1327 *    A. The PC maps to the correct instruction (logical PC == physical
1328 *       code location), or
1329 *    B. The PC does not map through and the processor will read some
1330 *       data (or instruction) which is not the logically next instr.
1331 *    As you can imagine, A is good and B is bad.
1332 * Alternatively,
1333 * 2. The Program Counter does not map through the MMU.  The processor
1334 *    will take a Bus Error.
1335 * Clearly, 2 is bad.
1336 * It doesn't take a wiz kid to figure you want 1.A.
1337 * This code creates that possibility.
1338 * There are two possible 1.A. states (we now ignore the other above states):
1339 * A. The kernel is located at physical memory addressed the same as
1340 *    the logical memory for the kernel, i.e., 0x01000.
1341 * B. The kernel is located some where else.  e.g., 0x0400.0000
1342 *
1343 *    Under some conditions the Macintosh can look like A or B.
1344 * [A friend and I once noted that Apple hardware engineers should be
1345 * wacked twice each day: once when they show up at work (as in, Whack!,
1346 * "This is for the screwy hardware we know you're going to design today."),
1347 * and also at the end of the day (as in, Whack! "I don't know what
1348 * you designed today, but I'm sure it wasn't good."). -- rst]
1349 *
1350 * This code works on the following premise:
1351 * If the kernel start (%d5) is within the first 16 Meg of RAM,
1352 * then create a mapping for the kernel at logical 0x8000.0000 to
1353 * the physical location of the pc.  And, create a transparent
1354 * translation register for the first 16 Meg.  Then, after the MMU
1355 * is engaged, the PC can be moved up into the 0x8000.0000 range
1356 * and then the transparent translation can be turned off and then
1357 * the PC can jump to the correct logical location and it will be
1358 * home (finally).  This is essentially the code that the Amiga used
1359 * to use.  Now, it's generalized for all processors.  Which means
1360 * that a fresh (but temporary) mapping has to be created.  The mapping
1361 * is made in page 0 (an as of yet unused location -- except for the
1362 * stack!).  This temporary mapping will only require 1 pointer table
1363 * and a single page table (it can map 256K).
1364 *
1365 * OK, alternatively, imagine that the Program Counter is not within
1366 * the first 16 Meg.  Then, just use Transparent Translation registers
1367 * to do the right thing.
1368 *
1369 * Last, if _start is already at 0x01000, then there's nothing special
1370 * to do (in other words, in a degenerate case of the first case above,
1371 * do nothing).
1372 *
1373 * Let's do it.
1374 *
1375 *
1376 */
1377
1378	putc	'H'
1379
1380	mmu_engage
1381
1382/*
1383 * After this point no new memory is allocated and
1384 * the start of available memory is stored in availmem.
1385 * (The bootmem allocator requires now the physical address.)
1386 */
1387
1388	movel	L(memory_start),availmem
1389
1390#ifdef CONFIG_AMIGA
1391	is_not_amiga(1f)
1392	/* fixup the Amiga custom register location before printing */
1393	clrl	L(custom)
13941:
1395#endif
1396
1397#ifdef CONFIG_ATARI
1398	is_not_atari(1f)
1399	/* fixup the Atari iobase register location before printing */
1400	movel	#0xff000000,L(iobase)
14011:
1402#endif
1403
1404#ifdef CONFIG_MAC
1405	is_not_mac(1f)
1406	movel	#~VIDEOMEMMASK,%d0
1407	andl	L(mac_videobase),%d0
1408	addl	#VIDEOMEMBASE,%d0
1409	movel	%d0,L(mac_videobase)
1410#ifdef CONSOLE_DEBUG
1411	movel	%pc@(L(phys_kernel_start)),%d0
1412	subl	#PAGE_OFFSET,%d0
1413	subl	%d0,L(console_font)
1414	subl	%d0,L(console_font_data)
1415#endif
1416	orl	#0x50000000,L(mac_sccbase)
14171:
1418#endif
1419
1420#ifdef CONFIG_HP300
1421	is_not_hp300(2f)
1422	/*
1423	 * Fix up the iobase register to point to the new location of the LEDs.
1424	 */
1425	movel	#0xf0000000,L(iobase)
1426
1427	/*
1428	 * Energise the FPU and caches.
1429	 */
1430	is_040(1f)
1431	movel	#0x60,0xf05f400c
1432	jbra	2f
1433
1434	/*
1435	 * 040: slightly different, apparently.
1436	 */
14371:	movew	#0,0xf05f400e
1438	movew	#0x64,0xf05f400e
14392:
1440#endif
1441
1442#ifdef CONFIG_SUN3X
1443	is_not_sun3x(1f)
1444
1445	/* enable copro */
1446	oriw	#0x4000,0x61000000
14471:
1448#endif
1449
1450#ifdef CONFIG_APOLLO
1451	is_not_apollo(1f)
1452
1453	/*
1454	 * Fix up the iobase before printing
1455	 */
1456	movel	#0x80000000,L(iobase)
14571:
1458#endif
1459
1460	putc	'I'
1461	leds	0x10
1462
1463/*
1464 * Enable caches
1465 */
1466
1467	is_not_040_or_060(L(cache_not_680460))
1468
1469L(cache680460):
1470	.chip	68040
1471	nop
1472	cpusha	%bc
1473	nop
1474
1475	is_060(L(cache68060))
1476
1477	movel	#CC6_ENABLE_D+CC6_ENABLE_I,%d0
1478	/* MMU stuff works in copyback mode now, so enable the cache */
1479	movec	%d0,%cacr
1480	jra	L(cache_done)
1481
1482L(cache68060):
1483	movel	#CC6_ENABLE_D+CC6_ENABLE_I+CC6_ENABLE_SB+CC6_PUSH_DPI+CC6_ENABLE_B+CC6_CLRA_B,%d0
1484	/* MMU stuff works in copyback mode now, so enable the cache */
1485	movec	%d0,%cacr
1486	/* enable superscalar dispatch in PCR */
1487	moveq	#1,%d0
1488	.chip	68060
1489	movec	%d0,%pcr
1490
1491	jbra	L(cache_done)
1492L(cache_not_680460):
1493L(cache68030):
1494	.chip	68030
1495	movel	#CC3_ENABLE_DB+CC3_CLR_D+CC3_ENABLE_D+CC3_ENABLE_IB+CC3_CLR_I+CC3_ENABLE_I,%d0
1496	movec	%d0,%cacr
1497
1498	jra	L(cache_done)
1499	.chip	68k
1500L(cache_done):
1501
1502	putc	'J'
1503
1504/*
1505 * Setup initial stack pointer
1506 */
1507	lea	init_task,%curptr
1508	lea	init_thread_union+THREAD_SIZE,%sp
1509
1510	putc	'K'
1511
1512	subl	%a6,%a6		/* clear a6 for gdb */
1513
1514/*
1515 * The new 64bit printf support requires an early exception initialization.
1516 */
1517	jbsr	base_trap_init
1518
1519/* jump to the kernel start */
1520
1521	putc	'\n'
1522	leds	0x55
1523
1524	jbsr	start_kernel
1525
1526/*
1527 * Find a tag record in the bootinfo structure
1528 * The bootinfo structure is located right after the kernel
1529 * Returns: d0: size (-1 if not found)
1530 *          a0: data pointer (end-of-records if not found)
1531 */
1532func_start	get_bi_record,%d1
1533
1534	movel	ARG1,%d0
1535	lea	%pc@(_end),%a0
15361:	tstw	%a0@(BIR_TAG)
1537	jeq	3f
1538	cmpw	%a0@(BIR_TAG),%d0
1539	jeq	2f
1540	addw	%a0@(BIR_SIZE),%a0
1541	jra	1b
15422:	moveq	#0,%d0
1543	movew	%a0@(BIR_SIZE),%d0
1544	lea	%a0@(BIR_DATA),%a0
1545	jra	4f
15463:	moveq	#-1,%d0
1547	lea	%a0@(BIR_SIZE),%a0
15484:
1549func_return	get_bi_record
1550
1551
1552/*
1553 *	MMU Initialization Begins Here
1554 *
1555 *	The structure of the MMU tables on the 68k machines
1556 *	is thus:
1557 *	Root Table
1558 *		Logical addresses are translated through
1559 *	a hierarchical translation mechanism where the high-order
1560 *	seven bits of the logical address (LA) are used as an
1561 *	index into the "root table."  Each entry in the root
1562 *	table has a bit which specifies if it's a valid pointer to a
1563 *	pointer table.  Each entry defines a 32Meg range of memory.
1564 *	If an entry is invalid then that logical range of 32M is
1565 *	invalid and references to that range of memory (when the MMU
1566 *	is enabled) will fault.  If the entry is valid, then it does
1567 *	one of two things.  On 040/060 class machines, it points to
1568 *	a pointer table which then describes more finely the memory
1569 *	within that 32M range.  On 020/030 class machines, a technique
1570 *	called "early terminating descriptors" are used.  This technique
1571 *	allows an entire 32Meg to be described by a single entry in the
1572 *	root table.  Thus, this entry in the root table, contains the
1573 *	physical address of the memory or I/O at the logical address
1574 *	which the entry represents and it also contains the necessary
1575 *	cache bits for this region.
1576 *
1577 *	Pointer Tables
1578 *		Per the Root Table, there will be one or more
1579 *	pointer tables.  Each pointer table defines a 32M range.
1580 *	Not all of the 32M range need be defined.  Again, the next
1581 *	seven bits of the logical address are used an index into
1582 *	the pointer table to point to page tables (if the pointer
1583 *	is valid).  There will undoubtedly be more than one
1584 *	pointer table for the kernel because each pointer table
1585 *	defines a range of only 32M.  Valid pointer table entries
1586 *	point to page tables, or are early terminating entries
1587 *	themselves.
1588 *
1589 *	Page Tables
1590 *		Per the Pointer Tables, each page table entry points
1591 *	to the physical page in memory that supports the logical
1592 *	address that translates to the particular index.
1593 *
1594 *	In short, the Logical Address gets translated as follows:
1595 *		bits 31..26 - index into the Root Table
1596 *		bits 25..18 - index into the Pointer Table
1597 *		bits 17..12 - index into the Page Table
1598 *		bits 11..0  - offset into a particular 4K page
1599 *
1600 *	The algorithms which follow do one thing: they abstract
1601 *	the MMU hardware.  For example, there are three kinds of
1602 *	cache settings that are relevant.  Either, memory is
1603 *	being mapped in which case it is either Kernel Code (or
1604 *	the RamDisk) or it is MMU data.  On the 030, the MMU data
1605 *	option also describes the kernel.  Or, I/O is being mapped
1606 *	in which case it has its own kind of cache bits.  There
1607 *	are constants which abstract these notions from the code that
1608 *	actually makes the call to map some range of memory.
1609 *
1610 *
1611 *
1612 */
1613
1614#ifdef MMU_PRINT
1615/*
1616 *	mmu_print
1617 *
1618 *	This algorithm will print out the current MMU mappings.
1619 *
1620 *	Input:
1621 *		%a5 points to the root table.  Everything else is calculated
1622 *			from this.
1623 */
1624
1625#define mmu_next_valid		0
1626#define mmu_start_logical	4
1627#define mmu_next_logical	8
1628#define mmu_start_physical	12
1629#define mmu_next_physical	16
1630
1631#define MMU_PRINT_INVALID		-1
1632#define MMU_PRINT_VALID			1
1633#define MMU_PRINT_UNINITED		0
1634
1635#define putZc(z,n)		jbne 1f; putc z; jbra 2f; 1: putc n; 2:
1636
1637func_start	mmu_print,%a0-%a6/%d0-%d7
1638
1639	movel	%pc@(L(kernel_pgdir_ptr)),%a5
1640	lea	%pc@(L(mmu_print_data)),%a0
1641	movel	#MMU_PRINT_UNINITED,%a0@(mmu_next_valid)
1642
1643	is_not_040_or_060(mmu_030_print)
1644
1645mmu_040_print:
1646	puts	"\nMMU040\n"
1647	puts	"rp:"
1648	putn	%a5
1649	putc	'\n'
1650#if 0
1651	/*
1652	 * The following #if/#endif block is a tight algorithm for dumping the 040
1653	 * MMU Map in gory detail.  It really isn't that practical unless the
1654	 * MMU Map algorithm appears to go awry and you need to debug it at the
1655	 * entry per entry level.
1656	 */
1657	movel	#ROOT_TABLE_SIZE,%d5
1658#if 0
1659	movel	%a5@+,%d7		| Burn an entry to skip the kernel mappings,
1660	subql	#1,%d5			| they (might) work
1661#endif
16621:	tstl	%d5
1663	jbeq	mmu_print_done
1664	subq	#1,%d5
1665	movel	%a5@+,%d7
1666	btst	#1,%d7
1667	jbeq	1b
1668
16692:	putn	%d7
1670	andil	#0xFFFFFE00,%d7
1671	movel	%d7,%a4
1672	movel	#PTR_TABLE_SIZE,%d4
1673	putc	' '
16743:	tstl	%d4
1675	jbeq	11f
1676	subq	#1,%d4
1677	movel	%a4@+,%d7
1678	btst	#1,%d7
1679	jbeq	3b
1680
16814:	putn	%d7
1682	andil	#0xFFFFFF00,%d7
1683	movel	%d7,%a3
1684	movel	#PAGE_TABLE_SIZE,%d3
16855:	movel	#8,%d2
16866:	tstl	%d3
1687	jbeq	31f
1688	subq	#1,%d3
1689	movel	%a3@+,%d6
1690	btst	#0,%d6
1691	jbeq	6b
16927:	tstl	%d2
1693	jbeq	8f
1694	subq	#1,%d2
1695	putc	' '
1696	jbra	91f
16978:	putc	'\n'
1698	movel	#8+1+8+1+1,%d2
16999:	putc	' '
1700	dbra	%d2,9b
1701	movel	#7,%d2
170291:	putn	%d6
1703	jbra	6b
1704
170531:	putc	'\n'
1706	movel	#8+1,%d2
170732:	putc	' '
1708	dbra	%d2,32b
1709	jbra	3b
1710
171111:	putc	'\n'
1712	jbra	1b
1713#endif /* MMU 040 Dumping code that's gory and detailed */
1714
1715	lea	%pc@(kernel_pg_dir),%a5
1716	movel	%a5,%a0			/* a0 has the address of the root table ptr */
1717	movel	#0x00000000,%a4		/* logical address */
1718	moveql	#0,%d0
171940:
1720	/* Increment the logical address and preserve in d5 */
1721	movel	%a4,%d5
1722	addil	#PAGESIZE<<13,%d5
1723	movel	%a0@+,%d6
1724	btst	#1,%d6
1725	jbne	41f
1726	jbsr	mmu_print_tuple_invalidate
1727	jbra	48f
172841:
1729	movel	#0,%d1
1730	andil	#0xfffffe00,%d6
1731	movel	%d6,%a1
173242:
1733	movel	%a4,%d5
1734	addil	#PAGESIZE<<6,%d5
1735	movel	%a1@+,%d6
1736	btst	#1,%d6
1737	jbne	43f
1738	jbsr	mmu_print_tuple_invalidate
1739	jbra	47f
174043:
1741	movel	#0,%d2
1742	andil	#0xffffff00,%d6
1743	movel	%d6,%a2
174444:
1745	movel	%a4,%d5
1746	addil	#PAGESIZE,%d5
1747	movel	%a2@+,%d6
1748	btst	#0,%d6
1749	jbne	45f
1750	jbsr	mmu_print_tuple_invalidate
1751	jbra	46f
175245:
1753	moveml	%d0-%d1,%sp@-
1754	movel	%a4,%d0
1755	movel	%d6,%d1
1756	andil	#0xfffff4e0,%d1
1757	lea	%pc@(mmu_040_print_flags),%a6
1758	jbsr	mmu_print_tuple
1759	moveml	%sp@+,%d0-%d1
176046:
1761	movel	%d5,%a4
1762	addq	#1,%d2
1763	cmpib	#64,%d2
1764	jbne	44b
176547:
1766	movel	%d5,%a4
1767	addq	#1,%d1
1768	cmpib	#128,%d1
1769	jbne	42b
177048:
1771	movel	%d5,%a4			/* move to the next logical address */
1772	addq	#1,%d0
1773	cmpib	#128,%d0
1774	jbne	40b
1775
1776	.chip	68040
1777	movec	%dtt1,%d0
1778	movel	%d0,%d1
1779	andiw	#0x8000,%d1		/* is it valid ? */
1780	jbeq	1f			/* No, bail out */
1781
1782	movel	%d0,%d1
1783	andil	#0xff000000,%d1		/* Get the address */
1784	putn	%d1
1785	puts	"=="
1786	putn	%d1
1787
1788	movel	%d0,%d6
1789	jbsr	mmu_040_print_flags_tt
17901:
1791	movec	%dtt0,%d0
1792	movel	%d0,%d1
1793	andiw	#0x8000,%d1		/* is it valid ? */
1794	jbeq	1f			/* No, bail out */
1795
1796	movel	%d0,%d1
1797	andil	#0xff000000,%d1		/* Get the address */
1798	putn	%d1
1799	puts	"=="
1800	putn	%d1
1801
1802	movel	%d0,%d6
1803	jbsr	mmu_040_print_flags_tt
18041:
1805	.chip	68k
1806
1807	jbra	mmu_print_done
1808
1809mmu_040_print_flags:
1810	btstl	#10,%d6
1811	putZc(' ','G')	/* global bit */
1812	btstl	#7,%d6
1813	putZc(' ','S')	/* supervisor bit */
1814mmu_040_print_flags_tt:
1815	btstl	#6,%d6
1816	jbne	3f
1817	putc	'C'
1818	btstl	#5,%d6
1819	putZc('w','c')	/* write through or copy-back */
1820	jbra	4f
18213:
1822	putc	'N'
1823	btstl	#5,%d6
1824	putZc('s',' ')	/* serialized non-cacheable, or non-cacheable */
18254:
1826	rts
1827
1828mmu_030_print_flags:
1829	btstl	#6,%d6
1830	putZc('C','I')	/* write through or copy-back */
1831	rts
1832
1833mmu_030_print:
1834	puts	"\nMMU030\n"
1835	puts	"\nrp:"
1836	putn	%a5
1837	putc	'\n'
1838	movel	%a5,%d0
1839	andil	#0xfffffff0,%d0
1840	movel	%d0,%a0
1841	movel	#0x00000000,%a4		/* logical address */
1842	movel	#0,%d0
184330:
1844	movel	%a4,%d5
1845	addil	#PAGESIZE<<13,%d5
1846	movel	%a0@+,%d6
1847	btst	#1,%d6			/* is it a table ptr? */
1848	jbne	31f			/* yes */
1849	btst	#0,%d6			/* is it early terminating? */
1850	jbeq	1f			/* no */
1851	jbsr	mmu_030_print_helper
1852	jbra	38f
18531:
1854	jbsr	mmu_print_tuple_invalidate
1855	jbra	38f
185631:
1857	movel	#0,%d1
1858	andil	#0xfffffff0,%d6
1859	movel	%d6,%a1
186032:
1861	movel	%a4,%d5
1862	addil	#PAGESIZE<<6,%d5
1863	movel	%a1@+,%d6
1864	btst	#1,%d6			/* is it a table ptr? */
1865	jbne	33f			/* yes */
1866	btst	#0,%d6			/* is it a page descriptor? */
1867	jbeq	1f			/* no */
1868	jbsr	mmu_030_print_helper
1869	jbra	37f
18701:
1871	jbsr	mmu_print_tuple_invalidate
1872	jbra	37f
187333:
1874	movel	#0,%d2
1875	andil	#0xfffffff0,%d6
1876	movel	%d6,%a2
187734:
1878	movel	%a4,%d5
1879	addil	#PAGESIZE,%d5
1880	movel	%a2@+,%d6
1881	btst	#0,%d6
1882	jbne	35f
1883	jbsr	mmu_print_tuple_invalidate
1884	jbra	36f
188535:
1886	jbsr	mmu_030_print_helper
188736:
1888	movel	%d5,%a4
1889	addq	#1,%d2
1890	cmpib	#64,%d2
1891	jbne	34b
189237:
1893	movel	%d5,%a4
1894	addq	#1,%d1
1895	cmpib	#128,%d1
1896	jbne	32b
189738:
1898	movel	%d5,%a4			/* move to the next logical address */
1899	addq	#1,%d0
1900	cmpib	#128,%d0
1901	jbne	30b
1902
1903mmu_print_done:
1904	puts	"\n"
1905
1906func_return	mmu_print
1907
1908
1909mmu_030_print_helper:
1910	moveml	%d0-%d1,%sp@-
1911	movel	%a4,%d0
1912	movel	%d6,%d1
1913	lea	%pc@(mmu_030_print_flags),%a6
1914	jbsr	mmu_print_tuple
1915	moveml	%sp@+,%d0-%d1
1916	rts
1917
1918mmu_print_tuple_invalidate:
1919	moveml	%a0/%d7,%sp@-
1920
1921	lea	%pc@(L(mmu_print_data)),%a0
1922	tstl	%a0@(mmu_next_valid)
1923	jbmi	mmu_print_tuple_invalidate_exit
1924
1925	movel	#MMU_PRINT_INVALID,%a0@(mmu_next_valid)
1926
1927	putn	%a4
1928
1929	puts	"##\n"
1930
1931mmu_print_tuple_invalidate_exit:
1932	moveml	%sp@+,%a0/%d7
1933	rts
1934
1935
1936mmu_print_tuple:
1937	moveml	%d0-%d7/%a0,%sp@-
1938
1939	lea	%pc@(L(mmu_print_data)),%a0
1940
1941	tstl	%a0@(mmu_next_valid)
1942	jble	mmu_print_tuple_print
1943
1944	cmpl	%a0@(mmu_next_physical),%d1
1945	jbeq	mmu_print_tuple_increment
1946
1947mmu_print_tuple_print:
1948	putn	%d0
1949	puts	"->"
1950	putn	%d1
1951
1952	movel	%d1,%d6
1953	jbsr	%a6@
1954
1955mmu_print_tuple_record:
1956	movel	#MMU_PRINT_VALID,%a0@(mmu_next_valid)
1957
1958	movel	%d1,%a0@(mmu_next_physical)
1959
1960mmu_print_tuple_increment:
1961	movel	%d5,%d7
1962	subl	%a4,%d7
1963	addl	%d7,%a0@(mmu_next_physical)
1964
1965mmu_print_tuple_exit:
1966	moveml	%sp@+,%d0-%d7/%a0
1967	rts
1968
1969mmu_print_machine_cpu_types:
1970	puts	"machine: "
1971
1972	is_not_amiga(1f)
1973	puts	"amiga"
1974	jbra	9f
19751:
1976	is_not_atari(2f)
1977	puts	"atari"
1978	jbra	9f
19792:
1980	is_not_mac(3f)
1981	puts	"macintosh"
1982	jbra	9f
19833:	puts	"unknown"
19849:	putc	'\n'
1985
1986	puts	"cputype: 0"
1987	is_not_060(1f)
1988	putc	'6'
1989	jbra	9f
19901:
1991	is_not_040_or_060(2f)
1992	putc	'4'
1993	jbra	9f
19942:	putc	'3'
19959:	putc	'0'
1996	putc	'\n'
1997
1998	rts
1999#endif /* MMU_PRINT */
2000
2001/*
2002 * mmu_map_tt
2003 *
2004 * This is a specific function which works on all 680x0 machines.
2005 * On 030, 040 & 060 it will attempt to use Transparent Translation
2006 * registers (tt1).
2007 * On 020 it will call the standard mmu_map which will use early
2008 * terminating descriptors.
2009 */
2010func_start	mmu_map_tt,%d0/%d1/%a0,4
2011
2012	dputs	"mmu_map_tt:"
2013	dputn	ARG1
2014	dputn	ARG2
2015	dputn	ARG3
2016	dputn	ARG4
2017	dputc	'\n'
2018
2019	is_020(L(do_map))
2020
2021	/* Extract the highest bit set
2022	 */
2023	bfffo	ARG3{#0,#32},%d1
2024	cmpw	#8,%d1
2025	jcc	L(do_map)
2026
2027	/* And get the mask
2028	 */
2029	moveq	#-1,%d0
2030	lsrl	%d1,%d0
2031	lsrl	#1,%d0
2032
2033	/* Mask the address
2034	 */
2035	movel	%d0,%d1
2036	notl	%d1
2037	andl	ARG2,%d1
2038
2039	/* Generate the upper 16bit of the tt register
2040	 */
2041	lsrl	#8,%d0
2042	orl	%d0,%d1
2043	clrw	%d1
2044
2045	is_040_or_060(L(mmu_map_tt_040))
2046
2047	/* set 030 specific bits (read/write access for supervisor mode
2048	 * (highest function code set, lower two bits masked))
2049	 */
2050	orw	#TTR_ENABLE+TTR_RWM+TTR_FCB2+TTR_FCM1+TTR_FCM0,%d1
2051	movel	ARG4,%d0
2052	btst	#6,%d0
2053	jeq	1f
2054	orw	#TTR_CI,%d1
2055
20561:	lea	STACK,%a0
2057	dputn	%d1
2058	movel	%d1,%a0@
2059	.chip	68030
2060	tstl	ARG1
2061	jne	1f
2062	pmove	%a0@,%tt0
2063	jra	2f
20641:	pmove	%a0@,%tt1
20652:	.chip	68k
2066	jra	L(mmu_map_tt_done)
2067
2068	/* set 040 specific bits
2069	 */
2070L(mmu_map_tt_040):
2071	orw	#TTR_ENABLE+TTR_KERNELMODE,%d1
2072	orl	ARG4,%d1
2073	dputn	%d1
2074
2075	.chip	68040
2076	tstl	ARG1
2077	jne	1f
2078	movec	%d1,%itt0
2079	movec	%d1,%dtt0
2080	jra	2f
20811:	movec	%d1,%itt1
2082	movec	%d1,%dtt1
20832:	.chip	68k
2084
2085	jra	L(mmu_map_tt_done)
2086
2087L(do_map):
2088	mmu_map_eq	ARG2,ARG3,ARG4
2089
2090L(mmu_map_tt_done):
2091
2092func_return	mmu_map_tt
2093
2094/*
2095 *	mmu_map
2096 *
2097 *	This routine will map a range of memory using a pointer
2098 *	table and allocate the pages on the fly from the kernel.
2099 *	The pointer table does not have to be already linked into
2100 *	the root table, this routine will do that if necessary.
2101 *
2102 *	NOTE
2103 *	This routine will assert failure and use the serial_putc
2104 *	routines in the case of a run-time error.  For example,
2105 *	if the address is already mapped.
2106 *
2107 *	NOTE-2
2108 *	This routine will use early terminating descriptors
2109 *	where possible for the 68020+68851 and 68030 type
2110 *	processors.
2111 */
2112func_start	mmu_map,%d0-%d4/%a0-%a4
2113
2114	dputs	"\nmmu_map:"
2115	dputn	ARG1
2116	dputn	ARG2
2117	dputn	ARG3
2118	dputn	ARG4
2119	dputc	'\n'
2120
2121	/* Get logical address and round it down to 256KB
2122	 */
2123	movel	ARG1,%d0
2124	andl	#-(PAGESIZE*PAGE_TABLE_SIZE),%d0
2125	movel	%d0,%a3
2126
2127	/* Get the end address
2128	 */
2129	movel	ARG1,%a4
2130	addl	ARG3,%a4
2131	subql	#1,%a4
2132
2133	/* Get physical address and round it down to 256KB
2134	 */
2135	movel	ARG2,%d0
2136	andl	#-(PAGESIZE*PAGE_TABLE_SIZE),%d0
2137	movel	%d0,%a2
2138
2139	/* Add page attributes to the physical address
2140	 */
2141	movel	ARG4,%d0
2142	orw	#_PAGE_PRESENT+_PAGE_ACCESSED+_PAGE_DIRTY,%d0
2143	addw	%d0,%a2
2144
2145	dputn	%a2
2146	dputn	%a3
2147	dputn	%a4
2148
2149	is_not_040_or_060(L(mmu_map_030))
2150
2151	addw	#_PAGE_GLOBAL040,%a2
2152/*
2153 *	MMU 040 & 060 Support
2154 *
2155 *	The MMU usage for the 040 and 060 is different enough from
2156 *	the 030 and 68851 that there is separate code.  This comment
2157 *	block describes the data structures and algorithms built by
2158 *	this code.
2159 *
2160 *	The 040 does not support early terminating descriptors, as
2161 *	the 030 does.  Therefore, a third level of table is needed
2162 *	for the 040, and that would be the page table.  In Linux,
2163 *	page tables are allocated directly from the memory above the
2164 *	kernel.
2165 *
2166 */
2167
2168L(mmu_map_040):
2169	/* Calculate the offset into the root table
2170	 */
2171	movel	%a3,%d0
2172	moveq	#ROOT_INDEX_SHIFT,%d1
2173	lsrl	%d1,%d0
2174	mmu_get_root_table_entry	%d0
2175
2176	/* Calculate the offset into the pointer table
2177	 */
2178	movel	%a3,%d0
2179	moveq	#PTR_INDEX_SHIFT,%d1
2180	lsrl	%d1,%d0
2181	andl	#PTR_TABLE_SIZE-1,%d0
2182	mmu_get_ptr_table_entry		%a0,%d0
2183
2184	/* Calculate the offset into the page table
2185	 */
2186	movel	%a3,%d0
2187	moveq	#PAGE_INDEX_SHIFT,%d1
2188	lsrl	%d1,%d0
2189	andl	#PAGE_TABLE_SIZE-1,%d0
2190	mmu_get_page_table_entry	%a0,%d0
2191
2192	/* The page table entry must not no be busy
2193	 */
2194	tstl	%a0@
2195	jne	L(mmu_map_error)
2196
2197	/* Do the mapping and advance the pointers
2198	 */
2199	movel	%a2,%a0@
22002:
2201	addw	#PAGESIZE,%a2
2202	addw	#PAGESIZE,%a3
2203
2204	/* Ready with mapping?
2205	 */
2206	lea	%a3@(-1),%a0
2207	cmpl	%a0,%a4
2208	jhi	L(mmu_map_040)
2209	jra	L(mmu_map_done)
2210
2211L(mmu_map_030):
2212	/* Calculate the offset into the root table
2213	 */
2214	movel	%a3,%d0
2215	moveq	#ROOT_INDEX_SHIFT,%d1
2216	lsrl	%d1,%d0
2217	mmu_get_root_table_entry	%d0
2218
2219	/* Check if logical address 32MB aligned,
2220	 * so we can try to map it once
2221	 */
2222	movel	%a3,%d0
2223	andl	#(PTR_TABLE_SIZE*PAGE_TABLE_SIZE*PAGESIZE-1)&(-ROOT_TABLE_SIZE),%d0
2224	jne	1f
2225
2226	/* Is there enough to map for 32MB at once
2227	 */
2228	lea	%a3@(PTR_TABLE_SIZE*PAGE_TABLE_SIZE*PAGESIZE-1),%a1
2229	cmpl	%a1,%a4
2230	jcs	1f
2231
2232	addql	#1,%a1
2233
2234	/* The root table entry must not no be busy
2235	 */
2236	tstl	%a0@
2237	jne	L(mmu_map_error)
2238
2239	/* Do the mapping and advance the pointers
2240	 */
2241	dputs	"early term1"
2242	dputn	%a2
2243	dputn	%a3
2244	dputn	%a1
2245	dputc	'\n'
2246	movel	%a2,%a0@
2247
2248	movel	%a1,%a3
2249	lea	%a2@(PTR_TABLE_SIZE*PAGE_TABLE_SIZE*PAGESIZE),%a2
2250	jra	L(mmu_mapnext_030)
22511:
2252	/* Calculate the offset into the pointer table
2253	 */
2254	movel	%a3,%d0
2255	moveq	#PTR_INDEX_SHIFT,%d1
2256	lsrl	%d1,%d0
2257	andl	#PTR_TABLE_SIZE-1,%d0
2258	mmu_get_ptr_table_entry		%a0,%d0
2259
2260	/* The pointer table entry must not no be busy
2261	 */
2262	tstl	%a0@
2263	jne	L(mmu_map_error)
2264
2265	/* Do the mapping and advance the pointers
2266	 */
2267	dputs	"early term2"
2268	dputn	%a2
2269	dputn	%a3
2270	dputc	'\n'
2271	movel	%a2,%a0@
2272
2273	addl	#PAGE_TABLE_SIZE*PAGESIZE,%a2
2274	addl	#PAGE_TABLE_SIZE*PAGESIZE,%a3
2275
2276L(mmu_mapnext_030):
2277	/* Ready with mapping?
2278	 */
2279	lea	%a3@(-1),%a0
2280	cmpl	%a0,%a4
2281	jhi	L(mmu_map_030)
2282	jra	L(mmu_map_done)
2283
2284L(mmu_map_error):
2285
2286	dputs	"mmu_map error:"
2287	dputn	%a2
2288	dputn	%a3
2289	dputc	'\n'
2290
2291L(mmu_map_done):
2292
2293func_return	mmu_map
2294
2295/*
2296 *	mmu_fixup
2297 *
2298 *	On the 040 class machines, all pages that are used for the
2299 *	mmu have to be fixed up.
2300 */
2301
2302func_start	mmu_fixup_page_mmu_cache,%d0/%a0
2303
2304	dputs	"mmu_fixup_page_mmu_cache"
2305	dputn	ARG1
2306
2307	/* Calculate the offset into the root table
2308	 */
2309	movel	ARG1,%d0
2310	moveq	#ROOT_INDEX_SHIFT,%d1
2311	lsrl	%d1,%d0
2312	mmu_get_root_table_entry	%d0
2313
2314	/* Calculate the offset into the pointer table
2315	 */
2316	movel	ARG1,%d0
2317	moveq	#PTR_INDEX_SHIFT,%d1
2318	lsrl	%d1,%d0
2319	andl	#PTR_TABLE_SIZE-1,%d0
2320	mmu_get_ptr_table_entry		%a0,%d0
2321
2322	/* Calculate the offset into the page table
2323	 */
2324	movel	ARG1,%d0
2325	moveq	#PAGE_INDEX_SHIFT,%d1
2326	lsrl	%d1,%d0
2327	andl	#PAGE_TABLE_SIZE-1,%d0
2328	mmu_get_page_table_entry	%a0,%d0
2329
2330	movel	%a0@,%d0
2331	andil	#_CACHEMASK040,%d0
2332	orl	%pc@(m68k_pgtable_cachemode),%d0
2333	movel	%d0,%a0@
2334
2335	dputc	'\n'
2336
2337func_return	mmu_fixup_page_mmu_cache
2338
2339/*
2340 *	mmu_temp_map
2341 *
2342 *	create a temporary mapping to enable the mmu,
2343 *	this we don't need any transparation translation tricks.
2344 */
2345
2346func_start	mmu_temp_map,%d0/%d1/%a0/%a1
2347
2348	dputs	"mmu_temp_map"
2349	dputn	ARG1
2350	dputn	ARG2
2351	dputc	'\n'
2352
2353	lea	%pc@(L(temp_mmap_mem)),%a1
2354
2355	/* Calculate the offset in the root table
2356	 */
2357	movel	ARG2,%d0
2358	moveq	#ROOT_INDEX_SHIFT,%d1
2359	lsrl	%d1,%d0
2360	mmu_get_root_table_entry	%d0
2361
2362	/* Check if the table is temporary allocated, so we have to reuse it
2363	 */
2364	movel	%a0@,%d0
2365	cmpl	%pc@(L(memory_start)),%d0
2366	jcc	1f
2367
2368	/* Temporary allocate a ptr table and insert it into the root table
2369	 */
2370	movel	%a1@,%d0
2371	addl	#PTR_TABLE_SIZE*4,%a1@
2372	orw	#_PAGE_TABLE+_PAGE_ACCESSED,%d0
2373	movel	%d0,%a0@
2374	dputs	" (new)"
23751:
2376	dputn	%d0
2377	/* Mask the root table entry for the ptr table
2378	 */
2379	andw	#-ROOT_TABLE_SIZE,%d0
2380	movel	%d0,%a0
2381
2382	/* Calculate the offset into the pointer table
2383	 */
2384	movel	ARG2,%d0
2385	moveq	#PTR_INDEX_SHIFT,%d1
2386	lsrl	%d1,%d0
2387	andl	#PTR_TABLE_SIZE-1,%d0
2388	lea	%a0@(%d0*4),%a0
2389	dputn	%a0
2390
2391	/* Check if a temporary page table is already allocated
2392	 */
2393	movel	%a0@,%d0
2394	jne	1f
2395
2396	/* Temporary allocate a page table and insert it into the ptr table
2397	 */
2398	movel	%a1@,%d0
2399	/* The 512 should be PAGE_TABLE_SIZE*4, but that violates the
2400	   alignment restriction for pointer tables on the '0[46]0.  */
2401	addl	#512,%a1@
2402	orw	#_PAGE_TABLE+_PAGE_ACCESSED,%d0
2403	movel	%d0,%a0@
2404	dputs	" (new)"
24051:
2406	dputn	%d0
2407	/* Mask the ptr table entry for the page table
2408	 */
2409	andw	#-PTR_TABLE_SIZE,%d0
2410	movel	%d0,%a0
2411
2412	/* Calculate the offset into the page table
2413	 */
2414	movel	ARG2,%d0
2415	moveq	#PAGE_INDEX_SHIFT,%d1
2416	lsrl	%d1,%d0
2417	andl	#PAGE_TABLE_SIZE-1,%d0
2418	lea	%a0@(%d0*4),%a0
2419	dputn	%a0
2420
2421	/* Insert the address into the page table
2422	 */
2423	movel	ARG1,%d0
2424	andw	#-PAGESIZE,%d0
2425	orw	#_PAGE_PRESENT+_PAGE_ACCESSED+_PAGE_DIRTY,%d0
2426	movel	%d0,%a0@
2427	dputn	%d0
2428
2429	dputc	'\n'
2430
2431func_return	mmu_temp_map
2432
2433func_start	mmu_engage,%d0-%d2/%a0-%a3
2434
2435	moveq	#ROOT_TABLE_SIZE-1,%d0
2436	/* Temporarily use a different root table.  */
2437	lea	%pc@(L(kernel_pgdir_ptr)),%a0
2438	movel	%a0@,%a2
2439	movel	%pc@(L(memory_start)),%a1
2440	movel	%a1,%a0@
2441	movel	%a2,%a0
24421:
2443	movel	%a0@+,%a1@+
2444	dbra	%d0,1b
2445
2446	lea	%pc@(L(temp_mmap_mem)),%a0
2447	movel	%a1,%a0@
2448
2449	movew	#PAGESIZE-1,%d0
24501:
2451	clrl	%a1@+
2452	dbra	%d0,1b
2453
2454	lea	%pc@(1b),%a0
2455	movel	#1b,%a1
2456	/* Skip temp mappings if phys == virt */
2457	cmpl	%a0,%a1
2458	jeq	1f
2459
2460	mmu_temp_map	%a0,%a0
2461	mmu_temp_map	%a0,%a1
2462
2463	addw	#PAGESIZE,%a0
2464	addw	#PAGESIZE,%a1
2465	mmu_temp_map	%a0,%a0
2466	mmu_temp_map	%a0,%a1
24671:
2468	movel	%pc@(L(memory_start)),%a3
2469	movel	%pc@(L(phys_kernel_start)),%d2
2470
2471	is_not_040_or_060(L(mmu_engage_030))
2472
2473L(mmu_engage_040):
2474	.chip	68040
2475	nop
2476	cinva	%bc
2477	nop
2478	pflusha
2479	nop
2480	movec	%a3,%srp
2481	movel	#TC_ENABLE+TC_PAGE4K,%d0
2482	movec	%d0,%tc		/* enable the MMU */
2483	jmp	1f:l
24841:	nop
2485	movec	%a2,%srp
2486	nop
2487	cinva	%bc
2488	nop
2489	pflusha
2490	.chip	68k
2491	jra	L(mmu_engage_cleanup)
2492
2493L(mmu_engage_030_temp):
2494	.space	12
2495L(mmu_engage_030):
2496	.chip	68030
2497	lea	%pc@(L(mmu_engage_030_temp)),%a0
2498	movel	#0x80000002,%a0@
2499	movel	%a3,%a0@(4)
2500	movel	#0x0808,%d0
2501	movec	%d0,%cacr
2502	pmove	%a0@,%srp
2503	pflusha
2504	/*
2505	 * enable,super root enable,4096 byte pages,7 bit root index,
2506	 * 7 bit pointer index, 6 bit page table index.
2507	 */
2508	movel	#0x82c07760,%a0@(8)
2509	pmove	%a0@(8),%tc	/* enable the MMU */
2510	jmp	1f:l
25111:	movel	%a2,%a0@(4)
2512	movel	#0x0808,%d0
2513	movec	%d0,%cacr
2514	pmove	%a0@,%srp
2515	pflusha
2516	.chip	68k
2517
2518L(mmu_engage_cleanup):
2519	subl	#PAGE_OFFSET,%d2
2520	subl	%d2,%a2
2521	movel	%a2,L(kernel_pgdir_ptr)
2522	subl	%d2,%fp
2523	subl	%d2,%sp
2524	subl	%d2,ARG0
2525
2526func_return	mmu_engage
2527
2528func_start	mmu_get_root_table_entry,%d0/%a1
2529
2530#if 0
2531	dputs	"mmu_get_root_table_entry:"
2532	dputn	ARG1
2533	dputs	" ="
2534#endif
2535
2536	movel	%pc@(L(kernel_pgdir_ptr)),%a0
2537	tstl	%a0
2538	jne	2f
2539
2540	dputs	"\nmmu_init:"
2541
2542	/* Find the start of free memory, get_bi_record does this for us,
2543	 * as the bootinfo structure is located directly behind the kernel
2544	 * we simply search for the last entry.
2545	 */
2546	get_bi_record	BI_LAST
2547	addw	#PAGESIZE-1,%a0
2548	movel	%a0,%d0
2549	andw	#-PAGESIZE,%d0
2550
2551	dputn	%d0
2552
2553	lea	%pc@(L(memory_start)),%a0
2554	movel	%d0,%a0@
2555	lea	%pc@(L(kernel_end)),%a0
2556	movel	%d0,%a0@
2557
2558	/* we have to return the first page at _stext since the init code
2559	 * in mm/init.c simply expects kernel_pg_dir there, the rest of
2560	 * page is used for further ptr tables in get_ptr_table.
2561	 */
2562	lea	%pc@(_stext),%a0
2563	lea	%pc@(L(mmu_cached_pointer_tables)),%a1
2564	movel	%a0,%a1@
2565	addl	#ROOT_TABLE_SIZE*4,%a1@
2566
2567	lea	%pc@(L(mmu_num_pointer_tables)),%a1
2568	addql	#1,%a1@
2569
2570	/* clear the page
2571	 */
2572	movel	%a0,%a1
2573	movew	#PAGESIZE/4-1,%d0
25741:
2575	clrl	%a1@+
2576	dbra	%d0,1b
2577
2578	lea	%pc@(L(kernel_pgdir_ptr)),%a1
2579	movel	%a0,%a1@
2580
2581	dputn	%a0
2582	dputc	'\n'
25832:
2584	movel	ARG1,%d0
2585	lea	%a0@(%d0*4),%a0
2586
2587#if 0
2588	dputn	%a0
2589	dputc	'\n'
2590#endif
2591
2592func_return	mmu_get_root_table_entry
2593
2594
2595
2596func_start	mmu_get_ptr_table_entry,%d0/%a1
2597
2598#if 0
2599	dputs	"mmu_get_ptr_table_entry:"
2600	dputn	ARG1
2601	dputn	ARG2
2602	dputs	" ="
2603#endif
2604
2605	movel	ARG1,%a0
2606	movel	%a0@,%d0
2607	jne	2f
2608
2609	/* Keep track of the number of pointer tables we use
2610	 */
2611	dputs	"\nmmu_get_new_ptr_table:"
2612	lea	%pc@(L(mmu_num_pointer_tables)),%a0
2613	movel	%a0@,%d0
2614	addql	#1,%a0@
2615
2616	/* See if there is a free pointer table in our cache of pointer tables
2617	 */
2618	lea	%pc@(L(mmu_cached_pointer_tables)),%a1
2619	andw	#7,%d0
2620	jne	1f
2621
2622	/* Get a new pointer table page from above the kernel memory
2623	 */
2624	get_new_page
2625	movel	%a0,%a1@
26261:
2627	/* There is an unused pointer table in our cache... use it
2628	 */
2629	movel	%a1@,%d0
2630	addl	#PTR_TABLE_SIZE*4,%a1@
2631
2632	dputn	%d0
2633	dputc	'\n'
2634
2635	/* Insert the new pointer table into the root table
2636	 */
2637	movel	ARG1,%a0
2638	orw	#_PAGE_TABLE+_PAGE_ACCESSED,%d0
2639	movel	%d0,%a0@
26402:
2641	/* Extract the pointer table entry
2642	 */
2643	andw	#-PTR_TABLE_SIZE,%d0
2644	movel	%d0,%a0
2645	movel	ARG2,%d0
2646	lea	%a0@(%d0*4),%a0
2647
2648#if 0
2649	dputn	%a0
2650	dputc	'\n'
2651#endif
2652
2653func_return	mmu_get_ptr_table_entry
2654
2655
2656func_start	mmu_get_page_table_entry,%d0/%a1
2657
2658#if 0
2659	dputs	"mmu_get_page_table_entry:"
2660	dputn	ARG1
2661	dputn	ARG2
2662	dputs	" ="
2663#endif
2664
2665	movel	ARG1,%a0
2666	movel	%a0@,%d0
2667	jne	2f
2668
2669	/* If the page table entry doesn't exist, we allocate a complete new
2670	 * page and use it as one continuous big page table which can cover
2671	 * 4MB of memory, nearly almost all mappings have that alignment.
2672	 */
2673	get_new_page
2674	addw	#_PAGE_TABLE+_PAGE_ACCESSED,%a0
2675
2676	/* align pointer table entry for a page of page tables
2677	 */
2678	movel	ARG1,%d0
2679	andw	#-(PAGESIZE/PAGE_TABLE_SIZE),%d0
2680	movel	%d0,%a1
2681
2682	/* Insert the page tables into the pointer entries
2683	 */
2684	moveq	#PAGESIZE/PAGE_TABLE_SIZE/4-1,%d0
26851:
2686	movel	%a0,%a1@+
2687	lea	%a0@(PAGE_TABLE_SIZE*4),%a0
2688	dbra	%d0,1b
2689
2690	/* Now we can get the initialized pointer table entry
2691	 */
2692	movel	ARG1,%a0
2693	movel	%a0@,%d0
26942:
2695	/* Extract the page table entry
2696	 */
2697	andw	#-PAGE_TABLE_SIZE,%d0
2698	movel	%d0,%a0
2699	movel	ARG2,%d0
2700	lea	%a0@(%d0*4),%a0
2701
2702#if 0
2703	dputn	%a0
2704	dputc	'\n'
2705#endif
2706
2707func_return	mmu_get_page_table_entry
2708
2709/*
2710 *	get_new_page
2711 *
2712 *	Return a new page from the memory start and clear it.
2713 */
2714func_start	get_new_page,%d0/%a1
2715
2716	dputs	"\nget_new_page:"
2717
2718	/* allocate the page and adjust memory_start
2719	 */
2720	lea	%pc@(L(memory_start)),%a0
2721	movel	%a0@,%a1
2722	addl	#PAGESIZE,%a0@
2723
2724	/* clear the new page
2725	 */
2726	movel	%a1,%a0
2727	movew	#PAGESIZE/4-1,%d0
27281:
2729	clrl	%a1@+
2730	dbra	%d0,1b
2731
2732	dputn	%a0
2733	dputc	'\n'
2734
2735func_return	get_new_page
2736
2737
2738
2739/*
2740 * Debug output support
2741 * Atarians have a choice between the parallel port, the serial port
2742 * from the MFP or a serial port of the SCC
2743 */
2744
2745#ifdef CONFIG_MAC
2746/* You may define either or both of these. */
2747#define MAC_USE_SCC_A /* Modem port */
2748#define MAC_USE_SCC_B /* Printer port */
2749
2750#if defined(MAC_USE_SCC_A) || defined(MAC_USE_SCC_B)
2751/* Initialisation table for SCC with 3.6864 MHz PCLK */
2752L(scc_initable_mac):
2753	.byte	4,0x44		/* x16, 1 stopbit, no parity */
2754	.byte	3,0xc0		/* receiver: 8 bpc */
2755	.byte	5,0xe2		/* transmitter: 8 bpc, assert dtr/rts */
2756	.byte	10,0		/* NRZ */
2757	.byte	11,0x50		/* use baud rate generator */
2758	.byte	12,1,13,0	/* 38400 baud */
2759	.byte	14,1		/* Baud rate generator enable */
2760	.byte	3,0xc1		/* enable receiver */
2761	.byte	5,0xea		/* enable transmitter */
2762	.byte	-1
2763	.even
2764#endif
2765#endif /* CONFIG_MAC */
2766
2767#ifdef CONFIG_ATARI
2768/* #define USE_PRINTER */
2769/* #define USE_SCC_B */
2770/* #define USE_SCC_A */
2771#define USE_MFP
2772
2773#if defined(USE_SCC_A) || defined(USE_SCC_B)
2774/* Initialisation table for SCC with 7.9872 MHz PCLK */
2775/* PCLK == 8.0539 gives baud == 9680.1 */
2776L(scc_initable_atari):
2777	.byte	4,0x44		/* x16, 1 stopbit, no parity */
2778	.byte	3,0xc0		/* receiver: 8 bpc */
2779	.byte	5,0xe2		/* transmitter: 8 bpc, assert dtr/rts */
2780	.byte	10,0		/* NRZ */
2781	.byte	11,0x50		/* use baud rate generator */
2782	.byte	12,24,13,0	/* 9600 baud */
2783	.byte	14,2,14,3	/* use master clock for BRG, enable */
2784	.byte	3,0xc1		/* enable receiver */
2785	.byte	5,0xea		/* enable transmitter */
2786	.byte	-1
2787	.even
2788#endif
2789
2790#ifdef USE_PRINTER
2791
2792LPSG_SELECT	= 0xff8800
2793LPSG_READ	= 0xff8800
2794LPSG_WRITE	= 0xff8802
2795LPSG_IO_A	= 14
2796LPSG_IO_B	= 15
2797LPSG_CONTROL	= 7
2798LSTMFP_GPIP	= 0xfffa01
2799LSTMFP_DDR	= 0xfffa05
2800LSTMFP_IERB	= 0xfffa09
2801
2802#elif defined(USE_SCC_B)
2803
2804LSCC_CTRL	= 0xff8c85
2805LSCC_DATA	= 0xff8c87
2806
2807#elif defined(USE_SCC_A)
2808
2809LSCC_CTRL	= 0xff8c81
2810LSCC_DATA	= 0xff8c83
2811
2812#elif defined(USE_MFP)
2813
2814LMFP_UCR     = 0xfffa29
2815LMFP_TDCDR   = 0xfffa1d
2816LMFP_TDDR    = 0xfffa25
2817LMFP_TSR     = 0xfffa2d
2818LMFP_UDR     = 0xfffa2f
2819
2820#endif
2821#endif	/* CONFIG_ATARI */
2822
2823/*
2824 * Serial port output support.
2825 */
2826
2827/*
2828 * Initialize serial port hardware
2829 */
2830func_start	serial_init,%d0/%d1/%a0/%a1
2831	/*
2832	 *	Some of the register usage that follows
2833	 *	CONFIG_AMIGA
2834	 *		a0 = pointer to boot info record
2835	 *		d0 = boot info offset
2836	 *	CONFIG_ATARI
2837	 *		a0 = address of SCC
2838	 *		a1 = Liobase address/address of scc_initable_atari
2839	 *		d0 = init data for serial port
2840	 *	CONFIG_MAC
2841	 *		a0 = address of SCC
2842	 *		a1 = address of scc_initable_mac
2843	 *		d0 = init data for serial port
2844	 */
2845
2846#ifdef CONFIG_AMIGA
2847#define SERIAL_DTR	7
2848#define SERIAL_CNTRL	CIABBASE+C_PRA
2849
2850	is_not_amiga(1f)
2851	lea	%pc@(L(custom)),%a0
2852	movel	#-ZTWOBASE,%a0@
2853	bclr	#SERIAL_DTR,SERIAL_CNTRL-ZTWOBASE
2854	get_bi_record	BI_AMIGA_SERPER
2855	movew	%a0@,CUSTOMBASE+C_SERPER-ZTWOBASE
2856|	movew	#61,CUSTOMBASE+C_SERPER-ZTWOBASE
28571:
2858#endif
2859
2860#ifdef CONFIG_ATARI
2861	is_not_atari(4f)
2862	movel	%pc@(L(iobase)),%a1
2863#if defined(USE_PRINTER)
2864	bclr	#0,%a1@(LSTMFP_IERB)
2865	bclr	#0,%a1@(LSTMFP_DDR)
2866	moveb	#LPSG_CONTROL,%a1@(LPSG_SELECT)
2867	moveb	#0xff,%a1@(LPSG_WRITE)
2868	moveb	#LPSG_IO_B,%a1@(LPSG_SELECT)
2869	clrb	%a1@(LPSG_WRITE)
2870	moveb	#LPSG_IO_A,%a1@(LPSG_SELECT)
2871	moveb	%a1@(LPSG_READ),%d0
2872	bset	#5,%d0
2873	moveb	%d0,%a1@(LPSG_WRITE)
2874#elif defined(USE_SCC_A) || defined(USE_SCC_B)
2875	lea	%a1@(LSCC_CTRL),%a0
2876	/* Reset SCC register pointer */
2877	moveb	%a0@,%d0
2878	/* Reset SCC device: write register pointer then register value */
2879	moveb	#9,%a0@
2880	moveb	#0xc0,%a0@
2881	/* Wait for 5 PCLK cycles, which is about 63 CPU cycles */
2882	/* 5 / 7.9872 MHz = approx. 0.63 us = 63 / 100 MHz */
2883	movel	#32,%d0
28842:
2885	subq	#1,%d0
2886	jne	2b
2887	/* Initialize channel */
2888	lea	%pc@(L(scc_initable_atari)),%a1
28892:	moveb	%a1@+,%d0
2890	jmi	3f
2891	moveb	%d0,%a0@
2892	moveb	%a1@+,%a0@
2893	jra	2b
28943:	clrb	%a0@
2895#elif defined(USE_MFP)
2896	bclr	#1,%a1@(LMFP_TSR)
2897	moveb   #0x88,%a1@(LMFP_UCR)
2898	andb	#0x70,%a1@(LMFP_TDCDR)
2899	moveb   #2,%a1@(LMFP_TDDR)
2900	orb	#1,%a1@(LMFP_TDCDR)
2901	bset	#1,%a1@(LMFP_TSR)
2902#endif
2903	jra	L(serial_init_done)
29044:
2905#endif
2906
2907#ifdef CONFIG_MAC
2908	is_not_mac(L(serial_init_not_mac))
2909#if defined(MAC_USE_SCC_A) || defined(MAC_USE_SCC_B)
2910#define mac_scc_cha_b_ctrl_offset	0x0
2911#define mac_scc_cha_a_ctrl_offset	0x2
2912#define mac_scc_cha_b_data_offset	0x4
2913#define mac_scc_cha_a_data_offset	0x6
2914	movel	%pc@(L(mac_sccbase)),%a0
2915	/* Reset SCC register pointer */
2916	moveb	%a0@(mac_scc_cha_a_ctrl_offset),%d0
2917	/* Reset SCC device: write register pointer then register value */
2918	moveb	#9,%a0@(mac_scc_cha_a_ctrl_offset)
2919	moveb	#0xc0,%a0@(mac_scc_cha_a_ctrl_offset)
2920	/* Wait for 5 PCLK cycles, which is about 68 CPU cycles */
2921	/* 5 / 3.6864 MHz = approx. 1.36 us = 68 / 50 MHz */
2922	movel	#35,%d0
29235:
2924	subq	#1,%d0
2925	jne	5b
2926#endif
2927#ifdef MAC_USE_SCC_A
2928	/* Initialize channel A */
2929	lea	%pc@(L(scc_initable_mac)),%a1
29305:	moveb	%a1@+,%d0
2931	jmi	6f
2932	moveb	%d0,%a0@(mac_scc_cha_a_ctrl_offset)
2933	moveb	%a1@+,%a0@(mac_scc_cha_a_ctrl_offset)
2934	jra	5b
29356:
2936#endif	/* MAC_USE_SCC_A */
2937#ifdef MAC_USE_SCC_B
2938	/* Initialize channel B */
2939	lea	%pc@(L(scc_initable_mac)),%a1
29407:	moveb	%a1@+,%d0
2941	jmi	8f
2942	moveb	%d0,%a0@(mac_scc_cha_b_ctrl_offset)
2943	moveb	%a1@+,%a0@(mac_scc_cha_b_ctrl_offset)
2944	jra	7b
29458:
2946#endif	/* MAC_USE_SCC_B */
2947	jra	L(serial_init_done)
2948L(serial_init_not_mac):
2949#endif	/* CONFIG_MAC */
2950
2951#ifdef CONFIG_Q40
2952	is_not_q40(2f)
2953/* debug output goes into SRAM, so we don't do it unless requested
2954   - check for '%LX$' signature in SRAM   */
2955	lea	%pc@(q40_mem_cptr),%a1
2956	move.l	#0xff020010,%a1@  /* must be inited - also used by debug=mem */
2957	move.l	#0xff020000,%a1
2958	cmp.b	#'%',%a1@
2959	bne	2f	/*nodbg*/
2960	addq.w	#4,%a1
2961	cmp.b	#'L',%a1@
2962	bne	2f	/*nodbg*/
2963	addq.w	#4,%a1
2964	cmp.b	#'X',%a1@
2965	bne	2f	/*nodbg*/
2966	addq.w	#4,%a1
2967	cmp.b	#'$',%a1@
2968	bne	2f	/*nodbg*/
2969	/* signature OK */
2970	lea	%pc@(L(q40_do_debug)),%a1
2971	tas	%a1@
2972/*nodbg: q40_do_debug is 0 by default*/
29732:
2974#endif
2975
2976#ifdef CONFIG_MVME16x
2977	is_not_mvme16x(L(serial_init_not_mvme16x))
2978	moveb	#0x10,M167_PCSCCMICR
2979	moveb	#0x10,M167_PCSCCTICR
2980	moveb	#0x10,M167_PCSCCRICR
2981	jra	L(serial_init_done)
2982L(serial_init_not_mvme16x):
2983#endif
2984
2985#ifdef CONFIG_APOLLO
2986/* We count on the PROM initializing SIO1 */
2987#endif
2988
2989#ifdef CONFIG_HP300
2990/* We count on the boot loader initialising the UART */
2991#endif
2992
2993L(serial_init_done):
2994func_return	serial_init
2995
2996/*
2997 * Output character on serial port.
2998 */
2999func_start	serial_putc,%d0/%d1/%a0/%a1
3000
3001	movel	ARG1,%d0
3002	cmpib	#'\n',%d0
3003	jbne	1f
3004
3005	/* A little safe recursion is good for the soul */
3006	serial_putc	#'\r'
30071:
3008
3009#ifdef CONFIG_AMIGA
3010	is_not_amiga(2f)
3011	andw	#0x00ff,%d0
3012	oriw	#0x0100,%d0
3013	movel	%pc@(L(custom)),%a0
3014	movew	%d0,%a0@(CUSTOMBASE+C_SERDAT)
30151:	movew	%a0@(CUSTOMBASE+C_SERDATR),%d0
3016	andw	#0x2000,%d0
3017	jeq	1b
3018	jra	L(serial_putc_done)
30192:
3020#endif
3021
3022#ifdef CONFIG_MAC
3023	is_not_mac(5f)
3024#if defined(MAC_USE_SCC_A) || defined(MAC_USE_SCC_B)
3025	movel	%pc@(L(mac_sccbase)),%a1
3026#endif
3027#ifdef MAC_USE_SCC_A
30283:	btst	#2,%a1@(mac_scc_cha_a_ctrl_offset)
3029	jeq	3b
3030	moveb	%d0,%a1@(mac_scc_cha_a_data_offset)
3031#endif	/* MAC_USE_SCC_A */
3032#ifdef MAC_USE_SCC_B
30334:	btst	#2,%a1@(mac_scc_cha_b_ctrl_offset)
3034	jeq	4b
3035	moveb	%d0,%a1@(mac_scc_cha_b_data_offset)
3036#endif	/* MAC_USE_SCC_B */
3037	jra	L(serial_putc_done)
30385:
3039#endif	/* CONFIG_MAC */
3040
3041#ifdef CONFIG_ATARI
3042	is_not_atari(4f)
3043	movel	%pc@(L(iobase)),%a1
3044#if defined(USE_PRINTER)
30453:	btst	#0,%a1@(LSTMFP_GPIP)
3046	jne	3b
3047	moveb	#LPSG_IO_B,%a1@(LPSG_SELECT)
3048	moveb	%d0,%a1@(LPSG_WRITE)
3049	moveb	#LPSG_IO_A,%a1@(LPSG_SELECT)
3050	moveb	%a1@(LPSG_READ),%d0
3051	bclr	#5,%d0
3052	moveb	%d0,%a1@(LPSG_WRITE)
3053	nop
3054	nop
3055	bset	#5,%d0
3056	moveb	%d0,%a1@(LPSG_WRITE)
3057#elif defined(USE_SCC_A) || defined(USE_SCC_B)
30583:	btst	#2,%a1@(LSCC_CTRL)
3059	jeq	3b
3060	moveb	%d0,%a1@(LSCC_DATA)
3061#elif defined(USE_MFP)
30623:	btst	#7,%a1@(LMFP_TSR)
3063	jeq	3b
3064	moveb	%d0,%a1@(LMFP_UDR)
3065#endif
3066	jra	L(serial_putc_done)
30674:
3068#endif	/* CONFIG_ATARI */
3069
3070#ifdef CONFIG_MVME147
3071	is_not_mvme147(2f)
30721:	btst	#2,M147_SCC_CTRL_A
3073	jeq	1b
3074	moveb	%d0,M147_SCC_DATA_A
3075	jbra	L(serial_putc_done)
30762:
3077#endif
3078
3079#ifdef CONFIG_MVME16x
3080	is_not_mvme16x(2f)
3081	/*
3082	 * If the loader gave us a board type then we can use that to
3083	 * select an appropriate output routine; otherwise we just use
3084	 * the Bug code.  If we have to use the Bug that means the Bug
3085	 * workspace has to be valid, which means the Bug has to use
3086	 * the SRAM, which is non-standard.
3087	 */
3088	moveml	%d0-%d7/%a2-%a6,%sp@-
3089	movel	vme_brdtype,%d1
3090	jeq	1f			| No tag - use the Bug
3091	cmpi	#VME_TYPE_MVME162,%d1
3092	jeq	6f
3093	cmpi	#VME_TYPE_MVME172,%d1
3094	jne	5f
3095	/* 162/172; it's an SCC */
30966:	btst	#2,M162_SCC_CTRL_A
3097	nop
3098	nop
3099	nop
3100	jeq	6b
3101	moveb	#8,M162_SCC_CTRL_A
3102	nop
3103	nop
3104	nop
3105	moveb	%d0,M162_SCC_CTRL_A
3106	jra	3f
31075:
3108	/* 166/167/177; it's a CD2401 */
3109	moveb	#0,M167_CYCAR
3110	moveb	M167_CYIER,%d2
3111	moveb	#0x02,M167_CYIER
31127:
3113	btst	#5,M167_PCSCCTICR
3114	jeq	7b
3115	moveb	M167_PCTPIACKR,%d1
3116	moveb	M167_CYLICR,%d1
3117	jeq	8f
3118	moveb	#0x08,M167_CYTEOIR
3119	jra	7b
31208:
3121	moveb	%d0,M167_CYTDR
3122	moveb	#0,M167_CYTEOIR
3123	moveb	%d2,M167_CYIER
3124	jra	3f
31251:
3126	moveb	%d0,%sp@-
3127	trap	#15
3128	.word	0x0020	/* TRAP 0x020 */
31293:
3130	moveml	%sp@+,%d0-%d7/%a2-%a6
3131	jbra	L(serial_putc_done)
31322:
3133#endif /* CONFIG_MVME16x */
3134
3135#ifdef CONFIG_BVME6000
3136	is_not_bvme6000(2f)
3137	/*
3138	 * The BVME6000 machine has a serial port ...
3139	 */
31401:	btst	#2,BVME_SCC_CTRL_A
3141	jeq	1b
3142	moveb	%d0,BVME_SCC_DATA_A
3143	jbra	L(serial_putc_done)
31442:
3145#endif
3146
3147#ifdef CONFIG_SUN3X
3148	is_not_sun3x(2f)
3149	movel	%d0,-(%sp)
3150	movel	0xFEFE0018,%a1
3151	jbsr	(%a1)
3152	addq	#4,%sp
3153	jbra	L(serial_putc_done)
31542:
3155#endif
3156
3157#ifdef CONFIG_Q40
3158	is_not_q40(2f)
3159	tst.l	%pc@(L(q40_do_debug))	/* only debug if requested */
3160	beq	2f
3161	lea	%pc@(q40_mem_cptr),%a1
3162	move.l	%a1@,%a0
3163	move.b	%d0,%a0@
3164	addq.l	#4,%a0
3165	move.l	%a0,%a1@
3166	jbra    L(serial_putc_done)
31672:
3168#endif
3169
3170#ifdef CONFIG_APOLLO
3171	is_not_apollo(2f)
3172	movl    %pc@(L(iobase)),%a1
3173	moveb	%d0,%a1@(LTHRB0)
31741:      moveb   %a1@(LSRB0),%d0
3175	andb	#0x4,%d0
3176	beq	1b
3177	jbra	L(serial_putc_done)
31782:
3179#endif
3180
3181#ifdef CONFIG_HP300
3182	is_not_hp300(3f)
3183	movl    %pc@(L(iobase)),%a1
3184	addl	%pc@(L(uartbase)),%a1
3185	movel	%pc@(L(uart_scode)),%d1	/* Check the scode */
3186	jmi	3f			/* Unset? Exit */
3187	cmpi	#256,%d1		/* APCI scode? */
3188	jeq	2f
31891:      moveb   %a1@(DCALSR),%d1	/* Output to DCA */
3190	andb	#0x20,%d1
3191	beq	1b
3192	moveb	%d0,%a1@(DCADATA)
3193	jbra	L(serial_putc_done)
31942:	moveb	%a1@(APCILSR),%d1	/* Output to APCI */
3195	andb	#0x20,%d1
3196	beq	2b
3197	moveb	%d0,%a1@(APCIDATA)
3198	jbra	L(serial_putc_done)
31993:
3200#endif
3201
3202#ifdef CONFIG_VIRT
3203	is_not_virt(1f)
3204
3205	movel L(virt_gf_tty_base),%a1
3206	movel %d0,%a1@(GF_PUT_CHAR)
32071:
3208#endif
3209
3210L(serial_putc_done):
3211func_return	serial_putc
3212
3213/*
3214 * Output a string.
3215 */
3216func_start	puts,%d0/%a0
3217
3218	movel	ARG1,%a0
3219	jra	2f
32201:
3221#ifdef CONSOLE_DEBUG
3222	console_putc	%d0
3223#endif
3224#ifdef SERIAL_DEBUG
3225	serial_putc	%d0
3226#endif
32272:	moveb	%a0@+,%d0
3228	jne	1b
3229
3230func_return	puts
3231
3232/*
3233 * Output number in hex notation.
3234 */
3235
3236func_start	putn,%d0-%d2
3237
3238	putc	' '
3239
3240	movel	ARG1,%d0
3241	moveq	#7,%d1
32421:	roll	#4,%d0
3243	move	%d0,%d2
3244	andb	#0x0f,%d2
3245	addb	#'0',%d2
3246	cmpb	#'9',%d2
3247	jls	2f
3248	addb	#'A'-('9'+1),%d2
32492:
3250#ifdef CONSOLE_DEBUG
3251	console_putc	%d2
3252#endif
3253#ifdef SERIAL_DEBUG
3254	serial_putc	%d2
3255#endif
3256	dbra	%d1,1b
3257
3258func_return	putn
3259
3260#ifdef CONFIG_EARLY_PRINTK
3261/*
3262 *	This routine takes its parameters on the stack.  It then
3263 *	turns around and calls the internal routines.  This routine
3264 *	is used by the boot console.
3265 *
3266 *	The calling parameters are:
3267 *		void debug_cons_nputs(const char *str, unsigned length)
3268 *
3269 *	This routine does NOT understand variable arguments only
3270 *	simple strings!
3271 */
3272ENTRY(debug_cons_nputs)
3273	moveml	%d0/%d1/%a0,%sp@-
3274	movew	%sr,%sp@-
3275	ori	#0x0700,%sr
3276	movel	%sp@(18),%a0		/* fetch parameter */
3277	movel	%sp@(22),%d1		/* fetch parameter */
3278	jra	2f
32791:
3280#ifdef CONSOLE_DEBUG
3281	console_putc	%d0
3282#endif
3283#ifdef SERIAL_DEBUG
3284	serial_putc	%d0
3285#endif
3286	subq	#1,%d1
32872:	jeq	3f
3288	moveb	%a0@+,%d0
3289	jne	1b
32903:
3291	movew	%sp@+,%sr
3292	moveml	%sp@+,%d0/%d1/%a0
3293	rts
3294#endif /* CONFIG_EARLY_PRINTK */
3295
3296#if defined(CONFIG_HP300) || defined(CONFIG_APOLLO)
3297func_start	set_leds,%d0/%a0
3298	movel	ARG1,%d0
3299#ifdef CONFIG_HP300
3300	is_not_hp300(1f)
3301	movel	%pc@(L(iobase)),%a0
3302	moveb	%d0,%a0@(0x1ffff)
3303	jra	2f
3304#endif
33051:
3306#ifdef CONFIG_APOLLO
3307	movel   %pc@(L(iobase)),%a0
3308	lsll    #8,%d0
3309	eorw    #0xff00,%d0
3310	moveb	%d0,%a0@(LCPUCTRL)
3311#endif
33122:
3313func_return	set_leds
3314#endif
3315
3316#ifdef CONSOLE_DEBUG
3317/*
3318 *	For continuity, see the data alignment
3319 *	to which this structure is tied.
3320 */
3321#define Lconsole_struct_cur_column	0
3322#define Lconsole_struct_cur_row		4
3323#define Lconsole_struct_num_columns	8
3324#define Lconsole_struct_num_rows	12
3325#define Lconsole_struct_left_edge	16
3326
3327func_start	console_init,%a0-%a4/%d0-%d7
3328	/*
3329	 *	Some of the register usage that follows
3330	 *		a0 = pointer to boot_info
3331	 *		a1 = pointer to screen
3332	 *		a2 = pointer to console_globals
3333	 *		d3 = pixel width of screen
3334	 *		d4 = pixel height of screen
3335	 *		(d3,d4) ~= (x,y) of a point just below
3336	 *			and to the right of the screen
3337	 *			NOT on the screen!
3338	 *		d5 = number of bytes per scan line
3339	 *		d6 = number of bytes on the entire screen
3340	 */
3341
3342	lea	%pc@(L(console_globals)),%a2
3343	movel	%pc@(L(mac_videobase)),%a1
3344	movel	%pc@(L(mac_rowbytes)),%d5
3345	movel	%pc@(L(mac_dimensions)),%d3	/* -> low byte */
3346	movel	%d3,%d4
3347	swap	%d4		/* -> high byte */
3348	andl	#0xffff,%d3	/* d3 = screen width in pixels */
3349	andl	#0xffff,%d4	/* d4 = screen height in pixels */
3350
3351	movel	%d5,%d6
3352|	subl	#20,%d6
3353	mulul	%d4,%d6		/* scan line bytes x num scan lines */
3354	divul	#8,%d6		/* we'll clear 8 bytes at a time */
3355	moveq	#-1,%d0		/* Mac_black */
3356	subq	#1,%d6
3357
3358L(console_clear_loop):
3359	movel	%d0,%a1@+
3360	movel	%d0,%a1@+
3361	dbra	%d6,L(console_clear_loop)
3362
3363	/* Calculate font size */
3364
3365#if   defined(FONT_8x8) && defined(CONFIG_FONT_8x8)
3366	lea	%pc@(font_vga_8x8),%a0
3367#elif defined(FONT_8x16) && defined(CONFIG_FONT_8x16)
3368	lea	%pc@(font_vga_8x16),%a0
3369#elif defined(FONT_6x11) && defined(CONFIG_FONT_6x11)
3370	lea	%pc@(font_vga_6x11),%a0
3371#elif defined(CONFIG_FONT_8x8) /* default */
3372	lea	%pc@(font_vga_8x8),%a0
3373#else /* no compiled-in font */
3374	lea	0,%a0
3375#endif
3376
3377	/*
3378	 *	At this point we make a shift in register usage
3379	 *	a1 = address of console_font pointer
3380	 */
3381	lea	%pc@(L(console_font)),%a1
3382	movel	%a0,%a1@	/* store pointer to struct fbcon_font_desc in console_font */
3383	tstl	%a0
3384	jeq	1f
3385	lea	%pc@(L(console_font_data)),%a4
3386	movel	%a0@(FONT_DESC_DATA),%d0
3387	subl	#L(console_font),%a1
3388	addl	%a1,%d0
3389	movel	%d0,%a4@
3390
3391	/*
3392	 *	Calculate global maxs
3393	 *	Note - we can use either an
3394	 *	8 x 16 or 8 x 8 character font
3395	 *	6 x 11 also supported
3396	 */
3397		/* ASSERT: a0 = contents of Lconsole_font */
3398	movel	%d3,%d0				/* screen width in pixels */
3399	divul	%a0@(FONT_DESC_WIDTH),%d0	/* d0 = max num chars per row */
3400
3401	movel	%d4,%d1				/* screen height in pixels */
3402	divul	%a0@(FONT_DESC_HEIGHT),%d1	/* d1 = max num rows */
3403
3404	movel	%d0,%a2@(Lconsole_struct_num_columns)
3405	movel	%d1,%a2@(Lconsole_struct_num_rows)
3406
3407	/*
3408	 *	Clear the current row and column
3409	 */
3410	clrl	%a2@(Lconsole_struct_cur_column)
3411	clrl	%a2@(Lconsole_struct_cur_row)
3412	clrl	%a2@(Lconsole_struct_left_edge)
3413
3414	/*
3415	 * Initialization is complete
3416	 */
34171:
3418func_return	console_init
3419
3420#ifdef CONFIG_LOGO
3421func_start	console_put_penguin,%a0-%a1/%d0-%d7
3422	/*
3423	 *	Get 'that_penguin' onto the screen in the upper right corner
3424	 *	penguin is 64 x 74 pixels, align against right edge of screen
3425	 */
3426	lea	%pc@(L(mac_dimensions)),%a0
3427	movel	%a0@,%d0
3428	andil	#0xffff,%d0
3429	subil	#64,%d0		/* snug up against the right edge */
3430	clrl	%d1		/* start at the top */
3431	movel	#73,%d7
3432	lea	%pc@(L(that_penguin)),%a1
3433L(console_penguin_row):
3434	movel	#31,%d6
3435L(console_penguin_pixel_pair):
3436	moveb	%a1@,%d2
3437	lsrb	#4,%d2
3438	console_plot_pixel %d0,%d1,%d2
3439	addq	#1,%d0
3440	moveb	%a1@+,%d2
3441	console_plot_pixel %d0,%d1,%d2
3442	addq	#1,%d0
3443	dbra	%d6,L(console_penguin_pixel_pair)
3444
3445	subil	#64,%d0
3446	addq	#1,%d1
3447	dbra	%d7,L(console_penguin_row)
3448
3449func_return	console_put_penguin
3450
3451/* include penguin bitmap */
3452L(that_penguin):
3453#include "../mac/mac_penguin.S"
3454#endif
3455
3456	/*
3457	 * Calculate source and destination addresses
3458	 *	output	a1 = dest
3459	 *		a2 = source
3460	 */
3461
3462func_start	console_scroll,%a0-%a4/%d0-%d7
3463	lea	%pc@(L(mac_videobase)),%a0
3464	movel	%a0@,%a1
3465	movel	%a1,%a2
3466	lea	%pc@(L(mac_rowbytes)),%a0
3467	movel	%a0@,%d5
3468	movel	%pc@(L(console_font)),%a0
3469	tstl	%a0
3470	jeq	1f
3471	mulul	%a0@(FONT_DESC_HEIGHT),%d5	/* account for # scan lines per character */
3472	addal	%d5,%a2
3473
3474	/*
3475	 * Get dimensions
3476	 */
3477	lea	%pc@(L(mac_dimensions)),%a0
3478	movel	%a0@,%d3
3479	movel	%d3,%d4
3480	swap	%d4
3481	andl	#0xffff,%d3	/* d3 = screen width in pixels */
3482	andl	#0xffff,%d4	/* d4 = screen height in pixels */
3483
3484	/*
3485	 * Calculate number of bytes to move
3486	 */
3487	lea	%pc@(L(mac_rowbytes)),%a0
3488	movel	%a0@,%d6
3489	movel	%pc@(L(console_font)),%a0
3490	subl	%a0@(FONT_DESC_HEIGHT),%d4	/* we're not scrolling the top row! */
3491	mulul	%d4,%d6		/* scan line bytes x num scan lines */
3492	divul	#32,%d6		/* we'll move 8 longs at a time */
3493	subq	#1,%d6
3494
3495L(console_scroll_loop):
3496	movel	%a2@+,%a1@+
3497	movel	%a2@+,%a1@+
3498	movel	%a2@+,%a1@+
3499	movel	%a2@+,%a1@+
3500	movel	%a2@+,%a1@+
3501	movel	%a2@+,%a1@+
3502	movel	%a2@+,%a1@+
3503	movel	%a2@+,%a1@+
3504	dbra	%d6,L(console_scroll_loop)
3505
3506	lea	%pc@(L(mac_rowbytes)),%a0
3507	movel	%a0@,%d6
3508	movel	%pc@(L(console_font)),%a0
3509	mulul	%a0@(FONT_DESC_HEIGHT),%d6	/* scan line bytes x font height */
3510	divul	#32,%d6			/* we'll move 8 words at a time */
3511	subq	#1,%d6
3512
3513	moveq	#-1,%d0
3514L(console_scroll_clear_loop):
3515	movel	%d0,%a1@+
3516	movel	%d0,%a1@+
3517	movel	%d0,%a1@+
3518	movel	%d0,%a1@+
3519	movel	%d0,%a1@+
3520	movel	%d0,%a1@+
3521	movel	%d0,%a1@+
3522	movel	%d0,%a1@+
3523	dbra	%d6,L(console_scroll_clear_loop)
3524
35251:
3526func_return	console_scroll
3527
3528
3529func_start	console_putc,%a0/%a1/%d0-%d7
3530
3531	is_not_mac(L(console_exit))
3532	tstl	%pc@(L(console_font))
3533	jeq	L(console_exit)
3534
3535	/* Output character in d7 on console.
3536	 */
3537	movel	ARG1,%d7
3538	cmpib	#'\n',%d7
3539	jbne	1f
3540
3541	/* A little safe recursion is good for the soul */
3542	console_putc	#'\r'
35431:
3544	lea	%pc@(L(console_globals)),%a0
3545
3546	cmpib	#10,%d7
3547	jne	L(console_not_lf)
3548	movel	%a0@(Lconsole_struct_cur_row),%d0
3549	addil	#1,%d0
3550	movel	%d0,%a0@(Lconsole_struct_cur_row)
3551	movel	%a0@(Lconsole_struct_num_rows),%d1
3552	cmpl	%d1,%d0
3553	jcs	1f
3554	subil	#1,%d0
3555	movel	%d0,%a0@(Lconsole_struct_cur_row)
3556	console_scroll
35571:
3558	jra	L(console_exit)
3559
3560L(console_not_lf):
3561	cmpib	#13,%d7
3562	jne	L(console_not_cr)
3563	clrl	%a0@(Lconsole_struct_cur_column)
3564	jra	L(console_exit)
3565
3566L(console_not_cr):
3567	cmpib	#1,%d7
3568	jne	L(console_not_home)
3569	clrl	%a0@(Lconsole_struct_cur_row)
3570	clrl	%a0@(Lconsole_struct_cur_column)
3571	jra	L(console_exit)
3572
3573/*
3574 *	At this point we know that the %d7 character is going to be
3575 *	rendered on the screen.  Register usage is -
3576 *		a0 = pointer to console globals
3577 *		a1 = font data
3578 *		d0 = cursor column
3579 *		d1 = cursor row to draw the character
3580 *		d7 = character number
3581 */
3582L(console_not_home):
3583	movel	%a0@(Lconsole_struct_cur_column),%d0
3584	addql	#1,%a0@(Lconsole_struct_cur_column)
3585	movel	%a0@(Lconsole_struct_num_columns),%d1
3586	cmpl	%d1,%d0
3587	jcs	1f
3588	console_putc	#'\n'	/* recursion is OK! */
35891:
3590	movel	%a0@(Lconsole_struct_cur_row),%d1
3591
3592	/*
3593	 *	At this point we make a shift in register usage
3594	 *	a0 = address of pointer to font data (fbcon_font_desc)
3595	 */
3596	movel	%pc@(L(console_font)),%a0
3597	movel	%pc@(L(console_font_data)),%a1	/* Load fbcon_font_desc.data into a1 */
3598	andl	#0x000000ff,%d7
3599		/* ASSERT: a0 = contents of Lconsole_font */
3600	mulul	%a0@(FONT_DESC_HEIGHT),%d7	/* d7 = index into font data */
3601	addl	%d7,%a1			/* a1 = points to char image */
3602
3603	/*
3604	 *	At this point we make a shift in register usage
3605	 *	d0 = pixel coordinate, x
3606	 *	d1 = pixel coordinate, y
3607	 *	d2 = (bit 0) 1/0 for white/black (!) pixel on screen
3608	 *	d3 = font scan line data (8 pixels)
3609	 *	d6 = count down for the font's pixel width (8)
3610	 *	d7 = count down for the font's pixel count in height
3611	 */
3612		/* ASSERT: a0 = contents of Lconsole_font */
3613	mulul	%a0@(FONT_DESC_WIDTH),%d0
3614	mulul	%a0@(FONT_DESC_HEIGHT),%d1
3615	movel	%a0@(FONT_DESC_HEIGHT),%d7	/* Load fbcon_font_desc.height into d7 */
3616	subq	#1,%d7
3617L(console_read_char_scanline):
3618	moveb	%a1@+,%d3
3619
3620		/* ASSERT: a0 = contents of Lconsole_font */
3621	movel	%a0@(FONT_DESC_WIDTH),%d6	/* Load fbcon_font_desc.width into d6 */
3622	subql	#1,%d6
3623
3624L(console_do_font_scanline):
3625	lslb	#1,%d3
3626	scsb	%d2		/* convert 1 bit into a byte */
3627	console_plot_pixel %d0,%d1,%d2
3628	addq	#1,%d0
3629	dbra	%d6,L(console_do_font_scanline)
3630
3631		/* ASSERT: a0 = contents of Lconsole_font */
3632	subl	%a0@(FONT_DESC_WIDTH),%d0
3633	addq	#1,%d1
3634	dbra	%d7,L(console_read_char_scanline)
3635
3636L(console_exit):
3637func_return	console_putc
3638
3639	/*
3640	 *	Input:
3641	 *		d0 = x coordinate
3642	 *		d1 = y coordinate
3643	 *		d2 = (bit 0) 1/0 for white/black (!)
3644	 *	All registers are preserved
3645	 */
3646func_start	console_plot_pixel,%a0-%a1/%d0-%d4
3647
3648	movel	%pc@(L(mac_videobase)),%a1
3649	movel	%pc@(L(mac_videodepth)),%d3
3650	movel	ARG1,%d0
3651	movel	ARG2,%d1
3652	mulul	%pc@(L(mac_rowbytes)),%d1
3653	movel	ARG3,%d2
3654
3655	/*
3656	 *	Register usage:
3657	 *		d0 = x coord becomes byte offset into frame buffer
3658	 *		d1 = y coord
3659	 *		d2 = black or white (0/1)
3660	 *		d3 = video depth
3661	 *		d4 = temp of x (d0) for many bit depths
3662	 */
3663L(test_1bit):
3664	cmpb	#1,%d3
3665	jbne	L(test_2bit)
3666	movel	%d0,%d4		/* we need the low order 3 bits! */
3667	divul	#8,%d0
3668	addal	%d0,%a1
3669	addal	%d1,%a1
3670	andb	#7,%d4
3671	eorb	#7,%d4		/* reverse the x-coordinate w/ screen-bit # */
3672	andb	#1,%d2
3673	jbne	L(white_1)
3674	bsetb	%d4,%a1@
3675	jbra	L(console_plot_pixel_exit)
3676L(white_1):
3677	bclrb	%d4,%a1@
3678	jbra	L(console_plot_pixel_exit)
3679
3680L(test_2bit):
3681	cmpb	#2,%d3
3682	jbne	L(test_4bit)
3683	movel	%d0,%d4		/* we need the low order 2 bits! */
3684	divul	#4,%d0
3685	addal	%d0,%a1
3686	addal	%d1,%a1
3687	andb	#3,%d4
3688	eorb	#3,%d4		/* reverse the x-coordinate w/ screen-bit # */
3689	lsll	#1,%d4		/* ! */
3690	andb	#1,%d2
3691	jbne	L(white_2)
3692	bsetb	%d4,%a1@
3693	addq	#1,%d4
3694	bsetb	%d4,%a1@
3695	jbra	L(console_plot_pixel_exit)
3696L(white_2):
3697	bclrb	%d4,%a1@
3698	addq	#1,%d4
3699	bclrb	%d4,%a1@
3700	jbra	L(console_plot_pixel_exit)
3701
3702L(test_4bit):
3703	cmpb	#4,%d3
3704	jbne	L(test_8bit)
3705	movel	%d0,%d4		/* we need the low order bit! */
3706	divul	#2,%d0
3707	addal	%d0,%a1
3708	addal	%d1,%a1
3709	andb	#1,%d4
3710	eorb	#1,%d4
3711	lsll	#2,%d4		/* ! */
3712	andb	#1,%d2
3713	jbne	L(white_4)
3714	bsetb	%d4,%a1@
3715	addq	#1,%d4
3716	bsetb	%d4,%a1@
3717	addq	#1,%d4
3718	bsetb	%d4,%a1@
3719	addq	#1,%d4
3720	bsetb	%d4,%a1@
3721	jbra	L(console_plot_pixel_exit)
3722L(white_4):
3723	bclrb	%d4,%a1@
3724	addq	#1,%d4
3725	bclrb	%d4,%a1@
3726	addq	#1,%d4
3727	bclrb	%d4,%a1@
3728	addq	#1,%d4
3729	bclrb	%d4,%a1@
3730	jbra	L(console_plot_pixel_exit)
3731
3732L(test_8bit):
3733	cmpb	#8,%d3
3734	jbne	L(test_16bit)
3735	addal	%d0,%a1
3736	addal	%d1,%a1
3737	andb	#1,%d2
3738	jbne	L(white_8)
3739	moveb	#0xff,%a1@
3740	jbra	L(console_plot_pixel_exit)
3741L(white_8):
3742	clrb	%a1@
3743	jbra	L(console_plot_pixel_exit)
3744
3745L(test_16bit):
3746	cmpb	#16,%d3
3747	jbne	L(console_plot_pixel_exit)
3748	addal	%d0,%a1
3749	addal	%d0,%a1
3750	addal	%d1,%a1
3751	andb	#1,%d2
3752	jbne	L(white_16)
3753	clrw	%a1@
3754	jbra	L(console_plot_pixel_exit)
3755L(white_16):
3756	movew	#0x0fff,%a1@
3757	jbra	L(console_plot_pixel_exit)
3758
3759L(console_plot_pixel_exit):
3760func_return	console_plot_pixel
3761#endif /* CONSOLE_DEBUG */
3762
3763
3764__INITDATA
3765	.align	4
3766
3767m68k_init_mapped_size:
3768	.long	0
3769
3770#if defined(CONFIG_ATARI) || defined(CONFIG_AMIGA) || \
3771    defined(CONFIG_HP300) || defined(CONFIG_APOLLO)
3772L(custom):
3773L(iobase):
3774	.long 0
3775#endif
3776
3777#ifdef CONSOLE_DEBUG
3778L(console_globals):
3779	.long	0		/* cursor column */
3780	.long	0		/* cursor row */
3781	.long	0		/* max num columns */
3782	.long	0		/* max num rows */
3783	.long	0		/* left edge */
3784L(console_font):
3785	.long	0		/* pointer to console font (struct font_desc) */
3786L(console_font_data):
3787	.long	0		/* pointer to console font data */
3788#endif /* CONSOLE_DEBUG */
3789
3790#if defined(MMU_PRINT)
3791L(mmu_print_data):
3792	.long	0		/* valid flag */
3793	.long	0		/* start logical */
3794	.long	0		/* next logical */
3795	.long	0		/* start physical */
3796	.long	0		/* next physical */
3797#endif /* MMU_PRINT */
3798
3799L(cputype):
3800	.long	0
3801L(mmu_cached_pointer_tables):
3802	.long	0
3803L(mmu_num_pointer_tables):
3804	.long	0
3805L(phys_kernel_start):
3806	.long	0
3807L(kernel_end):
3808	.long	0
3809L(memory_start):
3810	.long	0
3811L(kernel_pgdir_ptr):
3812	.long	0
3813L(temp_mmap_mem):
3814	.long	0
3815
3816#if defined (CONFIG_MVME147)
3817M147_SCC_CTRL_A = 0xfffe3002
3818M147_SCC_DATA_A = 0xfffe3003
3819#endif
3820
3821#if defined (CONFIG_MVME16x)
3822M162_SCC_CTRL_A = 0xfff45005
3823M167_CYCAR = 0xfff450ee
3824M167_CYIER = 0xfff45011
3825M167_CYLICR = 0xfff45026
3826M167_CYTEOIR = 0xfff45085
3827M167_CYTDR = 0xfff450f8
3828M167_PCSCCMICR = 0xfff4201d
3829M167_PCSCCTICR = 0xfff4201e
3830M167_PCSCCRICR = 0xfff4201f
3831M167_PCTPIACKR = 0xfff42025
3832#endif
3833
3834#if defined (CONFIG_BVME6000)
3835BVME_SCC_CTRL_A	= 0xffb0000b
3836BVME_SCC_DATA_A	= 0xffb0000f
3837#endif
3838
3839#if defined(CONFIG_MAC)
3840L(mac_videobase):
3841	.long	0
3842L(mac_videodepth):
3843	.long	0
3844L(mac_dimensions):
3845	.long	0
3846L(mac_rowbytes):
3847	.long	0
3848L(mac_sccbase):
3849	.long	0
3850#endif /* CONFIG_MAC */
3851
3852#if defined (CONFIG_APOLLO)
3853LSRB0        = 0x10412
3854LTHRB0       = 0x10416
3855LCPUCTRL     = 0x10100
3856#endif
3857
3858#if defined(CONFIG_HP300)
3859DCADATA	     = 0x11
3860DCALSR	     = 0x1b
3861APCIDATA     = 0x00
3862APCILSR      = 0x14
3863L(uartbase):
3864	.long	0
3865L(uart_scode):
3866	.long	-1
3867#endif
3868
3869__FINIT
3870	.data
3871	.align	4
3872
3873availmem:
3874	.long	0
3875m68k_pgtable_cachemode:
3876	.long	0
3877m68k_supervisor_cachemode:
3878	.long	0
3879#if defined(CONFIG_MVME16x)
3880mvme_bdid:
3881	.long	0,0,0,0,0,0,0,0
3882#endif
3883#if defined(CONFIG_Q40)
3884q40_mem_cptr:
3885	.long	0
3886L(q40_do_debug):
3887	.long	0
3888#endif
3889
3890#if defined(CONFIG_VIRT)
3891GF_PUT_CHAR = 0x00
3892L(virt_gf_tty_base):
3893	.long 0
3894#endif /* CONFIG_VIRT */
3895