xref: /linux/arch/m68k/kernel/head.S (revision c98be0c96db00e9b6b02d31e0fa7590c54cdaaac)
1/* -*- mode: asm -*-
2**
3** head.S -- This file contains the initial boot code for the
4**	     Linux/68k kernel.
5**
6** Copyright 1993 by Hamish Macdonald
7**
8** 68040 fixes by Michael Rausch
9** 68060 fixes by Roman Hodek
10** MMU cleanup by Randy Thelen
11** Final MMU cleanup by Roman Zippel
12**
13** Atari support by Andreas Schwab, using ideas of Robert de Vries
14** and Bjoern Brauel
15** VME Support by Richard Hirst
16**
17** 94/11/14 Andreas Schwab: put kernel at PAGESIZE
18** 94/11/18 Andreas Schwab: remove identity mapping of STRAM for Atari
19** ++ Bjoern & Roman: ATARI-68040 support for the Medusa
20** 95/11/18 Richard Hirst: Added MVME166 support
21** 96/04/26 Guenther Kelleter: fixed identity mapping for Falcon with
22**			      Magnum- and FX-alternate ram
23** 98/04/25 Phil Blundell: added HP300 support
24** 1998/08/30 David Kilzer: Added support for font_desc structures
25**            for linux-2.1.115
26** 1999/02/11  Richard Zidlicky: added Q40 support (initial version 99/01/01)
27** 2004/05/13 Kars de Jong: Finalised HP300 support
28**
29** This file is subject to the terms and conditions of the GNU General Public
30** License. See the file README.legal in the main directory of this archive
31** for more details.
32**
33*/
34
35/*
36 * Linux startup code.
37 *
38 * At this point, the boot loader has:
39 * Disabled interrupts
40 * Disabled caches
41 * Put us in supervisor state.
42 *
43 * The kernel setup code takes the following steps:
44 * .  Raise interrupt level
45 * .  Set up initial kernel memory mapping.
46 *    .  This sets up a mapping of the 4M of memory the kernel is located in.
47 *    .  It also does a mapping of any initial machine specific areas.
48 * .  Enable the MMU
49 * .  Enable cache memories
50 * .  Jump to kernel startup
51 *
52 * Much of the file restructuring was to accomplish:
53 * 1) Remove register dependency through-out the file.
54 * 2) Increase use of subroutines to perform functions
55 * 3) Increase readability of the code
56 *
57 * Of course, readability is a subjective issue, so it will never be
58 * argued that that goal was accomplished.  It was merely a goal.
59 * A key way to help make code more readable is to give good
60 * documentation.  So, the first thing you will find is exaustive
61 * write-ups on the structure of the file, and the features of the
62 * functional subroutines.
63 *
64 * General Structure:
65 * ------------------
66 *	Without a doubt the single largest chunk of head.S is spent
67 * mapping the kernel and I/O physical space into the logical range
68 * for the kernel.
69 *	There are new subroutines and data structures to make MMU
70 * support cleaner and easier to understand.
71 *	First, you will find a routine call "mmu_map" which maps
72 * a logical to a physical region for some length given a cache
73 * type on behalf of the caller.  This routine makes writing the
74 * actual per-machine specific code very simple.
75 *	A central part of the code, but not a subroutine in itself,
76 * is the mmu_init code which is broken down into mapping the kernel
77 * (the same for all machines) and mapping machine-specific I/O
78 * regions.
79 *	Also, there will be a description of engaging the MMU and
80 * caches.
81 *	You will notice that there is a chunk of code which
82 * can emit the entire MMU mapping of the machine.  This is present
83 * only in debug modes and can be very helpful.
84 *	Further, there is a new console driver in head.S that is
85 * also only engaged in debug mode.  Currently, it's only supported
86 * on the Macintosh class of machines.  However, it is hoped that
87 * others will plug-in support for specific machines.
88 *
89 * ######################################################################
90 *
91 * mmu_map
92 * -------
93 *	mmu_map was written for two key reasons.  First, it was clear
94 * that it was very difficult to read the previous code for mapping
95 * regions of memory.  Second, the Macintosh required such extensive
96 * memory allocations that it didn't make sense to propagate the
97 * existing code any further.
98 *	mmu_map requires some parameters:
99 *
100 *	mmu_map (logical, physical, length, cache_type)
101 *
102 *	While this essentially describes the function in the abstract, you'll
103 * find more indepth description of other parameters at the implementation site.
104 *
105 * mmu_get_root_table_entry
106 * ------------------------
107 * mmu_get_ptr_table_entry
108 * -----------------------
109 * mmu_get_page_table_entry
110 * ------------------------
111 *
112 *	These routines are used by other mmu routines to get a pointer into
113 * a table, if necessary a new table is allocated. These routines are working
114 * basically like pmd_alloc() and pte_alloc() in <asm/pgtable.h>. The root
115 * table needs of course only to be allocated once in mmu_get_root_table_entry,
116 * so that here also some mmu specific initialization is done. The second page
117 * at the start of the kernel (the first page is unmapped later) is used for
118 * the kernel_pg_dir. It must be at a position known at link time (as it's used
119 * to initialize the init task struct) and since it needs special cache
120 * settings, it's the easiest to use this page, the rest of the page is used
121 * for further pointer tables.
122 * mmu_get_page_table_entry allocates always a whole page for page tables, this
123 * means 1024 pages and so 4MB of memory can be mapped. It doesn't make sense
124 * to manage page tables in smaller pieces as nearly all mappings have that
125 * size.
126 *
127 * ######################################################################
128 *
129 *
130 * ######################################################################
131 *
132 * mmu_engage
133 * ----------
134 *	Thanks to a small helping routine enabling the mmu got quite simple
135 * and there is only one way left. mmu_engage makes a complete a new mapping
136 * that only includes the absolute necessary to be able to jump to the final
137 * position and to restore the original mapping.
138 * As this code doesn't need a transparent translation register anymore this
139 * means all registers are free to be used by machines that needs them for
140 * other purposes.
141 *
142 * ######################################################################
143 *
144 * mmu_print
145 * ---------
146 *	This algorithm will print out the page tables of the system as
147 * appropriate for an 030 or an 040.  This is useful for debugging purposes
148 * and as such is enclosed in #ifdef MMU_PRINT/#endif clauses.
149 *
150 * ######################################################################
151 *
152 * console_init
153 * ------------
154 *	The console is also able to be turned off.  The console in head.S
155 * is specifically for debugging and can be very useful.  It is surrounded by
156 * #ifdef CONSOLE/#endif clauses so it doesn't have to ship in known-good
157 * kernels.  It's basic algorithm is to determine the size of the screen
158 * (in height/width and bit depth) and then use that information for
159 * displaying an 8x8 font or an 8x16 (widthxheight).  I prefer the 8x8 for
160 * debugging so I can see more good data.  But it was trivial to add support
161 * for both fonts, so I included it.
162 *	Also, the algorithm for plotting pixels is abstracted so that in
163 * theory other platforms could add support for different kinds of frame
164 * buffers.  This could be very useful.
165 *
166 * console_put_penguin
167 * -------------------
168 *	An important part of any Linux bring up is the penguin and there's
169 * nothing like getting the Penguin on the screen!  This algorithm will work
170 * on any machine for which there is a console_plot_pixel.
171 *
172 * console_scroll
173 * --------------
174 *	My hope is that the scroll algorithm does the right thing on the
175 * various platforms, but it wouldn't be hard to add the test conditions
176 * and new code if it doesn't.
177 *
178 * console_putc
179 * -------------
180 *
181 * ######################################################################
182 *
183 *	Register usage has greatly simplified within head.S. Every subroutine
184 * saves and restores all registers that it modifies (except it returns a
185 * value in there of course). So the only register that needs to be initialized
186 * is the stack pointer.
187 * All other init code and data is now placed in the init section, so it will
188 * be automatically freed at the end of the kernel initialization.
189 *
190 * ######################################################################
191 *
192 * options
193 * -------
194 *	There are many options available in a build of this file.  I've
195 * taken the time to describe them here to save you the time of searching
196 * for them and trying to understand what they mean.
197 *
198 * CONFIG_xxx:	These are the obvious machine configuration defines created
199 * during configuration.  These are defined in autoconf.h.
200 *
201 * CONSOLE:	There is support for head.S console in this file.  This
202 * console can talk to a Mac frame buffer, but could easily be extrapolated
203 * to extend it to support other platforms.
204 *
205 * TEST_MMU:	This is a test harness for running on any given machine but
206 * getting an MMU dump for another class of machine.  The classes of machines
207 * that can be tested are any of the makes (Atari, Amiga, Mac, VME, etc.)
208 * and any of the models (030, 040, 060, etc.).
209 *
210 *	NOTE:	TEST_MMU is NOT permanent!  It is scheduled to be removed
211 *		When head.S boots on Atari, Amiga, Macintosh, and VME
212 *		machines.  At that point the underlying logic will be
213 *		believed to be solid enough to be trusted, and TEST_MMU
214 *		can be dropped.  Do note that that will clean up the
215 *		head.S code significantly as large blocks of #if/#else
216 *		clauses can be removed.
217 *
218 * MMU_NOCACHE_KERNEL:	On the Macintosh platform there was an inquiry into
219 * determing why devices don't appear to work.  A test case was to remove
220 * the cacheability of the kernel bits.
221 *
222 * MMU_PRINT:	There is a routine built into head.S that can display the
223 * MMU data structures.  It outputs its result through the serial_putc
224 * interface.  So where ever that winds up driving data, that's where the
225 * mmu struct will appear.  On the Macintosh that's typically the console.
226 *
227 * SERIAL_DEBUG:	There are a series of putc() macro statements
228 * scattered through out the code to give progress of status to the
229 * person sitting at the console.  This constant determines whether those
230 * are used.
231 *
232 * DEBUG:	This is the standard DEBUG flag that can be set for building
233 *		the kernel.  It has the effect adding additional tests into
234 *		the code.
235 *
236 * FONT_6x11:
237 * FONT_8x8:
238 * FONT_8x16:
239 *		In theory these could be determined at run time or handed
240 *		over by the booter.  But, let's be real, it's a fine hard
241 *		coded value.  (But, you will notice the code is run-time
242 *		flexible!)  A pointer to the font's struct font_desc
243 *		is kept locally in Lconsole_font.  It is used to determine
244 *		font size information dynamically.
245 *
246 * Atari constants:
247 * USE_PRINTER:	Use the printer port for serial debug.
248 * USE_SCC_B:	Use the SCC port A (Serial2) for serial debug.
249 * USE_SCC_A:	Use the SCC port B (Modem2) for serial debug.
250 * USE_MFP:	Use the ST-MFP port (Modem1) for serial debug.
251 *
252 * Macintosh constants:
253 * MAC_USE_SCC_A: Use SCC port A (modem) for serial debug and early console.
254 * MAC_USE_SCC_B: Use SCC port B (printer) for serial debug and early console.
255 */
256
257#include <linux/linkage.h>
258#include <linux/init.h>
259#include <asm/bootinfo.h>
260#include <asm/bootinfo-amiga.h>
261#include <asm/bootinfo-atari.h>
262#include <asm/bootinfo-hp300.h>
263#include <asm/bootinfo-mac.h>
264#include <asm/bootinfo-q40.h>
265#include <asm/bootinfo-vme.h>
266#include <asm/setup.h>
267#include <asm/entry.h>
268#include <asm/pgtable.h>
269#include <asm/page.h>
270#include <asm/asm-offsets.h>
271
272#ifdef CONFIG_MAC
273
274#include <asm/machw.h>
275
276#ifdef CONFIG_FRAMEBUFFER_CONSOLE
277#define CONSOLE
278#endif
279
280#ifdef CONFIG_EARLY_PRINTK
281#define SERIAL_DEBUG
282#else
283#undef SERIAL_DEBUG
284#endif
285
286#else /* !CONFIG_MAC */
287
288#define SERIAL_DEBUG
289
290#endif /* !CONFIG_MAC */
291
292#undef MMU_PRINT
293#undef MMU_NOCACHE_KERNEL
294#undef DEBUG
295
296/*
297 * For the head.S console, there are three supported fonts, 6x11, 8x16 and 8x8.
298 * The 8x8 font is harder to read but fits more on the screen.
299 */
300#define FONT_8x8	/* default */
301/* #define FONT_8x16 */	/* 2nd choice */
302/* #define FONT_6x11 */	/* 3rd choice */
303
304.globl kernel_pg_dir
305.globl availmem
306.globl m68k_pgtable_cachemode
307.globl m68k_supervisor_cachemode
308#ifdef CONFIG_MVME16x
309.globl mvme_bdid
310#endif
311#ifdef CONFIG_Q40
312.globl q40_mem_cptr
313#endif
314
315CPUTYPE_040	= 1	/* indicates an 040 */
316CPUTYPE_060	= 2	/* indicates an 060 */
317CPUTYPE_0460	= 3	/* if either above are set, this is set */
318CPUTYPE_020	= 4	/* indicates an 020 */
319
320/* Translation control register */
321TC_ENABLE = 0x8000
322TC_PAGE8K = 0x4000
323TC_PAGE4K = 0x0000
324
325/* Transparent translation registers */
326TTR_ENABLE	= 0x8000	/* enable transparent translation */
327TTR_ANYMODE	= 0x4000	/* user and kernel mode access */
328TTR_KERNELMODE	= 0x2000	/* only kernel mode access */
329TTR_USERMODE	= 0x0000	/* only user mode access */
330TTR_CI		= 0x0400	/* inhibit cache */
331TTR_RW		= 0x0200	/* read/write mode */
332TTR_RWM		= 0x0100	/* read/write mask */
333TTR_FCB2	= 0x0040	/* function code base bit 2 */
334TTR_FCB1	= 0x0020	/* function code base bit 1 */
335TTR_FCB0	= 0x0010	/* function code base bit 0 */
336TTR_FCM2	= 0x0004	/* function code mask bit 2 */
337TTR_FCM1	= 0x0002	/* function code mask bit 1 */
338TTR_FCM0	= 0x0001	/* function code mask bit 0 */
339
340/* Cache Control registers */
341CC6_ENABLE_D	= 0x80000000	/* enable data cache (680[46]0) */
342CC6_FREEZE_D	= 0x40000000	/* freeze data cache (68060) */
343CC6_ENABLE_SB	= 0x20000000	/* enable store buffer (68060) */
344CC6_PUSH_DPI	= 0x10000000	/* disable CPUSH invalidation (68060) */
345CC6_HALF_D	= 0x08000000	/* half-cache mode for data cache (68060) */
346CC6_ENABLE_B	= 0x00800000	/* enable branch cache (68060) */
347CC6_CLRA_B	= 0x00400000	/* clear all entries in branch cache (68060) */
348CC6_CLRU_B	= 0x00200000	/* clear user entries in branch cache (68060) */
349CC6_ENABLE_I	= 0x00008000	/* enable instruction cache (680[46]0) */
350CC6_FREEZE_I	= 0x00004000	/* freeze instruction cache (68060) */
351CC6_HALF_I	= 0x00002000	/* half-cache mode for instruction cache (68060) */
352CC3_ALLOC_WRITE	= 0x00002000	/* write allocate mode(68030) */
353CC3_ENABLE_DB	= 0x00001000	/* enable data burst (68030) */
354CC3_CLR_D	= 0x00000800	/* clear data cache (68030) */
355CC3_CLRE_D	= 0x00000400	/* clear entry in data cache (68030) */
356CC3_FREEZE_D	= 0x00000200	/* freeze data cache (68030) */
357CC3_ENABLE_D	= 0x00000100	/* enable data cache (68030) */
358CC3_ENABLE_IB	= 0x00000010	/* enable instruction burst (68030) */
359CC3_CLR_I	= 0x00000008	/* clear instruction cache (68030) */
360CC3_CLRE_I	= 0x00000004	/* clear entry in instruction cache (68030) */
361CC3_FREEZE_I	= 0x00000002	/* freeze instruction cache (68030) */
362CC3_ENABLE_I	= 0x00000001	/* enable instruction cache (68030) */
363
364/* Miscellaneous definitions */
365PAGESIZE	= 4096
366PAGESHIFT	= 12
367
368ROOT_TABLE_SIZE	= 128
369PTR_TABLE_SIZE	= 128
370PAGE_TABLE_SIZE	= 64
371ROOT_INDEX_SHIFT = 25
372PTR_INDEX_SHIFT  = 18
373PAGE_INDEX_SHIFT = 12
374
375#ifdef DEBUG
376/* When debugging use readable names for labels */
377#ifdef __STDC__
378#define L(name) .head.S.##name
379#else
380#define L(name) .head.S./**/name
381#endif
382#else
383#ifdef __STDC__
384#define L(name) .L##name
385#else
386#define L(name) .L/**/name
387#endif
388#endif
389
390/* The __INITDATA stuff is a no-op when ftrace or kgdb are turned on */
391#ifndef __INITDATA
392#define __INITDATA	.data
393#define __FINIT		.previous
394#endif
395
396/* Several macros to make the writing of subroutines easier:
397 * - func_start marks the beginning of the routine which setups the frame
398 *   register and saves the registers, it also defines another macro
399 *   to automatically restore the registers again.
400 * - func_return marks the end of the routine and simply calls the prepared
401 *   macro to restore registers and jump back to the caller.
402 * - func_define generates another macro to automatically put arguments
403 *   onto the stack call the subroutine and cleanup the stack again.
404 */
405
406/* Within subroutines these macros can be used to access the arguments
407 * on the stack. With STACK some allocated memory on the stack can be
408 * accessed and ARG0 points to the return address (used by mmu_engage).
409 */
410#define	STACK	%a6@(stackstart)
411#define ARG0	%a6@(4)
412#define ARG1	%a6@(8)
413#define ARG2	%a6@(12)
414#define ARG3	%a6@(16)
415#define ARG4	%a6@(20)
416
417.macro	func_start	name,saveregs,stack=0
418L(\name):
419	linkw	%a6,#-\stack
420	moveml	\saveregs,%sp@-
421.set	stackstart,-\stack
422
423.macro	func_return_\name
424	moveml	%sp@+,\saveregs
425	unlk	%a6
426	rts
427.endm
428.endm
429
430.macro	func_return	name
431	func_return_\name
432.endm
433
434.macro	func_call	name
435	jbsr	L(\name)
436.endm
437
438.macro	move_stack	nr,arg1,arg2,arg3,arg4
439.if	\nr
440	move_stack	"(\nr-1)",\arg2,\arg3,\arg4
441	movel	\arg1,%sp@-
442.endif
443.endm
444
445.macro	func_define	name,nr=0
446.macro	\name	arg1,arg2,arg3,arg4
447	move_stack	\nr,\arg1,\arg2,\arg3,\arg4
448	func_call	\name
449.if	\nr
450	lea	%sp@(\nr*4),%sp
451.endif
452.endm
453.endm
454
455func_define	mmu_map,4
456func_define	mmu_map_tt,4
457func_define	mmu_fixup_page_mmu_cache,1
458func_define	mmu_temp_map,2
459func_define	mmu_engage
460func_define	mmu_get_root_table_entry,1
461func_define	mmu_get_ptr_table_entry,2
462func_define	mmu_get_page_table_entry,2
463func_define	mmu_print
464func_define	get_new_page
465#if defined(CONFIG_HP300) || defined(CONFIG_APOLLO)
466func_define	set_leds
467#endif
468
469.macro	mmu_map_eq	arg1,arg2,arg3
470	mmu_map	\arg1,\arg1,\arg2,\arg3
471.endm
472
473.macro	get_bi_record	record
474	pea	\record
475	func_call	get_bi_record
476	addql	#4,%sp
477.endm
478
479func_define	serial_putc,1
480func_define	console_putc,1
481
482func_define	console_init
483func_define	console_put_stats
484func_define	console_put_penguin
485func_define	console_plot_pixel,3
486func_define	console_scroll
487
488.macro	putc	ch
489#if defined(CONSOLE) || defined(SERIAL_DEBUG)
490	pea	\ch
491#endif
492#ifdef CONSOLE
493	func_call	console_putc
494#endif
495#ifdef SERIAL_DEBUG
496	func_call	serial_putc
497#endif
498#if defined(CONSOLE) || defined(SERIAL_DEBUG)
499	addql	#4,%sp
500#endif
501.endm
502
503.macro	dputc	ch
504#ifdef DEBUG
505	putc	\ch
506#endif
507.endm
508
509func_define	putn,1
510
511.macro	dputn	nr
512#ifdef DEBUG
513	putn	\nr
514#endif
515.endm
516
517.macro	puts		string
518#if defined(CONSOLE) || defined(SERIAL_DEBUG)
519	__INITDATA
520.Lstr\@:
521	.string	"\string"
522	__FINIT
523	pea	%pc@(.Lstr\@)
524	func_call	puts
525	addql	#4,%sp
526#endif
527.endm
528
529.macro	dputs	string
530#ifdef DEBUG
531	puts	"\string"
532#endif
533.endm
534
535#define is_not_amiga(lab) cmpl &MACH_AMIGA,%pc@(m68k_machtype); jne lab
536#define is_not_atari(lab) cmpl &MACH_ATARI,%pc@(m68k_machtype); jne lab
537#define is_not_mac(lab) cmpl &MACH_MAC,%pc@(m68k_machtype); jne lab
538#define is_not_mvme147(lab) cmpl &MACH_MVME147,%pc@(m68k_machtype); jne lab
539#define is_not_mvme16x(lab) cmpl &MACH_MVME16x,%pc@(m68k_machtype); jne lab
540#define is_not_bvme6000(lab) cmpl &MACH_BVME6000,%pc@(m68k_machtype); jne lab
541#define is_mvme147(lab) cmpl &MACH_MVME147,%pc@(m68k_machtype); jeq lab
542#define is_mvme16x(lab) cmpl &MACH_MVME16x,%pc@(m68k_machtype); jeq lab
543#define is_bvme6000(lab) cmpl &MACH_BVME6000,%pc@(m68k_machtype); jeq lab
544#define is_not_hp300(lab) cmpl &MACH_HP300,%pc@(m68k_machtype); jne lab
545#define is_not_apollo(lab) cmpl &MACH_APOLLO,%pc@(m68k_machtype); jne lab
546#define is_not_q40(lab) cmpl &MACH_Q40,%pc@(m68k_machtype); jne lab
547#define is_not_sun3x(lab) cmpl &MACH_SUN3X,%pc@(m68k_machtype); jne lab
548
549#define hasnt_leds(lab) cmpl &MACH_HP300,%pc@(m68k_machtype); \
550			jeq 42f; \
551			cmpl &MACH_APOLLO,%pc@(m68k_machtype); \
552			jne lab ;\
553		42:\
554
555#define is_040_or_060(lab)	btst &CPUTYPE_0460,%pc@(L(cputype)+3); jne lab
556#define is_not_040_or_060(lab)	btst &CPUTYPE_0460,%pc@(L(cputype)+3); jeq lab
557#define is_040(lab)		btst &CPUTYPE_040,%pc@(L(cputype)+3); jne lab
558#define is_060(lab)		btst &CPUTYPE_060,%pc@(L(cputype)+3); jne lab
559#define is_not_060(lab)		btst &CPUTYPE_060,%pc@(L(cputype)+3); jeq lab
560#define is_020(lab)		btst &CPUTYPE_020,%pc@(L(cputype)+3); jne lab
561#define is_not_020(lab)		btst &CPUTYPE_020,%pc@(L(cputype)+3); jeq lab
562
563/* On the HP300 we use the on-board LEDs for debug output before
564   the console is running.  Writing a 1 bit turns the corresponding LED
565   _off_ - on the 340 bit 7 is towards the back panel of the machine.  */
566.macro	leds	mask
567#if defined(CONFIG_HP300) || defined(CONFIG_APOLLO)
568	hasnt_leds(.Lled\@)
569	pea	\mask
570	func_call	set_leds
571	addql	#4,%sp
572.Lled\@:
573#endif
574.endm
575
576__HEAD
577ENTRY(_stext)
578/*
579 * Version numbers of the bootinfo interface
580 * The area from _stext to _start will later be used as kernel pointer table
581 */
582	bras	1f	/* Jump over bootinfo version numbers */
583
584	.long	BOOTINFOV_MAGIC
585	.long	MACH_AMIGA, AMIGA_BOOTI_VERSION
586	.long	MACH_ATARI, ATARI_BOOTI_VERSION
587	.long	MACH_MVME147, MVME147_BOOTI_VERSION
588	.long	MACH_MVME16x, MVME16x_BOOTI_VERSION
589	.long	MACH_BVME6000, BVME6000_BOOTI_VERSION
590	.long	MACH_MAC, MAC_BOOTI_VERSION
591	.long	MACH_Q40, Q40_BOOTI_VERSION
592	.long	MACH_HP300, HP300_BOOTI_VERSION
593	.long	0
5941:	jra	__start
595
596.equ	kernel_pg_dir,_stext
597
598.equ	.,_stext+PAGESIZE
599
600ENTRY(_start)
601	jra	__start
602__INIT
603ENTRY(__start)
604/*
605 * Setup initial stack pointer
606 */
607	lea	%pc@(_stext),%sp
608
609/*
610 * Record the CPU and machine type.
611 */
612	get_bi_record	BI_MACHTYPE
613	lea	%pc@(m68k_machtype),%a1
614	movel	%a0@,%a1@
615
616	get_bi_record	BI_FPUTYPE
617	lea	%pc@(m68k_fputype),%a1
618	movel	%a0@,%a1@
619
620	get_bi_record	BI_MMUTYPE
621	lea	%pc@(m68k_mmutype),%a1
622	movel	%a0@,%a1@
623
624	get_bi_record	BI_CPUTYPE
625	lea	%pc@(m68k_cputype),%a1
626	movel	%a0@,%a1@
627
628	leds	0x1
629
630#ifdef CONFIG_MAC
631/*
632 * For Macintosh, we need to determine the display parameters early (at least
633 * while debugging it).
634 */
635
636	is_not_mac(L(test_notmac))
637
638	get_bi_record	BI_MAC_VADDR
639	lea	%pc@(L(mac_videobase)),%a1
640	movel	%a0@,%a1@
641
642	get_bi_record	BI_MAC_VDEPTH
643	lea	%pc@(L(mac_videodepth)),%a1
644	movel	%a0@,%a1@
645
646	get_bi_record	BI_MAC_VDIM
647	lea	%pc@(L(mac_dimensions)),%a1
648	movel	%a0@,%a1@
649
650	get_bi_record	BI_MAC_VROW
651	lea	%pc@(L(mac_rowbytes)),%a1
652	movel	%a0@,%a1@
653
654#ifdef SERIAL_DEBUG
655	get_bi_record	BI_MAC_SCCBASE
656	lea	%pc@(L(mac_sccbase)),%a1
657	movel	%a0@,%a1@
658#endif
659
660L(test_notmac):
661#endif /* CONFIG_MAC */
662
663
664/*
665 * There are ultimately two pieces of information we want for all kinds of
666 * processors CpuType and CacheBits.  The CPUTYPE was passed in from booter
667 * and is converted here from a booter type definition to a separate bit
668 * number which allows for the standard is_0x0 macro tests.
669 */
670	movel	%pc@(m68k_cputype),%d0
671	/*
672	 * Assume it's an 030
673	 */
674	clrl	%d1
675
676	/*
677	 * Test the BootInfo cputype for 060
678	 */
679	btst	#CPUB_68060,%d0
680	jeq	1f
681	bset	#CPUTYPE_060,%d1
682	bset	#CPUTYPE_0460,%d1
683	jra	3f
6841:
685	/*
686	 * Test the BootInfo cputype for 040
687	 */
688	btst	#CPUB_68040,%d0
689	jeq	2f
690	bset	#CPUTYPE_040,%d1
691	bset	#CPUTYPE_0460,%d1
692	jra	3f
6932:
694	/*
695	 * Test the BootInfo cputype for 020
696	 */
697	btst	#CPUB_68020,%d0
698	jeq	3f
699	bset	#CPUTYPE_020,%d1
700	jra	3f
7013:
702	/*
703	 * Record the cpu type
704	 */
705	lea	%pc@(L(cputype)),%a0
706	movel	%d1,%a0@
707
708	/*
709	 * NOTE:
710	 *
711	 * Now the macros are valid:
712	 *	is_040_or_060
713	 *	is_not_040_or_060
714	 *	is_040
715	 *	is_060
716	 *	is_not_060
717	 */
718
719	/*
720	 * Determine the cache mode for pages holding MMU tables
721	 * and for supervisor mode, unused for '020 and '030
722	 */
723	clrl	%d0
724	clrl	%d1
725
726	is_not_040_or_060(L(save_cachetype))
727
728	/*
729	 * '040 or '060
730	 * d1 := cacheable write-through
731	 * NOTE: The 68040 manual strongly recommends non-cached for MMU tables,
732	 * but we have been using write-through since at least 2.0.29 so I
733	 * guess it is OK.
734	 */
735#ifdef CONFIG_060_WRITETHROUGH
736	/*
737	 * If this is a 68060 board using drivers with cache coherency
738	 * problems, then supervisor memory accesses need to be write-through
739	 * also; otherwise, we want copyback.
740	 */
741
742	is_not_060(1f)
743	movel	#_PAGE_CACHE040W,%d0
744	jra	L(save_cachetype)
745#endif /* CONFIG_060_WRITETHROUGH */
7461:
747	movew	#_PAGE_CACHE040,%d0
748
749	movel	#_PAGE_CACHE040W,%d1
750
751L(save_cachetype):
752	/* Save cache mode for supervisor mode and page tables
753	 */
754	lea	%pc@(m68k_supervisor_cachemode),%a0
755	movel	%d0,%a0@
756	lea	%pc@(m68k_pgtable_cachemode),%a0
757	movel	%d1,%a0@
758
759/*
760 * raise interrupt level
761 */
762	movew	#0x2700,%sr
763
764/*
765   If running on an Atari, determine the I/O base of the
766   serial port and test if we are running on a Medusa or Hades.
767   This test is necessary here, because on the Hades the serial
768   port is only accessible in the high I/O memory area.
769
770   The test whether it is a Medusa is done by writing to the byte at
771   phys. 0x0. This should result in a bus error on all other machines.
772
773   ...should, but doesn't. The Afterburner040 for the Falcon has the
774   same behaviour (0x0..0x7 are no ROM shadow). So we have to do
775   another test to distinguish Medusa and AB040. This is a
776   read attempt for 0x00ff82fe phys. that should bus error on a Falcon
777   (+AB040), but is in the range where the Medusa always asserts DTACK.
778
779   The test for the Hades is done by reading address 0xb0000000. This
780   should give a bus error on the Medusa.
781 */
782
783#ifdef CONFIG_ATARI
784	is_not_atari(L(notypetest))
785
786	/* get special machine type (Medusa/Hades/AB40) */
787	moveq	#0,%d3 /* default if tag doesn't exist */
788	get_bi_record	BI_ATARI_MCH_TYPE
789	tstl	%d0
790	jbmi	1f
791	movel	%a0@,%d3
792	lea	%pc@(atari_mch_type),%a0
793	movel	%d3,%a0@
7941:
795	/* On the Hades, the iobase must be set up before opening the
796	 * serial port. There are no I/O regs at 0x00ffxxxx at all. */
797	moveq	#0,%d0
798	cmpl	#ATARI_MACH_HADES,%d3
799	jbne	1f
800	movel	#0xff000000,%d0		/* Hades I/O base addr: 0xff000000 */
8011:	lea     %pc@(L(iobase)),%a0
802	movel   %d0,%a0@
803
804L(notypetest):
805#endif
806
807#ifdef CONFIG_VME
808	is_mvme147(L(getvmetype))
809	is_bvme6000(L(getvmetype))
810	is_not_mvme16x(L(gvtdone))
811
812	/* See if the loader has specified the BI_VME_TYPE tag.  Recent
813	 * versions of VMELILO and TFTPLILO do this.  We have to do this
814	 * early so we know how to handle console output.  If the tag
815	 * doesn't exist then we use the Bug for output on MVME16x.
816	 */
817L(getvmetype):
818	get_bi_record	BI_VME_TYPE
819	tstl	%d0
820	jbmi	1f
821	movel	%a0@,%d3
822	lea	%pc@(vme_brdtype),%a0
823	movel	%d3,%a0@
8241:
825#ifdef CONFIG_MVME16x
826	is_not_mvme16x(L(gvtdone))
827
828	/* Need to get the BRD_ID info to differentiate between 162, 167,
829	 * etc.  This is available as a BI_VME_BRDINFO tag with later
830	 * versions of VMELILO and TFTPLILO, otherwise we call the Bug.
831	 */
832	get_bi_record	BI_VME_BRDINFO
833	tstl	%d0
834	jpl	1f
835
836	/* Get pointer to board ID data from Bug */
837	movel	%d2,%sp@-
838	trap	#15
839	.word	0x70		/* trap 0x70 - .BRD_ID */
840	movel	%sp@+,%a0
8411:
842	lea	%pc@(mvme_bdid),%a1
843	/* Structure is 32 bytes long */
844	movel	%a0@+,%a1@+
845	movel	%a0@+,%a1@+
846	movel	%a0@+,%a1@+
847	movel	%a0@+,%a1@+
848	movel	%a0@+,%a1@+
849	movel	%a0@+,%a1@+
850	movel	%a0@+,%a1@+
851	movel	%a0@+,%a1@+
852#endif
853
854L(gvtdone):
855
856#endif
857
858#ifdef CONFIG_HP300
859	is_not_hp300(L(nothp))
860
861	/* Get the address of the UART for serial debugging */
862	get_bi_record	BI_HP300_UART_ADDR
863	tstl	%d0
864	jbmi	1f
865	movel	%a0@,%d3
866	lea	%pc@(L(uartbase)),%a0
867	movel	%d3,%a0@
868	get_bi_record	BI_HP300_UART_SCODE
869	tstl	%d0
870	jbmi	1f
871	movel	%a0@,%d3
872	lea	%pc@(L(uart_scode)),%a0
873	movel	%d3,%a0@
8741:
875L(nothp):
876#endif
877
878/*
879 * Initialize serial port
880 */
881	jbsr	L(serial_init)
882
883/*
884 * Initialize console
885 */
886#ifdef CONFIG_MAC
887	is_not_mac(L(nocon))
888#  ifdef CONSOLE
889	console_init
890#    ifdef CONFIG_LOGO
891	console_put_penguin
892#    endif /* CONFIG_LOGO */
893	console_put_stats
894#  endif /* CONSOLE */
895L(nocon):
896#endif /* CONFIG_MAC */
897
898
899	putc	'\n'
900	putc	'A'
901	leds	0x2
902	dputn	%pc@(L(cputype))
903	dputn	%pc@(m68k_supervisor_cachemode)
904	dputn	%pc@(m68k_pgtable_cachemode)
905	dputc	'\n'
906
907/*
908 * Save physical start address of kernel
909 */
910	lea	%pc@(L(phys_kernel_start)),%a0
911	lea	%pc@(_stext),%a1
912	subl	#_stext,%a1
913	addl	#PAGE_OFFSET,%a1
914	movel	%a1,%a0@
915
916	putc	'B'
917
918	leds	0x4
919
920/*
921 *	mmu_init
922 *
923 *	This block of code does what's necessary to map in the various kinds
924 *	of machines for execution of Linux.
925 *	First map the first 4 MB of kernel code & data
926 */
927
928	mmu_map	#PAGE_OFFSET,%pc@(L(phys_kernel_start)),#4*1024*1024,\
929		%pc@(m68k_supervisor_cachemode)
930
931	putc	'C'
932
933#ifdef CONFIG_AMIGA
934
935L(mmu_init_amiga):
936
937	is_not_amiga(L(mmu_init_not_amiga))
938/*
939 * mmu_init_amiga
940 */
941
942	putc	'D'
943
944	is_not_040_or_060(1f)
945
946	/*
947	 * 040: Map the 16Meg range physical 0x0 up to logical 0x8000.0000
948	 */
949	mmu_map		#0x80000000,#0,#0x01000000,#_PAGE_NOCACHE_S
950	/*
951	 * Map the Zorro III I/O space with transparent translation
952	 * for frame buffer memory etc.
953	 */
954	mmu_map_tt	#1,#0x40000000,#0x20000000,#_PAGE_NOCACHE_S
955
956	jbra	L(mmu_init_done)
957
9581:
959	/*
960	 * 030:	Map the 32Meg range physical 0x0 up to logical 0x8000.0000
961	 */
962	mmu_map		#0x80000000,#0,#0x02000000,#_PAGE_NOCACHE030
963	mmu_map_tt	#1,#0x40000000,#0x20000000,#_PAGE_NOCACHE030
964
965	jbra	L(mmu_init_done)
966
967L(mmu_init_not_amiga):
968#endif
969
970#ifdef CONFIG_ATARI
971
972L(mmu_init_atari):
973
974	is_not_atari(L(mmu_init_not_atari))
975
976	putc	'E'
977
978/* On the Atari, we map the I/O region (phys. 0x00ffxxxx) by mapping
979   the last 16 MB of virtual address space to the first 16 MB (i.e.
980   0xffxxxxxx -> 0x00xxxxxx). For this, an additional pointer table is
981   needed. I/O ranges are marked non-cachable.
982
983   For the Medusa it is better to map the I/O region transparently
984   (i.e. 0xffxxxxxx -> 0xffxxxxxx), because some I/O registers are
985   accessible only in the high area.
986
987   On the Hades all I/O registers are only accessible in the high
988   area.
989*/
990
991	/* I/O base addr for non-Medusa, non-Hades: 0x00000000 */
992	moveq	#0,%d0
993	movel	%pc@(atari_mch_type),%d3
994	cmpl	#ATARI_MACH_MEDUSA,%d3
995	jbeq	2f
996	cmpl	#ATARI_MACH_HADES,%d3
997	jbne	1f
9982:	movel	#0xff000000,%d0 /* Medusa/Hades base addr: 0xff000000 */
9991:	movel	%d0,%d3
1000
1001	is_040_or_060(L(spata68040))
1002
1003	/* Map everything non-cacheable, though not all parts really
1004	 * need to disable caches (crucial only for 0xff8000..0xffffff
1005	 * (standard I/O) and 0xf00000..0xf3ffff (IDE)). The remainder
1006	 * isn't really used, except for sometimes peeking into the
1007	 * ROMs (mirror at phys. 0x0), so caching isn't necessary for
1008	 * this. */
1009	mmu_map	#0xff000000,%d3,#0x01000000,#_PAGE_NOCACHE030
1010
1011	jbra	L(mmu_init_done)
1012
1013L(spata68040):
1014
1015	mmu_map	#0xff000000,%d3,#0x01000000,#_PAGE_NOCACHE_S
1016
1017	jbra	L(mmu_init_done)
1018
1019L(mmu_init_not_atari):
1020#endif
1021
1022#ifdef CONFIG_Q40
1023	is_not_q40(L(notq40))
1024	/*
1025	 * add transparent mapping for 0xff00 0000 - 0xffff ffff
1026	 * non-cached serialized etc..
1027	 * this includes master chip, DAC, RTC and ISA ports
1028	 * 0xfe000000-0xfeffffff is for screen and ROM
1029	 */
1030
1031	putc    'Q'
1032
1033	mmu_map_tt	#0,#0xfe000000,#0x01000000,#_PAGE_CACHE040W
1034	mmu_map_tt	#1,#0xff000000,#0x01000000,#_PAGE_NOCACHE_S
1035
1036	jbra	L(mmu_init_done)
1037
1038L(notq40):
1039#endif
1040
1041#ifdef CONFIG_HP300
1042	is_not_hp300(L(nothp300))
1043
1044	/* On the HP300, we map the ROM, INTIO and DIO regions (phys. 0x00xxxxxx)
1045	 * by mapping 32MB (on 020/030) or 16 MB (on 040) from 0xf0xxxxxx -> 0x00xxxxxx).
1046	 * The ROM mapping is needed because the LEDs are mapped there too.
1047	 */
1048
1049	is_040(1f)
1050
1051	/*
1052	 * 030: Map the 32Meg range physical 0x0 up to logical 0xf000.0000
1053	 */
1054	mmu_map	#0xf0000000,#0,#0x02000000,#_PAGE_NOCACHE030
1055
1056	jbra	L(mmu_init_done)
1057
10581:
1059	/*
1060	 * 040: Map the 16Meg range physical 0x0 up to logical 0xf000.0000
1061	 */
1062	mmu_map #0xf0000000,#0,#0x01000000,#_PAGE_NOCACHE_S
1063
1064	jbra	L(mmu_init_done)
1065
1066L(nothp300):
1067#endif /* CONFIG_HP300 */
1068
1069#ifdef CONFIG_MVME147
1070
1071	is_not_mvme147(L(not147))
1072
1073	/*
1074	 * On MVME147 we have already created kernel page tables for
1075	 * 4MB of RAM at address 0, so now need to do a transparent
1076	 * mapping of the top of memory space.  Make it 0.5GByte for now,
1077	 * so we can access on-board i/o areas.
1078	 */
1079
1080	mmu_map_tt	#1,#0xe0000000,#0x20000000,#_PAGE_NOCACHE030
1081
1082	jbra	L(mmu_init_done)
1083
1084L(not147):
1085#endif /* CONFIG_MVME147 */
1086
1087#ifdef CONFIG_MVME16x
1088
1089	is_not_mvme16x(L(not16x))
1090
1091	/*
1092	 * On MVME16x we have already created kernel page tables for
1093	 * 4MB of RAM at address 0, so now need to do a transparent
1094	 * mapping of the top of memory space.  Make it 0.5GByte for now.
1095	 * Supervisor only access, so transparent mapping doesn't
1096	 * clash with User code virtual address space.
1097	 * this covers IO devices, PROM and SRAM.  The PROM and SRAM
1098	 * mapping is needed to allow 167Bug to run.
1099	 * IO is in the range 0xfff00000 to 0xfffeffff.
1100	 * PROM is 0xff800000->0xffbfffff and SRAM is
1101	 * 0xffe00000->0xffe1ffff.
1102	 */
1103
1104	mmu_map_tt	#1,#0xe0000000,#0x20000000,#_PAGE_NOCACHE_S
1105
1106	jbra	L(mmu_init_done)
1107
1108L(not16x):
1109#endif	/* CONFIG_MVME162 | CONFIG_MVME167 */
1110
1111#ifdef CONFIG_BVME6000
1112
1113	is_not_bvme6000(L(not6000))
1114
1115	/*
1116	 * On BVME6000 we have already created kernel page tables for
1117	 * 4MB of RAM at address 0, so now need to do a transparent
1118	 * mapping of the top of memory space.  Make it 0.5GByte for now,
1119	 * so we can access on-board i/o areas.
1120	 * Supervisor only access, so transparent mapping doesn't
1121	 * clash with User code virtual address space.
1122	 */
1123
1124	mmu_map_tt	#1,#0xe0000000,#0x20000000,#_PAGE_NOCACHE_S
1125
1126	jbra	L(mmu_init_done)
1127
1128L(not6000):
1129#endif /* CONFIG_BVME6000 */
1130
1131/*
1132 * mmu_init_mac
1133 *
1134 * The Macintosh mappings are less clear.
1135 *
1136 * Even as of this writing, it is unclear how the
1137 * Macintosh mappings will be done.  However, as
1138 * the first author of this code I'm proposing the
1139 * following model:
1140 *
1141 * Map the kernel (that's already done),
1142 * Map the I/O (on most machines that's the
1143 * 0x5000.0000 ... 0x5300.0000 range,
1144 * Map the video frame buffer using as few pages
1145 * as absolutely (this requirement mostly stems from
1146 * the fact that when the frame buffer is at
1147 * 0x0000.0000 then we know there is valid RAM just
1148 * above the screen that we don't want to waste!).
1149 *
1150 * By the way, if the frame buffer is at 0x0000.0000
1151 * then the Macintosh is known as an RBV based Mac.
1152 *
1153 * By the way 2, the code currently maps in a bunch of
1154 * regions.  But I'd like to cut that out.  (And move most
1155 * of the mappings up into the kernel proper ... or only
1156 * map what's necessary.)
1157 */
1158
1159#ifdef CONFIG_MAC
1160
1161L(mmu_init_mac):
1162
1163	is_not_mac(L(mmu_init_not_mac))
1164
1165	putc	'F'
1166
1167	is_not_040_or_060(1f)
1168
1169	moveq	#_PAGE_NOCACHE_S,%d3
1170	jbra	2f
11711:
1172	moveq	#_PAGE_NOCACHE030,%d3
11732:
1174	/*
1175	 * Mac Note: screen address of logical 0xF000.0000 -> <screen physical>
1176	 *	     we simply map the 4MB that contains the videomem
1177	 */
1178
1179	movel	#VIDEOMEMMASK,%d0
1180	andl	%pc@(L(mac_videobase)),%d0
1181
1182	mmu_map		#VIDEOMEMBASE,%d0,#VIDEOMEMSIZE,%d3
1183	/* ROM from 4000 0000 to 4200 0000 (only for mac_reset()) */
1184	mmu_map_eq	#0x40000000,#0x02000000,%d3
1185	/* IO devices (incl. serial port) from 5000 0000 to 5300 0000 */
1186	mmu_map_eq	#0x50000000,#0x03000000,%d3
1187	/* Nubus slot space (video at 0xF0000000, rom at 0xF0F80000) */
1188	mmu_map_tt	#1,#0xf8000000,#0x08000000,%d3
1189
1190	jbra	L(mmu_init_done)
1191
1192L(mmu_init_not_mac):
1193#endif
1194
1195#ifdef CONFIG_SUN3X
1196	is_not_sun3x(L(notsun3x))
1197
1198	/* oh, the pain..  We're gonna want the prom code after
1199	 * starting the MMU, so we copy the mappings, translating
1200	 * from 8k -> 4k pages as we go.
1201	 */
1202
1203	/* copy maps from 0xfee00000 to 0xff000000 */
1204	movel	#0xfee00000, %d0
1205	moveq	#ROOT_INDEX_SHIFT, %d1
1206	lsrl	%d1,%d0
1207	mmu_get_root_table_entry	%d0
1208
1209	movel	#0xfee00000, %d0
1210	moveq	#PTR_INDEX_SHIFT, %d1
1211	lsrl	%d1,%d0
1212	andl	#PTR_TABLE_SIZE-1, %d0
1213	mmu_get_ptr_table_entry		%a0,%d0
1214
1215	movel	#0xfee00000, %d0
1216	moveq	#PAGE_INDEX_SHIFT, %d1
1217	lsrl	%d1,%d0
1218	andl	#PAGE_TABLE_SIZE-1, %d0
1219	mmu_get_page_table_entry	%a0,%d0
1220
1221	/* this is where the prom page table lives */
1222	movel	0xfefe00d4, %a1
1223	movel	%a1@, %a1
1224
1225	movel	#((0x200000 >> 13)-1), %d1
1226
12271:
1228	movel	%a1@+, %d3
1229	movel	%d3,%a0@+
1230	addl	#0x1000,%d3
1231	movel	%d3,%a0@+
1232
1233	dbra	%d1,1b
1234
1235	/* setup tt1 for I/O */
1236	mmu_map_tt	#1,#0x40000000,#0x40000000,#_PAGE_NOCACHE_S
1237	jbra	L(mmu_init_done)
1238
1239L(notsun3x):
1240#endif
1241
1242#ifdef CONFIG_APOLLO
1243	is_not_apollo(L(notapollo))
1244
1245	putc	'P'
1246	mmu_map         #0x80000000,#0,#0x02000000,#_PAGE_NOCACHE030
1247
1248L(notapollo):
1249	jbra	L(mmu_init_done)
1250#endif
1251
1252L(mmu_init_done):
1253
1254	putc	'G'
1255	leds	0x8
1256
1257/*
1258 * mmu_fixup
1259 *
1260 * On the 040 class machines, all pages that are used for the
1261 * mmu have to be fixed up. According to Motorola, pages holding mmu
1262 * tables should be non-cacheable on a '040 and write-through on a
1263 * '060. But analysis of the reasons for this, and practical
1264 * experience, showed that write-through also works on a '040.
1265 *
1266 * Allocated memory so far goes from kernel_end to memory_start that
1267 * is used for all kind of tables, for that the cache attributes
1268 * are now fixed.
1269 */
1270L(mmu_fixup):
1271
1272	is_not_040_or_060(L(mmu_fixup_done))
1273
1274#ifdef MMU_NOCACHE_KERNEL
1275	jbra	L(mmu_fixup_done)
1276#endif
1277
1278	/* first fix the page at the start of the kernel, that
1279	 * contains also kernel_pg_dir.
1280	 */
1281	movel	%pc@(L(phys_kernel_start)),%d0
1282	subl	#PAGE_OFFSET,%d0
1283	lea	%pc@(_stext),%a0
1284	subl	%d0,%a0
1285	mmu_fixup_page_mmu_cache	%a0
1286
1287	movel	%pc@(L(kernel_end)),%a0
1288	subl	%d0,%a0
1289	movel	%pc@(L(memory_start)),%a1
1290	subl	%d0,%a1
1291	bra	2f
12921:
1293	mmu_fixup_page_mmu_cache	%a0
1294	addw	#PAGESIZE,%a0
12952:
1296	cmpl	%a0,%a1
1297	jgt	1b
1298
1299L(mmu_fixup_done):
1300
1301#ifdef MMU_PRINT
1302	mmu_print
1303#endif
1304
1305/*
1306 * mmu_engage
1307 *
1308 * This chunk of code performs the gruesome task of engaging the MMU.
1309 * The reason its gruesome is because when the MMU becomes engaged it
1310 * maps logical addresses to physical addresses.  The Program Counter
1311 * register is then passed through the MMU before the next instruction
1312 * is fetched (the instruction following the engage MMU instruction).
1313 * This may mean one of two things:
1314 * 1. The Program Counter falls within the logical address space of
1315 *    the kernel of which there are two sub-possibilities:
1316 *    A. The PC maps to the correct instruction (logical PC == physical
1317 *       code location), or
1318 *    B. The PC does not map through and the processor will read some
1319 *       data (or instruction) which is not the logically next instr.
1320 *    As you can imagine, A is good and B is bad.
1321 * Alternatively,
1322 * 2. The Program Counter does not map through the MMU.  The processor
1323 *    will take a Bus Error.
1324 * Clearly, 2 is bad.
1325 * It doesn't take a wiz kid to figure you want 1.A.
1326 * This code creates that possibility.
1327 * There are two possible 1.A. states (we now ignore the other above states):
1328 * A. The kernel is located at physical memory addressed the same as
1329 *    the logical memory for the kernel, i.e., 0x01000.
1330 * B. The kernel is located some where else.  e.g., 0x0400.0000
1331 *
1332 *    Under some conditions the Macintosh can look like A or B.
1333 * [A friend and I once noted that Apple hardware engineers should be
1334 * wacked twice each day: once when they show up at work (as in, Whack!,
1335 * "This is for the screwy hardware we know you're going to design today."),
1336 * and also at the end of the day (as in, Whack! "I don't know what
1337 * you designed today, but I'm sure it wasn't good."). -- rst]
1338 *
1339 * This code works on the following premise:
1340 * If the kernel start (%d5) is within the first 16 Meg of RAM,
1341 * then create a mapping for the kernel at logical 0x8000.0000 to
1342 * the physical location of the pc.  And, create a transparent
1343 * translation register for the first 16 Meg.  Then, after the MMU
1344 * is engaged, the PC can be moved up into the 0x8000.0000 range
1345 * and then the transparent translation can be turned off and then
1346 * the PC can jump to the correct logical location and it will be
1347 * home (finally).  This is essentially the code that the Amiga used
1348 * to use.  Now, it's generalized for all processors.  Which means
1349 * that a fresh (but temporary) mapping has to be created.  The mapping
1350 * is made in page 0 (an as of yet unused location -- except for the
1351 * stack!).  This temporary mapping will only require 1 pointer table
1352 * and a single page table (it can map 256K).
1353 *
1354 * OK, alternatively, imagine that the Program Counter is not within
1355 * the first 16 Meg.  Then, just use Transparent Translation registers
1356 * to do the right thing.
1357 *
1358 * Last, if _start is already at 0x01000, then there's nothing special
1359 * to do (in other words, in a degenerate case of the first case above,
1360 * do nothing).
1361 *
1362 * Let's do it.
1363 *
1364 *
1365 */
1366
1367	putc	'H'
1368
1369	mmu_engage
1370
1371/*
1372 * After this point no new memory is allocated and
1373 * the start of available memory is stored in availmem.
1374 * (The bootmem allocator requires now the physicall address.)
1375 */
1376
1377	movel	L(memory_start),availmem
1378
1379#ifdef CONFIG_AMIGA
1380	is_not_amiga(1f)
1381	/* fixup the Amiga custom register location before printing */
1382	clrl	L(custom)
13831:
1384#endif
1385
1386#ifdef CONFIG_ATARI
1387	is_not_atari(1f)
1388	/* fixup the Atari iobase register location before printing */
1389	movel	#0xff000000,L(iobase)
13901:
1391#endif
1392
1393#ifdef CONFIG_MAC
1394	is_not_mac(1f)
1395	movel	#~VIDEOMEMMASK,%d0
1396	andl	L(mac_videobase),%d0
1397	addl	#VIDEOMEMBASE,%d0
1398	movel	%d0,L(mac_videobase)
1399#if defined(CONSOLE)
1400	movel	%pc@(L(phys_kernel_start)),%d0
1401	subl	#PAGE_OFFSET,%d0
1402	subl	%d0,L(console_font)
1403	subl	%d0,L(console_font_data)
1404#endif
1405#ifdef SERIAL_DEBUG
1406	orl	#0x50000000,L(mac_sccbase)
1407#endif
14081:
1409#endif
1410
1411#ifdef CONFIG_HP300
1412	is_not_hp300(2f)
1413	/*
1414	 * Fix up the iobase register to point to the new location of the LEDs.
1415	 */
1416	movel	#0xf0000000,L(iobase)
1417
1418	/*
1419	 * Energise the FPU and caches.
1420	 */
1421	is_040(1f)
1422	movel	#0x60,0xf05f400c
1423	jbra	2f
1424
1425	/*
1426	 * 040: slightly different, apparently.
1427	 */
14281:	movew	#0,0xf05f400e
1429	movew	#0x64,0xf05f400e
14302:
1431#endif
1432
1433#ifdef CONFIG_SUN3X
1434	is_not_sun3x(1f)
1435
1436	/* enable copro */
1437	oriw	#0x4000,0x61000000
14381:
1439#endif
1440
1441#ifdef CONFIG_APOLLO
1442	is_not_apollo(1f)
1443
1444	/*
1445	 * Fix up the iobase before printing
1446	 */
1447	movel	#0x80000000,L(iobase)
14481:
1449#endif
1450
1451	putc	'I'
1452	leds	0x10
1453
1454/*
1455 * Enable caches
1456 */
1457
1458	is_not_040_or_060(L(cache_not_680460))
1459
1460L(cache680460):
1461	.chip	68040
1462	nop
1463	cpusha	%bc
1464	nop
1465
1466	is_060(L(cache68060))
1467
1468	movel	#CC6_ENABLE_D+CC6_ENABLE_I,%d0
1469	/* MMU stuff works in copyback mode now, so enable the cache */
1470	movec	%d0,%cacr
1471	jra	L(cache_done)
1472
1473L(cache68060):
1474	movel	#CC6_ENABLE_D+CC6_ENABLE_I+CC6_ENABLE_SB+CC6_PUSH_DPI+CC6_ENABLE_B+CC6_CLRA_B,%d0
1475	/* MMU stuff works in copyback mode now, so enable the cache */
1476	movec	%d0,%cacr
1477	/* enable superscalar dispatch in PCR */
1478	moveq	#1,%d0
1479	.chip	68060
1480	movec	%d0,%pcr
1481
1482	jbra	L(cache_done)
1483L(cache_not_680460):
1484L(cache68030):
1485	.chip	68030
1486	movel	#CC3_ENABLE_DB+CC3_CLR_D+CC3_ENABLE_D+CC3_ENABLE_IB+CC3_CLR_I+CC3_ENABLE_I,%d0
1487	movec	%d0,%cacr
1488
1489	jra	L(cache_done)
1490	.chip	68k
1491L(cache_done):
1492
1493	putc	'J'
1494
1495/*
1496 * Setup initial stack pointer
1497 */
1498	lea	init_task,%curptr
1499	lea	init_thread_union+THREAD_SIZE,%sp
1500
1501	putc	'K'
1502
1503	subl	%a6,%a6		/* clear a6 for gdb */
1504
1505/*
1506 * The new 64bit printf support requires an early exception initialization.
1507 */
1508	jbsr	base_trap_init
1509
1510/* jump to the kernel start */
1511
1512	putc	'\n'
1513	leds	0x55
1514
1515	jbsr	start_kernel
1516
1517/*
1518 * Find a tag record in the bootinfo structure
1519 * The bootinfo structure is located right after the kernel
1520 * Returns: d0: size (-1 if not found)
1521 *          a0: data pointer (end-of-records if not found)
1522 */
1523func_start	get_bi_record,%d1
1524
1525	movel	ARG1,%d0
1526	lea	%pc@(_end),%a0
15271:	tstw	%a0@(BIR_TAG)
1528	jeq	3f
1529	cmpw	%a0@(BIR_TAG),%d0
1530	jeq	2f
1531	addw	%a0@(BIR_SIZE),%a0
1532	jra	1b
15332:	moveq	#0,%d0
1534	movew	%a0@(BIR_SIZE),%d0
1535	lea	%a0@(BIR_DATA),%a0
1536	jra	4f
15373:	moveq	#-1,%d0
1538	lea	%a0@(BIR_SIZE),%a0
15394:
1540func_return	get_bi_record
1541
1542
1543/*
1544 *	MMU Initialization Begins Here
1545 *
1546 *	The structure of the MMU tables on the 68k machines
1547 *	is thus:
1548 *	Root Table
1549 *		Logical addresses are translated through
1550 *	a hierarchical translation mechanism where the high-order
1551 *	seven bits of the logical address (LA) are used as an
1552 *	index into the "root table."  Each entry in the root
1553 *	table has a bit which specifies if it's a valid pointer to a
1554 *	pointer table.  Each entry defines a 32KMeg range of memory.
1555 *	If an entry is invalid then that logical range of 32M is
1556 *	invalid and references to that range of memory (when the MMU
1557 *	is enabled) will fault.  If the entry is valid, then it does
1558 *	one of two things.  On 040/060 class machines, it points to
1559 *	a pointer table which then describes more finely the memory
1560 *	within that 32M range.  On 020/030 class machines, a technique
1561 *	called "early terminating descriptors" are used.  This technique
1562 *	allows an entire 32Meg to be described by a single entry in the
1563 *	root table.  Thus, this entry in the root table, contains the
1564 *	physical address of the memory or I/O at the logical address
1565 *	which the entry represents and it also contains the necessary
1566 *	cache bits for this region.
1567 *
1568 *	Pointer Tables
1569 *		Per the Root Table, there will be one or more
1570 *	pointer tables.  Each pointer table defines a 32M range.
1571 *	Not all of the 32M range need be defined.  Again, the next
1572 *	seven bits of the logical address are used an index into
1573 *	the pointer table to point to page tables (if the pointer
1574 *	is valid).  There will undoubtedly be more than one
1575 *	pointer table for the kernel because each pointer table
1576 *	defines a range of only 32M.  Valid pointer table entries
1577 *	point to page tables, or are early terminating entries
1578 *	themselves.
1579 *
1580 *	Page Tables
1581 *		Per the Pointer Tables, each page table entry points
1582 *	to the physical page in memory that supports the logical
1583 *	address that translates to the particular index.
1584 *
1585 *	In short, the Logical Address gets translated as follows:
1586 *		bits 31..26 - index into the Root Table
1587 *		bits 25..18 - index into the Pointer Table
1588 *		bits 17..12 - index into the Page Table
1589 *		bits 11..0  - offset into a particular 4K page
1590 *
1591 *	The algorithms which follows do one thing: they abstract
1592 *	the MMU hardware.  For example, there are three kinds of
1593 *	cache settings that are relevant.  Either, memory is
1594 *	being mapped in which case it is either Kernel Code (or
1595 *	the RamDisk) or it is MMU data.  On the 030, the MMU data
1596 *	option also describes the kernel.  Or, I/O is being mapped
1597 *	in which case it has its own kind of cache bits.  There
1598 *	are constants which abstract these notions from the code that
1599 *	actually makes the call to map some range of memory.
1600 *
1601 *
1602 *
1603 */
1604
1605#ifdef MMU_PRINT
1606/*
1607 *	mmu_print
1608 *
1609 *	This algorithm will print out the current MMU mappings.
1610 *
1611 *	Input:
1612 *		%a5 points to the root table.  Everything else is calculated
1613 *			from this.
1614 */
1615
1616#define mmu_next_valid		0
1617#define mmu_start_logical	4
1618#define mmu_next_logical	8
1619#define mmu_start_physical	12
1620#define mmu_next_physical	16
1621
1622#define MMU_PRINT_INVALID		-1
1623#define MMU_PRINT_VALID			1
1624#define MMU_PRINT_UNINITED		0
1625
1626#define putZc(z,n)		jbne 1f; putc z; jbra 2f; 1: putc n; 2:
1627
1628func_start	mmu_print,%a0-%a6/%d0-%d7
1629
1630	movel	%pc@(L(kernel_pgdir_ptr)),%a5
1631	lea	%pc@(L(mmu_print_data)),%a0
1632	movel	#MMU_PRINT_UNINITED,%a0@(mmu_next_valid)
1633
1634	is_not_040_or_060(mmu_030_print)
1635
1636mmu_040_print:
1637	puts	"\nMMU040\n"
1638	puts	"rp:"
1639	putn	%a5
1640	putc	'\n'
1641#if 0
1642	/*
1643	 * The following #if/#endif block is a tight algorithm for dumping the 040
1644	 * MMU Map in gory detail.  It really isn't that practical unless the
1645	 * MMU Map algorithm appears to go awry and you need to debug it at the
1646	 * entry per entry level.
1647	 */
1648	movel	#ROOT_TABLE_SIZE,%d5
1649#if 0
1650	movel	%a5@+,%d7		| Burn an entry to skip the kernel mappings,
1651	subql	#1,%d5			| they (might) work
1652#endif
16531:	tstl	%d5
1654	jbeq	mmu_print_done
1655	subq	#1,%d5
1656	movel	%a5@+,%d7
1657	btst	#1,%d7
1658	jbeq	1b
1659
16602:	putn	%d7
1661	andil	#0xFFFFFE00,%d7
1662	movel	%d7,%a4
1663	movel	#PTR_TABLE_SIZE,%d4
1664	putc	' '
16653:	tstl	%d4
1666	jbeq	11f
1667	subq	#1,%d4
1668	movel	%a4@+,%d7
1669	btst	#1,%d7
1670	jbeq	3b
1671
16724:	putn	%d7
1673	andil	#0xFFFFFF00,%d7
1674	movel	%d7,%a3
1675	movel	#PAGE_TABLE_SIZE,%d3
16765:	movel	#8,%d2
16776:	tstl	%d3
1678	jbeq	31f
1679	subq	#1,%d3
1680	movel	%a3@+,%d6
1681	btst	#0,%d6
1682	jbeq	6b
16837:	tstl	%d2
1684	jbeq	8f
1685	subq	#1,%d2
1686	putc	' '
1687	jbra	91f
16888:	putc	'\n'
1689	movel	#8+1+8+1+1,%d2
16909:	putc	' '
1691	dbra	%d2,9b
1692	movel	#7,%d2
169391:	putn	%d6
1694	jbra	6b
1695
169631:	putc	'\n'
1697	movel	#8+1,%d2
169832:	putc	' '
1699	dbra	%d2,32b
1700	jbra	3b
1701
170211:	putc	'\n'
1703	jbra	1b
1704#endif /* MMU 040 Dumping code that's gory and detailed */
1705
1706	lea	%pc@(kernel_pg_dir),%a5
1707	movel	%a5,%a0			/* a0 has the address of the root table ptr */
1708	movel	#0x00000000,%a4		/* logical address */
1709	moveql	#0,%d0
171040:
1711	/* Increment the logical address and preserve in d5 */
1712	movel	%a4,%d5
1713	addil	#PAGESIZE<<13,%d5
1714	movel	%a0@+,%d6
1715	btst	#1,%d6
1716	jbne	41f
1717	jbsr	mmu_print_tuple_invalidate
1718	jbra	48f
171941:
1720	movel	#0,%d1
1721	andil	#0xfffffe00,%d6
1722	movel	%d6,%a1
172342:
1724	movel	%a4,%d5
1725	addil	#PAGESIZE<<6,%d5
1726	movel	%a1@+,%d6
1727	btst	#1,%d6
1728	jbne	43f
1729	jbsr	mmu_print_tuple_invalidate
1730	jbra	47f
173143:
1732	movel	#0,%d2
1733	andil	#0xffffff00,%d6
1734	movel	%d6,%a2
173544:
1736	movel	%a4,%d5
1737	addil	#PAGESIZE,%d5
1738	movel	%a2@+,%d6
1739	btst	#0,%d6
1740	jbne	45f
1741	jbsr	mmu_print_tuple_invalidate
1742	jbra	46f
174345:
1744	moveml	%d0-%d1,%sp@-
1745	movel	%a4,%d0
1746	movel	%d6,%d1
1747	andil	#0xfffff4e0,%d1
1748	lea	%pc@(mmu_040_print_flags),%a6
1749	jbsr	mmu_print_tuple
1750	moveml	%sp@+,%d0-%d1
175146:
1752	movel	%d5,%a4
1753	addq	#1,%d2
1754	cmpib	#64,%d2
1755	jbne	44b
175647:
1757	movel	%d5,%a4
1758	addq	#1,%d1
1759	cmpib	#128,%d1
1760	jbne	42b
176148:
1762	movel	%d5,%a4			/* move to the next logical address */
1763	addq	#1,%d0
1764	cmpib	#128,%d0
1765	jbne	40b
1766
1767	.chip	68040
1768	movec	%dtt1,%d0
1769	movel	%d0,%d1
1770	andiw	#0x8000,%d1		/* is it valid ? */
1771	jbeq	1f			/* No, bail out */
1772
1773	movel	%d0,%d1
1774	andil	#0xff000000,%d1		/* Get the address */
1775	putn	%d1
1776	puts	"=="
1777	putn	%d1
1778
1779	movel	%d0,%d6
1780	jbsr	mmu_040_print_flags_tt
17811:
1782	movec	%dtt0,%d0
1783	movel	%d0,%d1
1784	andiw	#0x8000,%d1		/* is it valid ? */
1785	jbeq	1f			/* No, bail out */
1786
1787	movel	%d0,%d1
1788	andil	#0xff000000,%d1		/* Get the address */
1789	putn	%d1
1790	puts	"=="
1791	putn	%d1
1792
1793	movel	%d0,%d6
1794	jbsr	mmu_040_print_flags_tt
17951:
1796	.chip	68k
1797
1798	jbra	mmu_print_done
1799
1800mmu_040_print_flags:
1801	btstl	#10,%d6
1802	putZc(' ','G')	/* global bit */
1803	btstl	#7,%d6
1804	putZc(' ','S')	/* supervisor bit */
1805mmu_040_print_flags_tt:
1806	btstl	#6,%d6
1807	jbne	3f
1808	putc	'C'
1809	btstl	#5,%d6
1810	putZc('w','c')	/* write through or copy-back */
1811	jbra	4f
18123:
1813	putc	'N'
1814	btstl	#5,%d6
1815	putZc('s',' ')	/* serialized non-cacheable, or non-cacheable */
18164:
1817	rts
1818
1819mmu_030_print_flags:
1820	btstl	#6,%d6
1821	putZc('C','I')	/* write through or copy-back */
1822	rts
1823
1824mmu_030_print:
1825	puts	"\nMMU030\n"
1826	puts	"\nrp:"
1827	putn	%a5
1828	putc	'\n'
1829	movel	%a5,%d0
1830	andil	#0xfffffff0,%d0
1831	movel	%d0,%a0
1832	movel	#0x00000000,%a4		/* logical address */
1833	movel	#0,%d0
183430:
1835	movel	%a4,%d5
1836	addil	#PAGESIZE<<13,%d5
1837	movel	%a0@+,%d6
1838	btst	#1,%d6			/* is it a table ptr? */
1839	jbne	31f			/* yes */
1840	btst	#0,%d6			/* is it early terminating? */
1841	jbeq	1f			/* no */
1842	jbsr	mmu_030_print_helper
1843	jbra	38f
18441:
1845	jbsr	mmu_print_tuple_invalidate
1846	jbra	38f
184731:
1848	movel	#0,%d1
1849	andil	#0xfffffff0,%d6
1850	movel	%d6,%a1
185132:
1852	movel	%a4,%d5
1853	addil	#PAGESIZE<<6,%d5
1854	movel	%a1@+,%d6
1855	btst	#1,%d6			/* is it a table ptr? */
1856	jbne	33f			/* yes */
1857	btst	#0,%d6			/* is it a page descriptor? */
1858	jbeq	1f			/* no */
1859	jbsr	mmu_030_print_helper
1860	jbra	37f
18611:
1862	jbsr	mmu_print_tuple_invalidate
1863	jbra	37f
186433:
1865	movel	#0,%d2
1866	andil	#0xfffffff0,%d6
1867	movel	%d6,%a2
186834:
1869	movel	%a4,%d5
1870	addil	#PAGESIZE,%d5
1871	movel	%a2@+,%d6
1872	btst	#0,%d6
1873	jbne	35f
1874	jbsr	mmu_print_tuple_invalidate
1875	jbra	36f
187635:
1877	jbsr	mmu_030_print_helper
187836:
1879	movel	%d5,%a4
1880	addq	#1,%d2
1881	cmpib	#64,%d2
1882	jbne	34b
188337:
1884	movel	%d5,%a4
1885	addq	#1,%d1
1886	cmpib	#128,%d1
1887	jbne	32b
188838:
1889	movel	%d5,%a4			/* move to the next logical address */
1890	addq	#1,%d0
1891	cmpib	#128,%d0
1892	jbne	30b
1893
1894mmu_print_done:
1895	puts	"\n"
1896
1897func_return	mmu_print
1898
1899
1900mmu_030_print_helper:
1901	moveml	%d0-%d1,%sp@-
1902	movel	%a4,%d0
1903	movel	%d6,%d1
1904	lea	%pc@(mmu_030_print_flags),%a6
1905	jbsr	mmu_print_tuple
1906	moveml	%sp@+,%d0-%d1
1907	rts
1908
1909mmu_print_tuple_invalidate:
1910	moveml	%a0/%d7,%sp@-
1911
1912	lea	%pc@(L(mmu_print_data)),%a0
1913	tstl	%a0@(mmu_next_valid)
1914	jbmi	mmu_print_tuple_invalidate_exit
1915
1916	movel	#MMU_PRINT_INVALID,%a0@(mmu_next_valid)
1917
1918	putn	%a4
1919
1920	puts	"##\n"
1921
1922mmu_print_tuple_invalidate_exit:
1923	moveml	%sp@+,%a0/%d7
1924	rts
1925
1926
1927mmu_print_tuple:
1928	moveml	%d0-%d7/%a0,%sp@-
1929
1930	lea	%pc@(L(mmu_print_data)),%a0
1931
1932	tstl	%a0@(mmu_next_valid)
1933	jble	mmu_print_tuple_print
1934
1935	cmpl	%a0@(mmu_next_physical),%d1
1936	jbeq	mmu_print_tuple_increment
1937
1938mmu_print_tuple_print:
1939	putn	%d0
1940	puts	"->"
1941	putn	%d1
1942
1943	movel	%d1,%d6
1944	jbsr	%a6@
1945
1946mmu_print_tuple_record:
1947	movel	#MMU_PRINT_VALID,%a0@(mmu_next_valid)
1948
1949	movel	%d1,%a0@(mmu_next_physical)
1950
1951mmu_print_tuple_increment:
1952	movel	%d5,%d7
1953	subl	%a4,%d7
1954	addl	%d7,%a0@(mmu_next_physical)
1955
1956mmu_print_tuple_exit:
1957	moveml	%sp@+,%d0-%d7/%a0
1958	rts
1959
1960mmu_print_machine_cpu_types:
1961	puts	"machine: "
1962
1963	is_not_amiga(1f)
1964	puts	"amiga"
1965	jbra	9f
19661:
1967	is_not_atari(2f)
1968	puts	"atari"
1969	jbra	9f
19702:
1971	is_not_mac(3f)
1972	puts	"macintosh"
1973	jbra	9f
19743:	puts	"unknown"
19759:	putc	'\n'
1976
1977	puts	"cputype: 0"
1978	is_not_060(1f)
1979	putc	'6'
1980	jbra	9f
19811:
1982	is_not_040_or_060(2f)
1983	putc	'4'
1984	jbra	9f
19852:	putc	'3'
19869:	putc	'0'
1987	putc	'\n'
1988
1989	rts
1990#endif /* MMU_PRINT */
1991
1992/*
1993 * mmu_map_tt
1994 *
1995 * This is a specific function which works on all 680x0 machines.
1996 * On 030, 040 & 060 it will attempt to use Transparent Translation
1997 * registers (tt1).
1998 * On 020 it will call the standard mmu_map which will use early
1999 * terminating descriptors.
2000 */
2001func_start	mmu_map_tt,%d0/%d1/%a0,4
2002
2003	dputs	"mmu_map_tt:"
2004	dputn	ARG1
2005	dputn	ARG2
2006	dputn	ARG3
2007	dputn	ARG4
2008	dputc	'\n'
2009
2010	is_020(L(do_map))
2011
2012	/* Extract the highest bit set
2013	 */
2014	bfffo	ARG3{#0,#32},%d1
2015	cmpw	#8,%d1
2016	jcc	L(do_map)
2017
2018	/* And get the mask
2019	 */
2020	moveq	#-1,%d0
2021	lsrl	%d1,%d0
2022	lsrl	#1,%d0
2023
2024	/* Mask the address
2025	 */
2026	movel	%d0,%d1
2027	notl	%d1
2028	andl	ARG2,%d1
2029
2030	/* Generate the upper 16bit of the tt register
2031	 */
2032	lsrl	#8,%d0
2033	orl	%d0,%d1
2034	clrw	%d1
2035
2036	is_040_or_060(L(mmu_map_tt_040))
2037
2038	/* set 030 specific bits (read/write access for supervisor mode
2039	 * (highest function code set, lower two bits masked))
2040	 */
2041	orw	#TTR_ENABLE+TTR_RWM+TTR_FCB2+TTR_FCM1+TTR_FCM0,%d1
2042	movel	ARG4,%d0
2043	btst	#6,%d0
2044	jeq	1f
2045	orw	#TTR_CI,%d1
2046
20471:	lea	STACK,%a0
2048	dputn	%d1
2049	movel	%d1,%a0@
2050	.chip	68030
2051	tstl	ARG1
2052	jne	1f
2053	pmove	%a0@,%tt0
2054	jra	2f
20551:	pmove	%a0@,%tt1
20562:	.chip	68k
2057	jra	L(mmu_map_tt_done)
2058
2059	/* set 040 specific bits
2060	 */
2061L(mmu_map_tt_040):
2062	orw	#TTR_ENABLE+TTR_KERNELMODE,%d1
2063	orl	ARG4,%d1
2064	dputn	%d1
2065
2066	.chip	68040
2067	tstl	ARG1
2068	jne	1f
2069	movec	%d1,%itt0
2070	movec	%d1,%dtt0
2071	jra	2f
20721:	movec	%d1,%itt1
2073	movec	%d1,%dtt1
20742:	.chip	68k
2075
2076	jra	L(mmu_map_tt_done)
2077
2078L(do_map):
2079	mmu_map_eq	ARG2,ARG3,ARG4
2080
2081L(mmu_map_tt_done):
2082
2083func_return	mmu_map_tt
2084
2085/*
2086 *	mmu_map
2087 *
2088 *	This routine will map a range of memory using a pointer
2089 *	table and allocating the pages on the fly from the kernel.
2090 *	The pointer table does not have to be already linked into
2091 *	the root table, this routine will do that if necessary.
2092 *
2093 *	NOTE
2094 *	This routine will assert failure and use the serial_putc
2095 *	routines in the case of a run-time error.  For example,
2096 *	if the address is already mapped.
2097 *
2098 *	NOTE-2
2099 *	This routine will use early terminating descriptors
2100 *	where possible for the 68020+68851 and 68030 type
2101 *	processors.
2102 */
2103func_start	mmu_map,%d0-%d4/%a0-%a4
2104
2105	dputs	"\nmmu_map:"
2106	dputn	ARG1
2107	dputn	ARG2
2108	dputn	ARG3
2109	dputn	ARG4
2110	dputc	'\n'
2111
2112	/* Get logical address and round it down to 256KB
2113	 */
2114	movel	ARG1,%d0
2115	andl	#-(PAGESIZE*PAGE_TABLE_SIZE),%d0
2116	movel	%d0,%a3
2117
2118	/* Get the end address
2119	 */
2120	movel	ARG1,%a4
2121	addl	ARG3,%a4
2122	subql	#1,%a4
2123
2124	/* Get physical address and round it down to 256KB
2125	 */
2126	movel	ARG2,%d0
2127	andl	#-(PAGESIZE*PAGE_TABLE_SIZE),%d0
2128	movel	%d0,%a2
2129
2130	/* Add page attributes to the physical address
2131	 */
2132	movel	ARG4,%d0
2133	orw	#_PAGE_PRESENT+_PAGE_ACCESSED+_PAGE_DIRTY,%d0
2134	addw	%d0,%a2
2135
2136	dputn	%a2
2137	dputn	%a3
2138	dputn	%a4
2139
2140	is_not_040_or_060(L(mmu_map_030))
2141
2142	addw	#_PAGE_GLOBAL040,%a2
2143/*
2144 *	MMU 040 & 060 Support
2145 *
2146 *	The MMU usage for the 040 and 060 is different enough from
2147 *	the 030 and 68851 that there is separate code.  This comment
2148 *	block describes the data structures and algorithms built by
2149 *	this code.
2150 *
2151 *	The 040 does not support early terminating descriptors, as
2152 *	the 030 does.  Therefore, a third level of table is needed
2153 *	for the 040, and that would be the page table.  In Linux,
2154 *	page tables are allocated directly from the memory above the
2155 *	kernel.
2156 *
2157 */
2158
2159L(mmu_map_040):
2160	/* Calculate the offset into the root table
2161	 */
2162	movel	%a3,%d0
2163	moveq	#ROOT_INDEX_SHIFT,%d1
2164	lsrl	%d1,%d0
2165	mmu_get_root_table_entry	%d0
2166
2167	/* Calculate the offset into the pointer table
2168	 */
2169	movel	%a3,%d0
2170	moveq	#PTR_INDEX_SHIFT,%d1
2171	lsrl	%d1,%d0
2172	andl	#PTR_TABLE_SIZE-1,%d0
2173	mmu_get_ptr_table_entry		%a0,%d0
2174
2175	/* Calculate the offset into the page table
2176	 */
2177	movel	%a3,%d0
2178	moveq	#PAGE_INDEX_SHIFT,%d1
2179	lsrl	%d1,%d0
2180	andl	#PAGE_TABLE_SIZE-1,%d0
2181	mmu_get_page_table_entry	%a0,%d0
2182
2183	/* The page table entry must not no be busy
2184	 */
2185	tstl	%a0@
2186	jne	L(mmu_map_error)
2187
2188	/* Do the mapping and advance the pointers
2189	 */
2190	movel	%a2,%a0@
21912:
2192	addw	#PAGESIZE,%a2
2193	addw	#PAGESIZE,%a3
2194
2195	/* Ready with mapping?
2196	 */
2197	lea	%a3@(-1),%a0
2198	cmpl	%a0,%a4
2199	jhi	L(mmu_map_040)
2200	jra	L(mmu_map_done)
2201
2202L(mmu_map_030):
2203	/* Calculate the offset into the root table
2204	 */
2205	movel	%a3,%d0
2206	moveq	#ROOT_INDEX_SHIFT,%d1
2207	lsrl	%d1,%d0
2208	mmu_get_root_table_entry	%d0
2209
2210	/* Check if logical address 32MB aligned,
2211	 * so we can try to map it once
2212	 */
2213	movel	%a3,%d0
2214	andl	#(PTR_TABLE_SIZE*PAGE_TABLE_SIZE*PAGESIZE-1)&(-ROOT_TABLE_SIZE),%d0
2215	jne	1f
2216
2217	/* Is there enough to map for 32MB at once
2218	 */
2219	lea	%a3@(PTR_TABLE_SIZE*PAGE_TABLE_SIZE*PAGESIZE-1),%a1
2220	cmpl	%a1,%a4
2221	jcs	1f
2222
2223	addql	#1,%a1
2224
2225	/* The root table entry must not no be busy
2226	 */
2227	tstl	%a0@
2228	jne	L(mmu_map_error)
2229
2230	/* Do the mapping and advance the pointers
2231	 */
2232	dputs	"early term1"
2233	dputn	%a2
2234	dputn	%a3
2235	dputn	%a1
2236	dputc	'\n'
2237	movel	%a2,%a0@
2238
2239	movel	%a1,%a3
2240	lea	%a2@(PTR_TABLE_SIZE*PAGE_TABLE_SIZE*PAGESIZE),%a2
2241	jra	L(mmu_mapnext_030)
22421:
2243	/* Calculate the offset into the pointer table
2244	 */
2245	movel	%a3,%d0
2246	moveq	#PTR_INDEX_SHIFT,%d1
2247	lsrl	%d1,%d0
2248	andl	#PTR_TABLE_SIZE-1,%d0
2249	mmu_get_ptr_table_entry		%a0,%d0
2250
2251	/* The pointer table entry must not no be busy
2252	 */
2253	tstl	%a0@
2254	jne	L(mmu_map_error)
2255
2256	/* Do the mapping and advance the pointers
2257	 */
2258	dputs	"early term2"
2259	dputn	%a2
2260	dputn	%a3
2261	dputc	'\n'
2262	movel	%a2,%a0@
2263
2264	addl	#PAGE_TABLE_SIZE*PAGESIZE,%a2
2265	addl	#PAGE_TABLE_SIZE*PAGESIZE,%a3
2266
2267L(mmu_mapnext_030):
2268	/* Ready with mapping?
2269	 */
2270	lea	%a3@(-1),%a0
2271	cmpl	%a0,%a4
2272	jhi	L(mmu_map_030)
2273	jra	L(mmu_map_done)
2274
2275L(mmu_map_error):
2276
2277	dputs	"mmu_map error:"
2278	dputn	%a2
2279	dputn	%a3
2280	dputc	'\n'
2281
2282L(mmu_map_done):
2283
2284func_return	mmu_map
2285
2286/*
2287 *	mmu_fixup
2288 *
2289 *	On the 040 class machines, all pages that are used for the
2290 *	mmu have to be fixed up.
2291 */
2292
2293func_start	mmu_fixup_page_mmu_cache,%d0/%a0
2294
2295	dputs	"mmu_fixup_page_mmu_cache"
2296	dputn	ARG1
2297
2298	/* Calculate the offset into the root table
2299	 */
2300	movel	ARG1,%d0
2301	moveq	#ROOT_INDEX_SHIFT,%d1
2302	lsrl	%d1,%d0
2303	mmu_get_root_table_entry	%d0
2304
2305	/* Calculate the offset into the pointer table
2306	 */
2307	movel	ARG1,%d0
2308	moveq	#PTR_INDEX_SHIFT,%d1
2309	lsrl	%d1,%d0
2310	andl	#PTR_TABLE_SIZE-1,%d0
2311	mmu_get_ptr_table_entry		%a0,%d0
2312
2313	/* Calculate the offset into the page table
2314	 */
2315	movel	ARG1,%d0
2316	moveq	#PAGE_INDEX_SHIFT,%d1
2317	lsrl	%d1,%d0
2318	andl	#PAGE_TABLE_SIZE-1,%d0
2319	mmu_get_page_table_entry	%a0,%d0
2320
2321	movel	%a0@,%d0
2322	andil	#_CACHEMASK040,%d0
2323	orl	%pc@(m68k_pgtable_cachemode),%d0
2324	movel	%d0,%a0@
2325
2326	dputc	'\n'
2327
2328func_return	mmu_fixup_page_mmu_cache
2329
2330/*
2331 *	mmu_temp_map
2332 *
2333 *	create a temporary mapping to enable the mmu,
2334 *	this we don't need any transparation translation tricks.
2335 */
2336
2337func_start	mmu_temp_map,%d0/%d1/%a0/%a1
2338
2339	dputs	"mmu_temp_map"
2340	dputn	ARG1
2341	dputn	ARG2
2342	dputc	'\n'
2343
2344	lea	%pc@(L(temp_mmap_mem)),%a1
2345
2346	/* Calculate the offset in the root table
2347	 */
2348	movel	ARG2,%d0
2349	moveq	#ROOT_INDEX_SHIFT,%d1
2350	lsrl	%d1,%d0
2351	mmu_get_root_table_entry	%d0
2352
2353	/* Check if the table is temporary allocated, so we have to reuse it
2354	 */
2355	movel	%a0@,%d0
2356	cmpl	%pc@(L(memory_start)),%d0
2357	jcc	1f
2358
2359	/* Temporary allocate a ptr table and insert it into the root table
2360	 */
2361	movel	%a1@,%d0
2362	addl	#PTR_TABLE_SIZE*4,%a1@
2363	orw	#_PAGE_TABLE+_PAGE_ACCESSED,%d0
2364	movel	%d0,%a0@
2365	dputs	" (new)"
23661:
2367	dputn	%d0
2368	/* Mask the root table entry for the ptr table
2369	 */
2370	andw	#-ROOT_TABLE_SIZE,%d0
2371	movel	%d0,%a0
2372
2373	/* Calculate the offset into the pointer table
2374	 */
2375	movel	ARG2,%d0
2376	moveq	#PTR_INDEX_SHIFT,%d1
2377	lsrl	%d1,%d0
2378	andl	#PTR_TABLE_SIZE-1,%d0
2379	lea	%a0@(%d0*4),%a0
2380	dputn	%a0
2381
2382	/* Check if a temporary page table is already allocated
2383	 */
2384	movel	%a0@,%d0
2385	jne	1f
2386
2387	/* Temporary allocate a page table and insert it into the ptr table
2388	 */
2389	movel	%a1@,%d0
2390	/* The 512 should be PAGE_TABLE_SIZE*4, but that violates the
2391	   alignment restriction for pointer tables on the '0[46]0.  */
2392	addl	#512,%a1@
2393	orw	#_PAGE_TABLE+_PAGE_ACCESSED,%d0
2394	movel	%d0,%a0@
2395	dputs	" (new)"
23961:
2397	dputn	%d0
2398	/* Mask the ptr table entry for the page table
2399	 */
2400	andw	#-PTR_TABLE_SIZE,%d0
2401	movel	%d0,%a0
2402
2403	/* Calculate the offset into the page table
2404	 */
2405	movel	ARG2,%d0
2406	moveq	#PAGE_INDEX_SHIFT,%d1
2407	lsrl	%d1,%d0
2408	andl	#PAGE_TABLE_SIZE-1,%d0
2409	lea	%a0@(%d0*4),%a0
2410	dputn	%a0
2411
2412	/* Insert the address into the page table
2413	 */
2414	movel	ARG1,%d0
2415	andw	#-PAGESIZE,%d0
2416	orw	#_PAGE_PRESENT+_PAGE_ACCESSED+_PAGE_DIRTY,%d0
2417	movel	%d0,%a0@
2418	dputn	%d0
2419
2420	dputc	'\n'
2421
2422func_return	mmu_temp_map
2423
2424func_start	mmu_engage,%d0-%d2/%a0-%a3
2425
2426	moveq	#ROOT_TABLE_SIZE-1,%d0
2427	/* Temporarily use a different root table.  */
2428	lea	%pc@(L(kernel_pgdir_ptr)),%a0
2429	movel	%a0@,%a2
2430	movel	%pc@(L(memory_start)),%a1
2431	movel	%a1,%a0@
2432	movel	%a2,%a0
24331:
2434	movel	%a0@+,%a1@+
2435	dbra	%d0,1b
2436
2437	lea	%pc@(L(temp_mmap_mem)),%a0
2438	movel	%a1,%a0@
2439
2440	movew	#PAGESIZE-1,%d0
24411:
2442	clrl	%a1@+
2443	dbra	%d0,1b
2444
2445	lea	%pc@(1b),%a0
2446	movel	#1b,%a1
2447	/* Skip temp mappings if phys == virt */
2448	cmpl	%a0,%a1
2449	jeq	1f
2450
2451	mmu_temp_map	%a0,%a0
2452	mmu_temp_map	%a0,%a1
2453
2454	addw	#PAGESIZE,%a0
2455	addw	#PAGESIZE,%a1
2456	mmu_temp_map	%a0,%a0
2457	mmu_temp_map	%a0,%a1
24581:
2459	movel	%pc@(L(memory_start)),%a3
2460	movel	%pc@(L(phys_kernel_start)),%d2
2461
2462	is_not_040_or_060(L(mmu_engage_030))
2463
2464L(mmu_engage_040):
2465	.chip	68040
2466	nop
2467	cinva	%bc
2468	nop
2469	pflusha
2470	nop
2471	movec	%a3,%srp
2472	movel	#TC_ENABLE+TC_PAGE4K,%d0
2473	movec	%d0,%tc		/* enable the MMU */
2474	jmp	1f:l
24751:	nop
2476	movec	%a2,%srp
2477	nop
2478	cinva	%bc
2479	nop
2480	pflusha
2481	.chip	68k
2482	jra	L(mmu_engage_cleanup)
2483
2484L(mmu_engage_030_temp):
2485	.space	12
2486L(mmu_engage_030):
2487	.chip	68030
2488	lea	%pc@(L(mmu_engage_030_temp)),%a0
2489	movel	#0x80000002,%a0@
2490	movel	%a3,%a0@(4)
2491	movel	#0x0808,%d0
2492	movec	%d0,%cacr
2493	pmove	%a0@,%srp
2494	pflusha
2495	/*
2496	 * enable,super root enable,4096 byte pages,7 bit root index,
2497	 * 7 bit pointer index, 6 bit page table index.
2498	 */
2499	movel	#0x82c07760,%a0@(8)
2500	pmove	%a0@(8),%tc	/* enable the MMU */
2501	jmp	1f:l
25021:	movel	%a2,%a0@(4)
2503	movel	#0x0808,%d0
2504	movec	%d0,%cacr
2505	pmove	%a0@,%srp
2506	pflusha
2507	.chip	68k
2508
2509L(mmu_engage_cleanup):
2510	subl	#PAGE_OFFSET,%d2
2511	subl	%d2,%a2
2512	movel	%a2,L(kernel_pgdir_ptr)
2513	subl	%d2,%fp
2514	subl	%d2,%sp
2515	subl	%d2,ARG0
2516
2517func_return	mmu_engage
2518
2519func_start	mmu_get_root_table_entry,%d0/%a1
2520
2521#if 0
2522	dputs	"mmu_get_root_table_entry:"
2523	dputn	ARG1
2524	dputs	" ="
2525#endif
2526
2527	movel	%pc@(L(kernel_pgdir_ptr)),%a0
2528	tstl	%a0
2529	jne	2f
2530
2531	dputs	"\nmmu_init:"
2532
2533	/* Find the start of free memory, get_bi_record does this for us,
2534	 * as the bootinfo structure is located directly behind the kernel
2535	 * and and we simply search for the last entry.
2536	 */
2537	get_bi_record	BI_LAST
2538	addw	#PAGESIZE-1,%a0
2539	movel	%a0,%d0
2540	andw	#-PAGESIZE,%d0
2541
2542	dputn	%d0
2543
2544	lea	%pc@(L(memory_start)),%a0
2545	movel	%d0,%a0@
2546	lea	%pc@(L(kernel_end)),%a0
2547	movel	%d0,%a0@
2548
2549	/* we have to return the first page at _stext since the init code
2550	 * in mm/init.c simply expects kernel_pg_dir there, the rest of
2551	 * page is used for further ptr tables in get_ptr_table.
2552	 */
2553	lea	%pc@(_stext),%a0
2554	lea	%pc@(L(mmu_cached_pointer_tables)),%a1
2555	movel	%a0,%a1@
2556	addl	#ROOT_TABLE_SIZE*4,%a1@
2557
2558	lea	%pc@(L(mmu_num_pointer_tables)),%a1
2559	addql	#1,%a1@
2560
2561	/* clear the page
2562	 */
2563	movel	%a0,%a1
2564	movew	#PAGESIZE/4-1,%d0
25651:
2566	clrl	%a1@+
2567	dbra	%d0,1b
2568
2569	lea	%pc@(L(kernel_pgdir_ptr)),%a1
2570	movel	%a0,%a1@
2571
2572	dputn	%a0
2573	dputc	'\n'
25742:
2575	movel	ARG1,%d0
2576	lea	%a0@(%d0*4),%a0
2577
2578#if 0
2579	dputn	%a0
2580	dputc	'\n'
2581#endif
2582
2583func_return	mmu_get_root_table_entry
2584
2585
2586
2587func_start	mmu_get_ptr_table_entry,%d0/%a1
2588
2589#if 0
2590	dputs	"mmu_get_ptr_table_entry:"
2591	dputn	ARG1
2592	dputn	ARG2
2593	dputs	" ="
2594#endif
2595
2596	movel	ARG1,%a0
2597	movel	%a0@,%d0
2598	jne	2f
2599
2600	/* Keep track of the number of pointer tables we use
2601	 */
2602	dputs	"\nmmu_get_new_ptr_table:"
2603	lea	%pc@(L(mmu_num_pointer_tables)),%a0
2604	movel	%a0@,%d0
2605	addql	#1,%a0@
2606
2607	/* See if there is a free pointer table in our cache of pointer tables
2608	 */
2609	lea	%pc@(L(mmu_cached_pointer_tables)),%a1
2610	andw	#7,%d0
2611	jne	1f
2612
2613	/* Get a new pointer table page from above the kernel memory
2614	 */
2615	get_new_page
2616	movel	%a0,%a1@
26171:
2618	/* There is an unused pointer table in our cache... use it
2619	 */
2620	movel	%a1@,%d0
2621	addl	#PTR_TABLE_SIZE*4,%a1@
2622
2623	dputn	%d0
2624	dputc	'\n'
2625
2626	/* Insert the new pointer table into the root table
2627	 */
2628	movel	ARG1,%a0
2629	orw	#_PAGE_TABLE+_PAGE_ACCESSED,%d0
2630	movel	%d0,%a0@
26312:
2632	/* Extract the pointer table entry
2633	 */
2634	andw	#-PTR_TABLE_SIZE,%d0
2635	movel	%d0,%a0
2636	movel	ARG2,%d0
2637	lea	%a0@(%d0*4),%a0
2638
2639#if 0
2640	dputn	%a0
2641	dputc	'\n'
2642#endif
2643
2644func_return	mmu_get_ptr_table_entry
2645
2646
2647func_start	mmu_get_page_table_entry,%d0/%a1
2648
2649#if 0
2650	dputs	"mmu_get_page_table_entry:"
2651	dputn	ARG1
2652	dputn	ARG2
2653	dputs	" ="
2654#endif
2655
2656	movel	ARG1,%a0
2657	movel	%a0@,%d0
2658	jne	2f
2659
2660	/* If the page table entry doesn't exist, we allocate a complete new
2661	 * page and use it as one continues big page table which can cover
2662	 * 4MB of memory, nearly almost all mappings have that alignment.
2663	 */
2664	get_new_page
2665	addw	#_PAGE_TABLE+_PAGE_ACCESSED,%a0
2666
2667	/* align pointer table entry for a page of page tables
2668	 */
2669	movel	ARG1,%d0
2670	andw	#-(PAGESIZE/PAGE_TABLE_SIZE),%d0
2671	movel	%d0,%a1
2672
2673	/* Insert the page tables into the pointer entries
2674	 */
2675	moveq	#PAGESIZE/PAGE_TABLE_SIZE/4-1,%d0
26761:
2677	movel	%a0,%a1@+
2678	lea	%a0@(PAGE_TABLE_SIZE*4),%a0
2679	dbra	%d0,1b
2680
2681	/* Now we can get the initialized pointer table entry
2682	 */
2683	movel	ARG1,%a0
2684	movel	%a0@,%d0
26852:
2686	/* Extract the page table entry
2687	 */
2688	andw	#-PAGE_TABLE_SIZE,%d0
2689	movel	%d0,%a0
2690	movel	ARG2,%d0
2691	lea	%a0@(%d0*4),%a0
2692
2693#if 0
2694	dputn	%a0
2695	dputc	'\n'
2696#endif
2697
2698func_return	mmu_get_page_table_entry
2699
2700/*
2701 *	get_new_page
2702 *
2703 *	Return a new page from the memory start and clear it.
2704 */
2705func_start	get_new_page,%d0/%a1
2706
2707	dputs	"\nget_new_page:"
2708
2709	/* allocate the page and adjust memory_start
2710	 */
2711	lea	%pc@(L(memory_start)),%a0
2712	movel	%a0@,%a1
2713	addl	#PAGESIZE,%a0@
2714
2715	/* clear the new page
2716	 */
2717	movel	%a1,%a0
2718	movew	#PAGESIZE/4-1,%d0
27191:
2720	clrl	%a1@+
2721	dbra	%d0,1b
2722
2723	dputn	%a0
2724	dputc	'\n'
2725
2726func_return	get_new_page
2727
2728
2729
2730/*
2731 * Debug output support
2732 * Atarians have a choice between the parallel port, the serial port
2733 * from the MFP or a serial port of the SCC
2734 */
2735
2736#ifdef CONFIG_MAC
2737
2738L(scc_initable_mac):
2739	.byte	4,0x44		/* x16, 1 stopbit, no parity */
2740	.byte	3,0xc0		/* receiver: 8 bpc */
2741	.byte	5,0xe2		/* transmitter: 8 bpc, assert dtr/rts */
2742	.byte	10,0		/* NRZ */
2743	.byte	11,0x50		/* use baud rate generator */
2744	.byte	12,1,13,0	/* 38400 baud */
2745	.byte	14,1		/* Baud rate generator enable */
2746	.byte	3,0xc1		/* enable receiver */
2747	.byte	5,0xea		/* enable transmitter */
2748	.byte	-1
2749	.even
2750#endif
2751
2752#ifdef CONFIG_ATARI
2753/* #define USE_PRINTER */
2754/* #define USE_SCC_B */
2755/* #define USE_SCC_A */
2756#define USE_MFP
2757
2758#if defined(USE_SCC_A) || defined(USE_SCC_B)
2759#define USE_SCC
2760/* Initialisation table for SCC */
2761L(scc_initable):
2762	.byte	9,12		/* Reset */
2763	.byte	4,0x44		/* x16, 1 stopbit, no parity */
2764	.byte	3,0xc0		/* receiver: 8 bpc */
2765	.byte	5,0xe2		/* transmitter: 8 bpc, assert dtr/rts */
2766	.byte	9,0		/* no interrupts */
2767	.byte	10,0		/* NRZ */
2768	.byte	11,0x50		/* use baud rate generator */
2769	.byte	12,24,13,0	/* 9600 baud */
2770	.byte	14,2,14,3	/* use master clock for BRG, enable */
2771	.byte	3,0xc1		/* enable receiver */
2772	.byte	5,0xea		/* enable transmitter */
2773	.byte	-1
2774	.even
2775#endif
2776
2777#ifdef USE_PRINTER
2778
2779LPSG_SELECT	= 0xff8800
2780LPSG_READ	= 0xff8800
2781LPSG_WRITE	= 0xff8802
2782LPSG_IO_A	= 14
2783LPSG_IO_B	= 15
2784LPSG_CONTROL	= 7
2785LSTMFP_GPIP	= 0xfffa01
2786LSTMFP_DDR	= 0xfffa05
2787LSTMFP_IERB	= 0xfffa09
2788
2789#elif defined(USE_SCC_B)
2790
2791LSCC_CTRL	= 0xff8c85
2792LSCC_DATA	= 0xff8c87
2793
2794#elif defined(USE_SCC_A)
2795
2796LSCC_CTRL	= 0xff8c81
2797LSCC_DATA	= 0xff8c83
2798
2799#elif defined(USE_MFP)
2800
2801LMFP_UCR     = 0xfffa29
2802LMFP_TDCDR   = 0xfffa1d
2803LMFP_TDDR    = 0xfffa25
2804LMFP_TSR     = 0xfffa2d
2805LMFP_UDR     = 0xfffa2f
2806
2807#endif
2808#endif	/* CONFIG_ATARI */
2809
2810/*
2811 * Serial port output support.
2812 */
2813
2814/*
2815 * Initialize serial port hardware for 9600/8/1
2816 */
2817func_start	serial_init,%d0/%d1/%a0/%a1
2818	/*
2819	 *	Some of the register usage that follows
2820	 *	CONFIG_AMIGA
2821	 *		a0 = pointer to boot info record
2822	 *		d0 = boot info offset
2823	 *	CONFIG_ATARI
2824	 *		a0 = address of SCC
2825	 *		a1 = Liobase address/address of scc_initable
2826	 *		d0 = init data for serial port
2827	 *	CONFIG_MAC
2828	 *		a0 = address of SCC
2829	 *		a1 = address of scc_initable_mac
2830	 *		d0 = init data for serial port
2831	 */
2832
2833#ifdef CONFIG_AMIGA
2834#define SERIAL_DTR	7
2835#define SERIAL_CNTRL	CIABBASE+C_PRA
2836
2837	is_not_amiga(1f)
2838	lea	%pc@(L(custom)),%a0
2839	movel	#-ZTWOBASE,%a0@
2840	bclr	#SERIAL_DTR,SERIAL_CNTRL-ZTWOBASE
2841	get_bi_record	BI_AMIGA_SERPER
2842	movew	%a0@,CUSTOMBASE+C_SERPER-ZTWOBASE
2843|	movew	#61,CUSTOMBASE+C_SERPER-ZTWOBASE
28441:
2845#endif
2846#ifdef CONFIG_ATARI
2847	is_not_atari(4f)
2848	movel	%pc@(L(iobase)),%a1
2849#if defined(USE_PRINTER)
2850	bclr	#0,%a1@(LSTMFP_IERB)
2851	bclr	#0,%a1@(LSTMFP_DDR)
2852	moveb	#LPSG_CONTROL,%a1@(LPSG_SELECT)
2853	moveb	#0xff,%a1@(LPSG_WRITE)
2854	moveb	#LPSG_IO_B,%a1@(LPSG_SELECT)
2855	clrb	%a1@(LPSG_WRITE)
2856	moveb	#LPSG_IO_A,%a1@(LPSG_SELECT)
2857	moveb	%a1@(LPSG_READ),%d0
2858	bset	#5,%d0
2859	moveb	%d0,%a1@(LPSG_WRITE)
2860#elif defined(USE_SCC)
2861	lea	%a1@(LSCC_CTRL),%a0
2862	lea	%pc@(L(scc_initable)),%a1
28632:	moveb	%a1@+,%d0
2864	jmi	3f
2865	moveb	%d0,%a0@
2866	moveb	%a1@+,%a0@
2867	jra	2b
28683:	clrb	%a0@
2869#elif defined(USE_MFP)
2870	bclr	#1,%a1@(LMFP_TSR)
2871	moveb   #0x88,%a1@(LMFP_UCR)
2872	andb	#0x70,%a1@(LMFP_TDCDR)
2873	moveb   #2,%a1@(LMFP_TDDR)
2874	orb	#1,%a1@(LMFP_TDCDR)
2875	bset	#1,%a1@(LMFP_TSR)
2876#endif
2877	jra	L(serial_init_done)
28784:
2879#endif
2880#ifdef CONFIG_MAC
2881	is_not_mac(L(serial_init_not_mac))
2882
2883#ifdef SERIAL_DEBUG
2884
2885/* You may define either or both of these. */
2886#define MAC_USE_SCC_A /* Modem port */
2887#define MAC_USE_SCC_B /* Printer port */
2888
2889#define mac_scc_cha_b_ctrl_offset	0x0
2890#define mac_scc_cha_a_ctrl_offset	0x2
2891#define mac_scc_cha_b_data_offset	0x4
2892#define mac_scc_cha_a_data_offset	0x6
2893
2894#if defined(MAC_USE_SCC_A) || defined(MAC_USE_SCC_B)
2895	movel	%pc@(L(mac_sccbase)),%a0
2896	/* Reset SCC register pointer */
2897	moveb	%a0@(mac_scc_cha_a_ctrl_offset),%d0
2898	/* Reset SCC device: write register pointer then register value */
2899	moveb	#9,%a0@(mac_scc_cha_a_ctrl_offset)
2900	moveb	#0xc0,%a0@(mac_scc_cha_a_ctrl_offset)
2901	/* Wait for 5 PCLK cycles, which is about 68 CPU cycles */
2902	/* 5 / 3.6864 MHz = approx. 1.36 us = 68 / 50 MHz */
2903	movel	#35,%d0
29045:
2905	subq	#1,%d0
2906	jne	5b
2907#endif
2908
2909#ifdef MAC_USE_SCC_A
2910	/* Initialize channel A */
2911	lea	%pc@(L(scc_initable_mac)),%a1
29125:	moveb	%a1@+,%d0
2913	jmi	6f
2914	moveb	%d0,%a0@(mac_scc_cha_a_ctrl_offset)
2915	moveb	%a1@+,%a0@(mac_scc_cha_a_ctrl_offset)
2916	jra	5b
29176:
2918#endif	/* MAC_USE_SCC_A */
2919
2920#ifdef MAC_USE_SCC_B
2921	/* Initialize channel B */
2922	lea	%pc@(L(scc_initable_mac)),%a1
29237:	moveb	%a1@+,%d0
2924	jmi	8f
2925	moveb	%d0,%a0@(mac_scc_cha_b_ctrl_offset)
2926	moveb	%a1@+,%a0@(mac_scc_cha_b_ctrl_offset)
2927	jra	7b
29288:
2929#endif	/* MAC_USE_SCC_B */
2930
2931#endif	/* SERIAL_DEBUG */
2932
2933	jra	L(serial_init_done)
2934L(serial_init_not_mac):
2935#endif	/* CONFIG_MAC */
2936
2937#ifdef CONFIG_Q40
2938	is_not_q40(2f)
2939/* debug output goes into SRAM, so we don't do it unless requested
2940   - check for '%LX$' signature in SRAM   */
2941	lea	%pc@(q40_mem_cptr),%a1
2942	move.l	#0xff020010,%a1@  /* must be inited - also used by debug=mem */
2943	move.l	#0xff020000,%a1
2944	cmp.b	#'%',%a1@
2945	bne	2f	/*nodbg*/
2946	addq.w	#4,%a1
2947	cmp.b	#'L',%a1@
2948	bne	2f	/*nodbg*/
2949	addq.w	#4,%a1
2950	cmp.b	#'X',%a1@
2951	bne	2f	/*nodbg*/
2952	addq.w	#4,%a1
2953	cmp.b	#'$',%a1@
2954	bne	2f	/*nodbg*/
2955	/* signature OK */
2956	lea	%pc@(L(q40_do_debug)),%a1
2957	tas	%a1@
2958/*nodbg: q40_do_debug is 0 by default*/
29592:
2960#endif
2961
2962#ifdef CONFIG_APOLLO
2963/* We count on the PROM initializing SIO1 */
2964#endif
2965
2966#ifdef CONFIG_HP300
2967/* We count on the boot loader initialising the UART */
2968#endif
2969
2970L(serial_init_done):
2971func_return	serial_init
2972
2973/*
2974 * Output character on serial port.
2975 */
2976func_start	serial_putc,%d0/%d1/%a0/%a1
2977
2978	movel	ARG1,%d0
2979	cmpib	#'\n',%d0
2980	jbne	1f
2981
2982	/* A little safe recursion is good for the soul */
2983	serial_putc	#'\r'
29841:
2985
2986#ifdef CONFIG_AMIGA
2987	is_not_amiga(2f)
2988	andw	#0x00ff,%d0
2989	oriw	#0x0100,%d0
2990	movel	%pc@(L(custom)),%a0
2991	movew	%d0,%a0@(CUSTOMBASE+C_SERDAT)
29921:	movew	%a0@(CUSTOMBASE+C_SERDATR),%d0
2993	andw	#0x2000,%d0
2994	jeq	1b
2995	jra	L(serial_putc_done)
29962:
2997#endif
2998
2999#ifdef CONFIG_MAC
3000	is_not_mac(5f)
3001
3002#ifdef SERIAL_DEBUG
3003
3004#if defined(MAC_USE_SCC_A) || defined(MAC_USE_SCC_B)
3005	movel	%pc@(L(mac_sccbase)),%a1
3006#endif
3007
3008#ifdef MAC_USE_SCC_A
30093:	btst	#2,%a1@(mac_scc_cha_a_ctrl_offset)
3010	jeq	3b
3011	moveb	%d0,%a1@(mac_scc_cha_a_data_offset)
3012#endif	/* MAC_USE_SCC_A */
3013
3014#ifdef MAC_USE_SCC_B
30154:	btst	#2,%a1@(mac_scc_cha_b_ctrl_offset)
3016	jeq	4b
3017	moveb	%d0,%a1@(mac_scc_cha_b_data_offset)
3018#endif	/* MAC_USE_SCC_B */
3019
3020#endif	/* SERIAL_DEBUG */
3021
3022	jra	L(serial_putc_done)
30235:
3024#endif	/* CONFIG_MAC */
3025
3026#ifdef CONFIG_ATARI
3027	is_not_atari(4f)
3028	movel	%pc@(L(iobase)),%a1
3029#if defined(USE_PRINTER)
30303:	btst	#0,%a1@(LSTMFP_GPIP)
3031	jne	3b
3032	moveb	#LPSG_IO_B,%a1@(LPSG_SELECT)
3033	moveb	%d0,%a1@(LPSG_WRITE)
3034	moveb	#LPSG_IO_A,%a1@(LPSG_SELECT)
3035	moveb	%a1@(LPSG_READ),%d0
3036	bclr	#5,%d0
3037	moveb	%d0,%a1@(LPSG_WRITE)
3038	nop
3039	nop
3040	bset	#5,%d0
3041	moveb	%d0,%a1@(LPSG_WRITE)
3042#elif defined(USE_SCC)
30433:	btst	#2,%a1@(LSCC_CTRL)
3044	jeq	3b
3045	moveb	%d0,%a1@(LSCC_DATA)
3046#elif defined(USE_MFP)
30473:	btst	#7,%a1@(LMFP_TSR)
3048	jeq	3b
3049	moveb	%d0,%a1@(LMFP_UDR)
3050#endif
3051	jra	L(serial_putc_done)
30524:
3053#endif	/* CONFIG_ATARI */
3054
3055#ifdef CONFIG_MVME147
3056	is_not_mvme147(2f)
30571:	btst	#2,M147_SCC_CTRL_A
3058	jeq	1b
3059	moveb	%d0,M147_SCC_DATA_A
3060	jbra	L(serial_putc_done)
30612:
3062#endif
3063
3064#ifdef CONFIG_MVME16x
3065	is_not_mvme16x(2f)
3066	/*
3067	 * If the loader gave us a board type then we can use that to
3068	 * select an appropriate output routine; otherwise we just use
3069	 * the Bug code.  If we have to use the Bug that means the Bug
3070	 * workspace has to be valid, which means the Bug has to use
3071	 * the SRAM, which is non-standard.
3072	 */
3073	moveml	%d0-%d7/%a2-%a6,%sp@-
3074	movel	vme_brdtype,%d1
3075	jeq	1f			| No tag - use the Bug
3076	cmpi	#VME_TYPE_MVME162,%d1
3077	jeq	6f
3078	cmpi	#VME_TYPE_MVME172,%d1
3079	jne	5f
3080	/* 162/172; it's an SCC */
30816:	btst	#2,M162_SCC_CTRL_A
3082	nop
3083	nop
3084	nop
3085	jeq	6b
3086	moveb	#8,M162_SCC_CTRL_A
3087	nop
3088	nop
3089	nop
3090	moveb	%d0,M162_SCC_CTRL_A
3091	jra	3f
30925:
3093	/* 166/167/177; it's a CD2401 */
3094	moveb	#0,M167_CYCAR
3095	moveb	M167_CYIER,%d2
3096	moveb	#0x02,M167_CYIER
30977:
3098	btst	#5,M167_PCSCCTICR
3099	jeq	7b
3100	moveb	M167_PCTPIACKR,%d1
3101	moveb	M167_CYLICR,%d1
3102	jeq	8f
3103	moveb	#0x08,M167_CYTEOIR
3104	jra	7b
31058:
3106	moveb	%d0,M167_CYTDR
3107	moveb	#0,M167_CYTEOIR
3108	moveb	%d2,M167_CYIER
3109	jra	3f
31101:
3111	moveb	%d0,%sp@-
3112	trap	#15
3113	.word	0x0020	/* TRAP 0x020 */
31143:
3115	moveml	%sp@+,%d0-%d7/%a2-%a6
3116	jbra	L(serial_putc_done)
31172:
3118#endif /* CONFIG_MVME16x */
3119
3120#ifdef CONFIG_BVME6000
3121	is_not_bvme6000(2f)
3122	/*
3123	 * The BVME6000 machine has a serial port ...
3124	 */
31251:	btst	#2,BVME_SCC_CTRL_A
3126	jeq	1b
3127	moveb	%d0,BVME_SCC_DATA_A
3128	jbra	L(serial_putc_done)
31292:
3130#endif
3131
3132#ifdef CONFIG_SUN3X
3133	is_not_sun3x(2f)
3134	movel	%d0,-(%sp)
3135	movel	0xFEFE0018,%a1
3136	jbsr	(%a1)
3137	addq	#4,%sp
3138	jbra	L(serial_putc_done)
31392:
3140#endif
3141
3142#ifdef CONFIG_Q40
3143	is_not_q40(2f)
3144	tst.l	%pc@(L(q40_do_debug))	/* only debug if requested */
3145	beq	2f
3146	lea	%pc@(q40_mem_cptr),%a1
3147	move.l	%a1@,%a0
3148	move.b	%d0,%a0@
3149	addq.l	#4,%a0
3150	move.l	%a0,%a1@
3151	jbra    L(serial_putc_done)
31522:
3153#endif
3154
3155#ifdef CONFIG_APOLLO
3156	is_not_apollo(2f)
3157	movl    %pc@(L(iobase)),%a1
3158	moveb	%d0,%a1@(LTHRB0)
31591:      moveb   %a1@(LSRB0),%d0
3160	andb	#0x4,%d0
3161	beq	1b
3162	jbra	L(serial_putc_done)
31632:
3164#endif
3165
3166#ifdef CONFIG_HP300
3167	is_not_hp300(3f)
3168	movl    %pc@(L(iobase)),%a1
3169	addl	%pc@(L(uartbase)),%a1
3170	movel	%pc@(L(uart_scode)),%d1	/* Check the scode */
3171	jmi	3f			/* Unset? Exit */
3172	cmpi	#256,%d1		/* APCI scode? */
3173	jeq	2f
31741:      moveb   %a1@(DCALSR),%d1	/* Output to DCA */
3175	andb	#0x20,%d1
3176	beq	1b
3177	moveb	%d0,%a1@(DCADATA)
3178	jbra	L(serial_putc_done)
31792:	moveb	%a1@(APCILSR),%d1	/* Output to APCI */
3180	andb	#0x20,%d1
3181	beq	2b
3182	moveb	%d0,%a1@(APCIDATA)
3183	jbra	L(serial_putc_done)
31843:
3185#endif
3186
3187L(serial_putc_done):
3188func_return	serial_putc
3189
3190/*
3191 * Output a string.
3192 */
3193func_start	puts,%d0/%a0
3194
3195	movel	ARG1,%a0
3196	jra	2f
31971:
3198#ifdef CONSOLE
3199	console_putc	%d0
3200#endif
3201#ifdef SERIAL_DEBUG
3202	serial_putc	%d0
3203#endif
32042:	moveb	%a0@+,%d0
3205	jne	1b
3206
3207func_return	puts
3208
3209/*
3210 * Output number in hex notation.
3211 */
3212
3213func_start	putn,%d0-%d2
3214
3215	putc	' '
3216
3217	movel	ARG1,%d0
3218	moveq	#7,%d1
32191:	roll	#4,%d0
3220	move	%d0,%d2
3221	andb	#0x0f,%d2
3222	addb	#'0',%d2
3223	cmpb	#'9',%d2
3224	jls	2f
3225	addb	#'A'-('9'+1),%d2
32262:
3227#ifdef CONSOLE
3228	console_putc	%d2
3229#endif
3230#ifdef SERIAL_DEBUG
3231	serial_putc	%d2
3232#endif
3233	dbra	%d1,1b
3234
3235func_return	putn
3236
3237#ifdef CONFIG_MAC
3238/*
3239 *	mac_early_print
3240 *
3241 *	This routine takes its parameters on the stack.  It then
3242 *	turns around and calls the internal routines.  This routine
3243 *	is used by the boot console.
3244 *
3245 *	The calling parameters are:
3246 *		void mac_early_print(const char *str, unsigned length);
3247 *
3248 *	This routine does NOT understand variable arguments only
3249 *	simple strings!
3250 */
3251ENTRY(mac_early_print)
3252	moveml	%d0/%d1/%a0,%sp@-
3253	movew	%sr,%sp@-
3254	ori	#0x0700,%sr
3255	movel	%sp@(18),%a0		/* fetch parameter */
3256	movel	%sp@(22),%d1		/* fetch parameter */
3257	jra	2f
32581:
3259#ifdef CONSOLE
3260	console_putc	%d0
3261#endif
3262#ifdef SERIAL_DEBUG
3263	serial_putc	%d0
3264#endif
3265	subq	#1,%d1
32662:	jeq	3f
3267	moveb	%a0@+,%d0
3268	jne	1b
32693:
3270	movew	%sp@+,%sr
3271	moveml	%sp@+,%d0/%d1/%a0
3272	rts
3273#endif /* CONFIG_MAC */
3274
3275#if defined(CONFIG_HP300) || defined(CONFIG_APOLLO)
3276func_start	set_leds,%d0/%a0
3277	movel	ARG1,%d0
3278#ifdef CONFIG_HP300
3279	is_not_hp300(1f)
3280	movel	%pc@(L(iobase)),%a0
3281	moveb	%d0,%a0@(0x1ffff)
3282	jra	2f
3283#endif
32841:
3285#ifdef CONFIG_APOLLO
3286	movel   %pc@(L(iobase)),%a0
3287	lsll    #8,%d0
3288	eorw    #0xff00,%d0
3289	moveb	%d0,%a0@(LCPUCTRL)
3290#endif
32912:
3292func_return	set_leds
3293#endif
3294
3295#ifdef CONSOLE
3296/*
3297 *	For continuity, see the data alignment
3298 *	to which this structure is tied.
3299 */
3300#define Lconsole_struct_cur_column	0
3301#define Lconsole_struct_cur_row		4
3302#define Lconsole_struct_num_columns	8
3303#define Lconsole_struct_num_rows	12
3304#define Lconsole_struct_left_edge	16
3305
3306func_start	console_init,%a0-%a4/%d0-%d7
3307	/*
3308	 *	Some of the register usage that follows
3309	 *		a0 = pointer to boot_info
3310	 *		a1 = pointer to screen
3311	 *		a2 = pointer to console_globals
3312	 *		d3 = pixel width of screen
3313	 *		d4 = pixel height of screen
3314	 *		(d3,d4) ~= (x,y) of a point just below
3315	 *			and to the right of the screen
3316	 *			NOT on the screen!
3317	 *		d5 = number of bytes per scan line
3318	 *		d6 = number of bytes on the entire screen
3319	 */
3320
3321	lea	%pc@(L(console_globals)),%a2
3322	movel	%pc@(L(mac_videobase)),%a1
3323	movel	%pc@(L(mac_rowbytes)),%d5
3324	movel	%pc@(L(mac_dimensions)),%d3	/* -> low byte */
3325	movel	%d3,%d4
3326	swap	%d4		/* -> high byte */
3327	andl	#0xffff,%d3	/* d3 = screen width in pixels */
3328	andl	#0xffff,%d4	/* d4 = screen height in pixels */
3329
3330	movel	%d5,%d6
3331|	subl	#20,%d6
3332	mulul	%d4,%d6		/* scan line bytes x num scan lines */
3333	divul	#8,%d6		/* we'll clear 8 bytes at a time */
3334	moveq	#-1,%d0		/* Mac_black */
3335	subq	#1,%d6
3336
3337L(console_clear_loop):
3338	movel	%d0,%a1@+
3339	movel	%d0,%a1@+
3340	dbra	%d6,L(console_clear_loop)
3341
3342	/* Calculate font size */
3343
3344#if   defined(FONT_8x8) && defined(CONFIG_FONT_8x8)
3345	lea	%pc@(font_vga_8x8),%a0
3346#elif defined(FONT_8x16) && defined(CONFIG_FONT_8x16)
3347	lea	%pc@(font_vga_8x16),%a0
3348#elif defined(FONT_6x11) && defined(CONFIG_FONT_6x11)
3349	lea	%pc@(font_vga_6x11),%a0
3350#elif defined(CONFIG_FONT_8x8) /* default */
3351	lea	%pc@(font_vga_8x8),%a0
3352#else /* no compiled-in font */
3353	lea	0,%a0
3354#endif
3355
3356	/*
3357	 *	At this point we make a shift in register usage
3358	 *	a1 = address of console_font pointer
3359	 */
3360	lea	%pc@(L(console_font)),%a1
3361	movel	%a0,%a1@	/* store pointer to struct fbcon_font_desc in console_font */
3362	tstl	%a0
3363	jeq	1f
3364	lea	%pc@(L(console_font_data)),%a4
3365	movel	%a0@(FONT_DESC_DATA),%d0
3366	subl	#L(console_font),%a1
3367	addl	%a1,%d0
3368	movel	%d0,%a4@
3369
3370	/*
3371	 *	Calculate global maxs
3372	 *	Note - we can use either an
3373	 *	8 x 16 or 8 x 8 character font
3374	 *	6 x 11 also supported
3375	 */
3376		/* ASSERT: a0 = contents of Lconsole_font */
3377	movel	%d3,%d0				/* screen width in pixels */
3378	divul	%a0@(FONT_DESC_WIDTH),%d0	/* d0 = max num chars per row */
3379
3380	movel	%d4,%d1				/* screen height in pixels */
3381	divul	%a0@(FONT_DESC_HEIGHT),%d1	/* d1 = max num rows */
3382
3383	movel	%d0,%a2@(Lconsole_struct_num_columns)
3384	movel	%d1,%a2@(Lconsole_struct_num_rows)
3385
3386	/*
3387	 *	Clear the current row and column
3388	 */
3389	clrl	%a2@(Lconsole_struct_cur_column)
3390	clrl	%a2@(Lconsole_struct_cur_row)
3391	clrl	%a2@(Lconsole_struct_left_edge)
3392
3393	/*
3394	 * Initialization is complete
3395	 */
33961:
3397func_return	console_init
3398
3399func_start	console_put_stats,%a0/%d7
3400	/*
3401	 *	Some of the register usage that follows
3402	 *		a0 = pointer to boot_info
3403	 *		d7 = value of boot_info fields
3404	 */
3405	puts	"\nMacLinux\n"
3406
3407#ifdef SERIAL_DEBUG
3408	puts	"\n vidaddr:"
3409	putn	%pc@(L(mac_videobase))		/* video addr. */
3410
3411	puts	"\n  _stext:"
3412	lea	%pc@(_stext),%a0
3413	putn	%a0
3414
3415	puts	"\nbootinfo:"
3416	lea	%pc@(_end),%a0
3417	putn	%a0
3418
3419	puts	"\n   cpuid:"
3420	putn	%pc@(L(cputype))
3421
3422#  ifdef CONFIG_MAC
3423	puts	"\n sccbase:"
3424	putn	%pc@(L(mac_sccbase))
3425#  endif
3426#  ifdef MMU_PRINT
3427	putc	'\n'
3428	jbsr	mmu_print_machine_cpu_types
3429#  endif
3430#endif /* SERIAL_DEBUG */
3431
3432	putc	'\n'
3433
3434func_return	console_put_stats
3435
3436#ifdef CONFIG_LOGO
3437func_start	console_put_penguin,%a0-%a1/%d0-%d7
3438	/*
3439	 *	Get 'that_penguin' onto the screen in the upper right corner
3440	 *	penguin is 64 x 74 pixels, align against right edge of screen
3441	 */
3442	lea	%pc@(L(mac_dimensions)),%a0
3443	movel	%a0@,%d0
3444	andil	#0xffff,%d0
3445	subil	#64,%d0		/* snug up against the right edge */
3446	clrl	%d1		/* start at the top */
3447	movel	#73,%d7
3448	lea	%pc@(L(that_penguin)),%a1
3449L(console_penguin_row):
3450	movel	#31,%d6
3451L(console_penguin_pixel_pair):
3452	moveb	%a1@,%d2
3453	lsrb	#4,%d2
3454	console_plot_pixel %d0,%d1,%d2
3455	addq	#1,%d0
3456	moveb	%a1@+,%d2
3457	console_plot_pixel %d0,%d1,%d2
3458	addq	#1,%d0
3459	dbra	%d6,L(console_penguin_pixel_pair)
3460
3461	subil	#64,%d0
3462	addq	#1,%d1
3463	dbra	%d7,L(console_penguin_row)
3464
3465func_return	console_put_penguin
3466
3467/* include penguin bitmap */
3468L(that_penguin):
3469#include "../mac/mac_penguin.S"
3470#endif
3471
3472	/*
3473	 * Calculate source and destination addresses
3474	 *	output	a1 = dest
3475	 *		a2 = source
3476	 */
3477
3478func_start	console_scroll,%a0-%a4/%d0-%d7
3479	lea	%pc@(L(mac_videobase)),%a0
3480	movel	%a0@,%a1
3481	movel	%a1,%a2
3482	lea	%pc@(L(mac_rowbytes)),%a0
3483	movel	%a0@,%d5
3484	movel	%pc@(L(console_font)),%a0
3485	tstl	%a0
3486	jeq	1f
3487	mulul	%a0@(FONT_DESC_HEIGHT),%d5	/* account for # scan lines per character */
3488	addal	%d5,%a2
3489
3490	/*
3491	 * Get dimensions
3492	 */
3493	lea	%pc@(L(mac_dimensions)),%a0
3494	movel	%a0@,%d3
3495	movel	%d3,%d4
3496	swap	%d4
3497	andl	#0xffff,%d3	/* d3 = screen width in pixels */
3498	andl	#0xffff,%d4	/* d4 = screen height in pixels */
3499
3500	/*
3501	 * Calculate number of bytes to move
3502	 */
3503	lea	%pc@(L(mac_rowbytes)),%a0
3504	movel	%a0@,%d6
3505	movel	%pc@(L(console_font)),%a0
3506	subl	%a0@(FONT_DESC_HEIGHT),%d4	/* we're not scrolling the top row! */
3507	mulul	%d4,%d6		/* scan line bytes x num scan lines */
3508	divul	#32,%d6		/* we'll move 8 longs at a time */
3509	subq	#1,%d6
3510
3511L(console_scroll_loop):
3512	movel	%a2@+,%a1@+
3513	movel	%a2@+,%a1@+
3514	movel	%a2@+,%a1@+
3515	movel	%a2@+,%a1@+
3516	movel	%a2@+,%a1@+
3517	movel	%a2@+,%a1@+
3518	movel	%a2@+,%a1@+
3519	movel	%a2@+,%a1@+
3520	dbra	%d6,L(console_scroll_loop)
3521
3522	lea	%pc@(L(mac_rowbytes)),%a0
3523	movel	%a0@,%d6
3524	movel	%pc@(L(console_font)),%a0
3525	mulul	%a0@(FONT_DESC_HEIGHT),%d6	/* scan line bytes x font height */
3526	divul	#32,%d6			/* we'll move 8 words at a time */
3527	subq	#1,%d6
3528
3529	moveq	#-1,%d0
3530L(console_scroll_clear_loop):
3531	movel	%d0,%a1@+
3532	movel	%d0,%a1@+
3533	movel	%d0,%a1@+
3534	movel	%d0,%a1@+
3535	movel	%d0,%a1@+
3536	movel	%d0,%a1@+
3537	movel	%d0,%a1@+
3538	movel	%d0,%a1@+
3539	dbra	%d6,L(console_scroll_clear_loop)
3540
35411:
3542func_return	console_scroll
3543
3544
3545func_start	console_putc,%a0/%a1/%d0-%d7
3546
3547	is_not_mac(L(console_exit))
3548	tstl	%pc@(L(console_font))
3549	jeq	L(console_exit)
3550
3551	/* Output character in d7 on console.
3552	 */
3553	movel	ARG1,%d7
3554	cmpib	#'\n',%d7
3555	jbne	1f
3556
3557	/* A little safe recursion is good for the soul */
3558	console_putc	#'\r'
35591:
3560	lea	%pc@(L(console_globals)),%a0
3561
3562	cmpib	#10,%d7
3563	jne	L(console_not_lf)
3564	movel	%a0@(Lconsole_struct_cur_row),%d0
3565	addil	#1,%d0
3566	movel	%d0,%a0@(Lconsole_struct_cur_row)
3567	movel	%a0@(Lconsole_struct_num_rows),%d1
3568	cmpl	%d1,%d0
3569	jcs	1f
3570	subil	#1,%d0
3571	movel	%d0,%a0@(Lconsole_struct_cur_row)
3572	console_scroll
35731:
3574	jra	L(console_exit)
3575
3576L(console_not_lf):
3577	cmpib	#13,%d7
3578	jne	L(console_not_cr)
3579	clrl	%a0@(Lconsole_struct_cur_column)
3580	jra	L(console_exit)
3581
3582L(console_not_cr):
3583	cmpib	#1,%d7
3584	jne	L(console_not_home)
3585	clrl	%a0@(Lconsole_struct_cur_row)
3586	clrl	%a0@(Lconsole_struct_cur_column)
3587	jra	L(console_exit)
3588
3589/*
3590 *	At this point we know that the %d7 character is going to be
3591 *	rendered on the screen.  Register usage is -
3592 *		a0 = pointer to console globals
3593 *		a1 = font data
3594 *		d0 = cursor column
3595 *		d1 = cursor row to draw the character
3596 *		d7 = character number
3597 */
3598L(console_not_home):
3599	movel	%a0@(Lconsole_struct_cur_column),%d0
3600	addql	#1,%a0@(Lconsole_struct_cur_column)
3601	movel	%a0@(Lconsole_struct_num_columns),%d1
3602	cmpl	%d1,%d0
3603	jcs	1f
3604	console_putc	#'\n'	/* recursion is OK! */
36051:
3606	movel	%a0@(Lconsole_struct_cur_row),%d1
3607
3608	/*
3609	 *	At this point we make a shift in register usage
3610	 *	a0 = address of pointer to font data (fbcon_font_desc)
3611	 */
3612	movel	%pc@(L(console_font)),%a0
3613	movel	%pc@(L(console_font_data)),%a1	/* Load fbcon_font_desc.data into a1 */
3614	andl	#0x000000ff,%d7
3615		/* ASSERT: a0 = contents of Lconsole_font */
3616	mulul	%a0@(FONT_DESC_HEIGHT),%d7	/* d7 = index into font data */
3617	addl	%d7,%a1			/* a1 = points to char image */
3618
3619	/*
3620	 *	At this point we make a shift in register usage
3621	 *	d0 = pixel coordinate, x
3622	 *	d1 = pixel coordinate, y
3623	 *	d2 = (bit 0) 1/0 for white/black (!) pixel on screen
3624	 *	d3 = font scan line data (8 pixels)
3625	 *	d6 = count down for the font's pixel width (8)
3626	 *	d7 = count down for the font's pixel count in height
3627	 */
3628		/* ASSERT: a0 = contents of Lconsole_font */
3629	mulul	%a0@(FONT_DESC_WIDTH),%d0
3630	mulul	%a0@(FONT_DESC_HEIGHT),%d1
3631	movel	%a0@(FONT_DESC_HEIGHT),%d7	/* Load fbcon_font_desc.height into d7 */
3632	subq	#1,%d7
3633L(console_read_char_scanline):
3634	moveb	%a1@+,%d3
3635
3636		/* ASSERT: a0 = contents of Lconsole_font */
3637	movel	%a0@(FONT_DESC_WIDTH),%d6	/* Load fbcon_font_desc.width into d6 */
3638	subql	#1,%d6
3639
3640L(console_do_font_scanline):
3641	lslb	#1,%d3
3642	scsb	%d2		/* convert 1 bit into a byte */
3643	console_plot_pixel %d0,%d1,%d2
3644	addq	#1,%d0
3645	dbra	%d6,L(console_do_font_scanline)
3646
3647		/* ASSERT: a0 = contents of Lconsole_font */
3648	subl	%a0@(FONT_DESC_WIDTH),%d0
3649	addq	#1,%d1
3650	dbra	%d7,L(console_read_char_scanline)
3651
3652L(console_exit):
3653func_return	console_putc
3654
3655	/*
3656	 *	Input:
3657	 *		d0 = x coordinate
3658	 *		d1 = y coordinate
3659	 *		d2 = (bit 0) 1/0 for white/black (!)
3660	 *	All registers are preserved
3661	 */
3662func_start	console_plot_pixel,%a0-%a1/%d0-%d4
3663
3664	movel	%pc@(L(mac_videobase)),%a1
3665	movel	%pc@(L(mac_videodepth)),%d3
3666	movel	ARG1,%d0
3667	movel	ARG2,%d1
3668	mulul	%pc@(L(mac_rowbytes)),%d1
3669	movel	ARG3,%d2
3670
3671	/*
3672	 *	Register usage:
3673	 *		d0 = x coord becomes byte offset into frame buffer
3674	 *		d1 = y coord
3675	 *		d2 = black or white (0/1)
3676	 *		d3 = video depth
3677	 *		d4 = temp of x (d0) for many bit depths
3678	 */
3679L(test_1bit):
3680	cmpb	#1,%d3
3681	jbne	L(test_2bit)
3682	movel	%d0,%d4		/* we need the low order 3 bits! */
3683	divul	#8,%d0
3684	addal	%d0,%a1
3685	addal	%d1,%a1
3686	andb	#7,%d4
3687	eorb	#7,%d4		/* reverse the x-coordinate w/ screen-bit # */
3688	andb	#1,%d2
3689	jbne	L(white_1)
3690	bsetb	%d4,%a1@
3691	jbra	L(console_plot_pixel_exit)
3692L(white_1):
3693	bclrb	%d4,%a1@
3694	jbra	L(console_plot_pixel_exit)
3695
3696L(test_2bit):
3697	cmpb	#2,%d3
3698	jbne	L(test_4bit)
3699	movel	%d0,%d4		/* we need the low order 2 bits! */
3700	divul	#4,%d0
3701	addal	%d0,%a1
3702	addal	%d1,%a1
3703	andb	#3,%d4
3704	eorb	#3,%d4		/* reverse the x-coordinate w/ screen-bit # */
3705	lsll	#1,%d4		/* ! */
3706	andb	#1,%d2
3707	jbne	L(white_2)
3708	bsetb	%d4,%a1@
3709	addq	#1,%d4
3710	bsetb	%d4,%a1@
3711	jbra	L(console_plot_pixel_exit)
3712L(white_2):
3713	bclrb	%d4,%a1@
3714	addq	#1,%d4
3715	bclrb	%d4,%a1@
3716	jbra	L(console_plot_pixel_exit)
3717
3718L(test_4bit):
3719	cmpb	#4,%d3
3720	jbne	L(test_8bit)
3721	movel	%d0,%d4		/* we need the low order bit! */
3722	divul	#2,%d0
3723	addal	%d0,%a1
3724	addal	%d1,%a1
3725	andb	#1,%d4
3726	eorb	#1,%d4
3727	lsll	#2,%d4		/* ! */
3728	andb	#1,%d2
3729	jbne	L(white_4)
3730	bsetb	%d4,%a1@
3731	addq	#1,%d4
3732	bsetb	%d4,%a1@
3733	addq	#1,%d4
3734	bsetb	%d4,%a1@
3735	addq	#1,%d4
3736	bsetb	%d4,%a1@
3737	jbra	L(console_plot_pixel_exit)
3738L(white_4):
3739	bclrb	%d4,%a1@
3740	addq	#1,%d4
3741	bclrb	%d4,%a1@
3742	addq	#1,%d4
3743	bclrb	%d4,%a1@
3744	addq	#1,%d4
3745	bclrb	%d4,%a1@
3746	jbra	L(console_plot_pixel_exit)
3747
3748L(test_8bit):
3749	cmpb	#8,%d3
3750	jbne	L(test_16bit)
3751	addal	%d0,%a1
3752	addal	%d1,%a1
3753	andb	#1,%d2
3754	jbne	L(white_8)
3755	moveb	#0xff,%a1@
3756	jbra	L(console_plot_pixel_exit)
3757L(white_8):
3758	clrb	%a1@
3759	jbra	L(console_plot_pixel_exit)
3760
3761L(test_16bit):
3762	cmpb	#16,%d3
3763	jbne	L(console_plot_pixel_exit)
3764	addal	%d0,%a1
3765	addal	%d0,%a1
3766	addal	%d1,%a1
3767	andb	#1,%d2
3768	jbne	L(white_16)
3769	clrw	%a1@
3770	jbra	L(console_plot_pixel_exit)
3771L(white_16):
3772	movew	#0x0fff,%a1@
3773	jbra	L(console_plot_pixel_exit)
3774
3775L(console_plot_pixel_exit):
3776func_return	console_plot_pixel
3777#endif /* CONSOLE */
3778
3779
3780__INITDATA
3781	.align	4
3782
3783#if defined(CONFIG_ATARI) || defined(CONFIG_AMIGA) || \
3784    defined(CONFIG_HP300) || defined(CONFIG_APOLLO)
3785L(custom):
3786L(iobase):
3787	.long 0
3788#endif
3789
3790#if defined(CONSOLE)
3791L(console_globals):
3792	.long	0		/* cursor column */
3793	.long	0		/* cursor row */
3794	.long	0		/* max num columns */
3795	.long	0		/* max num rows */
3796	.long	0		/* left edge */
3797L(console_font):
3798	.long	0		/* pointer to console font (struct font_desc) */
3799L(console_font_data):
3800	.long	0		/* pointer to console font data */
3801#endif /* CONSOLE */
3802
3803#if defined(MMU_PRINT)
3804L(mmu_print_data):
3805	.long	0		/* valid flag */
3806	.long	0		/* start logical */
3807	.long	0		/* next logical */
3808	.long	0		/* start physical */
3809	.long	0		/* next physical */
3810#endif /* MMU_PRINT */
3811
3812L(cputype):
3813	.long	0
3814L(mmu_cached_pointer_tables):
3815	.long	0
3816L(mmu_num_pointer_tables):
3817	.long	0
3818L(phys_kernel_start):
3819	.long	0
3820L(kernel_end):
3821	.long	0
3822L(memory_start):
3823	.long	0
3824L(kernel_pgdir_ptr):
3825	.long	0
3826L(temp_mmap_mem):
3827	.long	0
3828
3829#if defined (CONFIG_MVME147)
3830M147_SCC_CTRL_A = 0xfffe3002
3831M147_SCC_DATA_A = 0xfffe3003
3832#endif
3833
3834#if defined (CONFIG_MVME16x)
3835M162_SCC_CTRL_A = 0xfff45005
3836M167_CYCAR = 0xfff450ee
3837M167_CYIER = 0xfff45011
3838M167_CYLICR = 0xfff45026
3839M167_CYTEOIR = 0xfff45085
3840M167_CYTDR = 0xfff450f8
3841M167_PCSCCTICR = 0xfff4201e
3842M167_PCTPIACKR = 0xfff42025
3843#endif
3844
3845#if defined (CONFIG_BVME6000)
3846BVME_SCC_CTRL_A	= 0xffb0000b
3847BVME_SCC_DATA_A	= 0xffb0000f
3848#endif
3849
3850#if defined(CONFIG_MAC)
3851L(mac_videobase):
3852	.long	0
3853L(mac_videodepth):
3854	.long	0
3855L(mac_dimensions):
3856	.long	0
3857L(mac_rowbytes):
3858	.long	0
3859#ifdef SERIAL_DEBUG
3860L(mac_sccbase):
3861	.long	0
3862#endif
3863#endif /* CONFIG_MAC */
3864
3865#if defined (CONFIG_APOLLO)
3866LSRB0        = 0x10412
3867LTHRB0       = 0x10416
3868LCPUCTRL     = 0x10100
3869#endif
3870
3871#if defined(CONFIG_HP300)
3872DCADATA	     = 0x11
3873DCALSR	     = 0x1b
3874APCIDATA     = 0x00
3875APCILSR      = 0x14
3876L(uartbase):
3877	.long	0
3878L(uart_scode):
3879	.long	-1
3880#endif
3881
3882__FINIT
3883	.data
3884	.align	4
3885
3886availmem:
3887	.long	0
3888m68k_pgtable_cachemode:
3889	.long	0
3890m68k_supervisor_cachemode:
3891	.long	0
3892#if defined(CONFIG_MVME16x)
3893mvme_bdid:
3894	.long	0,0,0,0,0,0,0,0
3895#endif
3896#if defined(CONFIG_Q40)
3897q40_mem_cptr:
3898	.long	0
3899L(q40_do_debug):
3900	.long	0
3901#endif
3902